首页 > 最新文献

Cancer Chemistry最新文献

英文 中文
Abstract 328: Selective fluorogenic probe for rapid detection of cathepsin L activity 328:选择性荧光探针快速检测组织蛋白酶L活性
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-328
Kelton A. Schleyer, Ben Fetrow, P. Z. Fatland, Jun Liu, Maya Chaaban, Biwu Ma, Lina Cui
{"title":"Abstract 328: Selective fluorogenic probe for rapid detection of cathepsin L activity","authors":"Kelton A. Schleyer, Ben Fetrow, P. Z. Fatland, Jun Liu, Maya Chaaban, Biwu Ma, Lina Cui","doi":"10.1158/1538-7445.AM2021-328","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-328","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81516118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Abstract SY07-02: Gaining biologic insights into glioblastoma using proteomics SY07-02:利用蛋白质组学获得胶质母细胞瘤的生物学见解
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-SY07-02
J. Barnholtz-Sloan
Glioblastoma (GBM) is the most common type of primary malignant tumor in adults and contributes disproportionately to cancer morbidity and mortality. Understanding its molecular pathogenesis is crucial for improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomics data on 99-treatment naive GBMs provided insights to GBM biology. Multiple key findings emerged that were not known from traditional genomic analyses: (1) Analysis of protein phosphorylation identified key signaling intermediates in the RTK/RAS path-way common to multiple RTK genomic alterations (PTPN11 and PLCG1), potentially offering common therapeutic targets for different oncogenic drivers in GBM. (2) Phosphoproteomics also identified potential druggable targets based on kinase-substrate pathway analysis, as well as novel phosphoprotein targets associated with the regulation of telomere length by ATRX in IDH mutants. (3) TP53 protein abundance in GBM is regulated by protein/phosphoprotein effectors (4) Four immune GBM subtypes exist, characterized by distinct immune cell population differences – Immune High and Immune Low phenotypes in GBM were driven by tumor-associated macrophage markers, and associated with distinct epigenetic modifications and histone acetylation patterns. (5) The mesenchymal subtype displays EMT signatures specific in tumor cells, distinct from infiltrating immune cells. (6) Histone H2B acetylation and immune-low GBM was driven largely by BRDs, CREBBP, and EP300. (7) Identification of key metabolic changes in IDH mutants facilitating the accumulation of onco-metabolite 2-HG were also associated with lipidomic changes. This work identifies additional therapeutic channels for GBM and novel information useful for more accurate stratification patients for effective treatment. Citation Format: Jill S. Barnholtz-Sloan. Gaining biologic insights into glioblastoma using proteomics [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr SY07-02.
胶质母细胞瘤(GBM)是成人中最常见的原发性恶性肿瘤类型,并对癌症发病率和死亡率有不成比例的贡献。了解其分子发病机制对提高诊断和治疗具有重要意义。对99次治疗的初始GBM的基因组学、蛋白质组学、翻译后修饰和代谢组学数据进行综合分析,为GBM生物学提供了新的见解。传统基因组分析中不知道的多个关键发现:(1)蛋白质磷酸化分析确定了多个RTK基因组改变(PTPN11和PLCG1)共同的RTK/RAS通路中的关键信号中间体,可能为GBM中不同的致癌驱动因素提供共同的治疗靶点。(2)磷酸化蛋白质组学还通过激酶-底物通路分析发现了潜在的可药物靶点,以及IDH突变体中与ATRX调节端粒长度相关的新型磷酸化蛋白靶点。(3) GBM中TP53蛋白丰度受蛋白/磷蛋白效应物调控。(4)GBM存在四种免疫亚型,其特征是免疫细胞群差异明显——GBM中的免疫高表型和免疫低表型由肿瘤相关巨噬细胞标志物驱动,并与不同的表观遗传修饰和组蛋白乙酰化模式相关。(5)间充质亚型在肿瘤细胞中表现出特异性的EMT特征,与浸润性免疫细胞不同。(6)组蛋白H2B乙酰化和免疫低GBM主要由brd、CREBBP和EP300驱动。(7) IDH突变体中促进肿瘤代谢物2-HG积累的关键代谢变化也与脂质组学变化有关。这项工作确定了GBM的额外治疗渠道和新信息,有助于更准确地分层患者进行有效治疗。引用格式:Jill S. Barnholtz-Sloan。利用蛋白质组学获得胶质母细胞瘤的生物学见解[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):SY07-02。
{"title":"Abstract SY07-02: Gaining biologic insights into glioblastoma using proteomics","authors":"J. Barnholtz-Sloan","doi":"10.1158/1538-7445.AM2021-SY07-02","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-SY07-02","url":null,"abstract":"Glioblastoma (GBM) is the most common type of primary malignant tumor in adults and contributes disproportionately to cancer morbidity and mortality. Understanding its molecular pathogenesis is crucial for improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomics data on 99-treatment naive GBMs provided insights to GBM biology. Multiple key findings emerged that were not known from traditional genomic analyses: (1) Analysis of protein phosphorylation identified key signaling intermediates in the RTK/RAS path-way common to multiple RTK genomic alterations (PTPN11 and PLCG1), potentially offering common therapeutic targets for different oncogenic drivers in GBM. (2) Phosphoproteomics also identified potential druggable targets based on kinase-substrate pathway analysis, as well as novel phosphoprotein targets associated with the regulation of telomere length by ATRX in IDH mutants. (3) TP53 protein abundance in GBM is regulated by protein/phosphoprotein effectors (4) Four immune GBM subtypes exist, characterized by distinct immune cell population differences – Immune High and Immune Low phenotypes in GBM were driven by tumor-associated macrophage markers, and associated with distinct epigenetic modifications and histone acetylation patterns. (5) The mesenchymal subtype displays EMT signatures specific in tumor cells, distinct from infiltrating immune cells. (6) Histone H2B acetylation and immune-low GBM was driven largely by BRDs, CREBBP, and EP300. (7) Identification of key metabolic changes in IDH mutants facilitating the accumulation of onco-metabolite 2-HG were also associated with lipidomic changes. This work identifies additional therapeutic channels for GBM and novel information useful for more accurate stratification patients for effective treatment. Citation Format: Jill S. Barnholtz-Sloan. Gaining biologic insights into glioblastoma using proteomics [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr SY07-02.","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86624797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 294:In vitroefficacy studies to support engineered T cell therapies 294:支持工程化T细胞疗法的体外疗效研究
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-294
Sanne Holt, Sophie C Vermond, M. Hazenoot, Rene J. McLaughlin, Marco Guadagnoli, M. Vlaming
{"title":"Abstract 294:In vitroefficacy studies to support engineered T cell therapies","authors":"Sanne Holt, Sophie C Vermond, M. Hazenoot, Rene J. McLaughlin, Marco Guadagnoli, M. Vlaming","doi":"10.1158/1538-7445.AM2021-294","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-294","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81215723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 273: A mass spectrometry survey of frequent HLA alleles successfully presenting common tumor specific mutations for immune recognition 摘要273:一项常见HLA等位基因的质谱调查成功地提出了常见的肿瘤特异性突变,用于免疫识别
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-273
Catherine M. Ade, Y. Qi, Sudipto Das, K. Hanada, Tapan Maity, Xu Zhang, T. Andresson, U. Guha, J. Yang
{"title":"Abstract 273: A mass spectrometry survey of frequent HLA alleles successfully presenting common tumor specific mutations for immune recognition","authors":"Catherine M. Ade, Y. Qi, Sudipto Das, K. Hanada, Tapan Maity, Xu Zhang, T. Andresson, U. Guha, J. Yang","doi":"10.1158/1538-7445.AM2021-273","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-273","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78974774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 284: Design, synthesis and biological evaluation of novel water-soluble salts of the antimitotic prodrugs 4-(3-alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides selectively bioactivated by cytochrome p450 1A1 in breast cancer cells 284:细胞色素p450 1A1选择性活化抗有丝分裂前药4-(3-烷基-2-氧咪唑烷-1-基)- n-苯基苯磺酰胺水溶性盐的设计、合成及生物学评价
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-284
V. Ouellette, Atziri Corin Chavez Alvarez, S. Fortin
{"title":"Abstract 284: Design, synthesis and biological evaluation of novel water-soluble salts of the antimitotic prodrugs 4-(3-alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides selectively bioactivated by cytochrome p450 1A1 in breast cancer cells","authors":"V. Ouellette, Atziri Corin Chavez Alvarez, S. Fortin","doi":"10.1158/1538-7445.AM2021-284","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-284","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82969909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 325: Nascent proteome analysis of tumor cells and their microenvironment in cultured human tumor tissues 325:培养人肿瘤组织中肿瘤细胞及其微环境的新生蛋白质组学分析
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-325
M. Dong, Karim Aljakouch, K. Böpple, Bernd Winkler, J. Schüler, F. Essmann, H. Kopp, J. Krijgsveld, W. Aulitzky
{"title":"Abstract 325: Nascent proteome analysis of tumor cells and their microenvironment in cultured human tumor tissues","authors":"M. Dong, Karim Aljakouch, K. Böpple, Bernd Winkler, J. Schüler, F. Essmann, H. Kopp, J. Krijgsveld, W. Aulitzky","doi":"10.1158/1538-7445.AM2021-325","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-325","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88006121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 329: Targeting an emerging oncogenic biomarker, heparanase 329:靶向新兴的致癌生物标志物肝素酶
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-329
Lina Cui
{"title":"Abstract 329: Targeting an emerging oncogenic biomarker, heparanase","authors":"Lina Cui","doi":"10.1158/1538-7445.AM2021-329","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-329","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90935273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 279: Transient opening of the blood brain barrier by Tumor Treating Fields (TTFields) 279:肿瘤治疗电场(TTFields)瞬时打开血脑屏障
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-279
C. Brami, Ellaine Salvador, A. Kessler, M. Burek, T. Voloshin, M. Giladi, R. Ernestus, M. Löhr, C. Förster, C. Hagemann
{"title":"Abstract 279: Transient opening of the blood brain barrier by Tumor Treating Fields (TTFields)","authors":"C. Brami, Ellaine Salvador, A. Kessler, M. Burek, T. Voloshin, M. Giladi, R. Ernestus, M. Löhr, C. Förster, C. Hagemann","doi":"10.1158/1538-7445.AM2021-279","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-279","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"28 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91499976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Abstract 19: Proteome-wide biomarker discovery using digital MosaicNeedles 利用数字MosaicNeedles发现蛋白质组生物标志物
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-19
Qimin Quan, J. Ritchey, J. Wilkinson, John Geanacopoulos, Alaina Kaiser, J. Boyce
{"title":"Abstract 19: Proteome-wide biomarker discovery using digital MosaicNeedles","authors":"Qimin Quan, J. Ritchey, J. Wilkinson, John Geanacopoulos, Alaina Kaiser, J. Boyce","doi":"10.1158/1538-7445.AM2021-19","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-19","url":null,"abstract":"","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"12369 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79470443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract 278: Artificial intelligence accelerate drug discovery 摘要278:人工智能加速药物发现
Pub Date : 2021-07-01 DOI: 10.1158/1538-7445.AM2021-278
Weidong Xie, Xiaoyan Cheng, Zhengfang Ding, R. Deng, D. Gu
Drug discovery is resource intensive, and involves typical timelines of 10-20 years and costs that range from US$0.5 billion to US$2.6 billion. Artificial intelligence (AI) has recently started to gear-up its application in various sectors of the society and the pharmaceutical industry as a frontrunner beneficiary.Artificial intelligence can accelerate drug discovery and reduce costs by facilitating the rapid screening and identification of compounds. We have developed DM-AI drug discovery platform, including convolutional neural networks, decision treealgorithm, reinforcement learning, generative adversarial networks, big data, and knowledge graphs, along with structure and ligand-based high-throughput virtual screening , for new drug discovery and development. DM-AI optimizes biological activity,toxicity,physicochemical property. We used DM-AI to discover potent inhibitors of SHP2, PIM1, DNA-PK, kinases target implicated in solid tumor and other diseases.We started to train a biological activity prediction model on a database of the given target kinase inhibitors (positive set) and non-kinase targets molecules (negative set), and then predicted the activity of existing million data sets, obtained an initial output of thousands structures. We then evaluated these structures using a pharmacophore reward model on the basis of virtual chemical spaces of kinase inhibitors in complex with target protein. To narrow our focus to a smaller set of molecules for analysis, compounds with higher score were filtered to remove patents and applications molecules, also remove molecules bearing structural alerts and reactive groups.By day 7 after target selection, We had selected dozens structures with structural diversity for experimental validation. and by day 28, they were tested for in vitro inhibitory activity in an enzymatic kinase assay, active compounds accounted for up to 65% in some target models. This illustrates the utility of our DM-AI drug discovery platform for the successful, rapid discovery of drug candidates. Citation Format: Weidong Xie, Xing Cheng, Zhengfang Ding, Riqiang Deng, Dawei Gu. Artificial intelligence accelerate drug discovery [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 278.
药物发现是资源密集型的,通常需要10-20年的时间,成本从5亿美元到26亿美元不等。最近,人工智能(AI)在社会各领域的应用开始加速,制药行业也成为了领跑者。人工智能可以通过促进化合物的快速筛选和鉴定来加速药物发现并降低成本。我们开发了DM-AI药物发现平台,包括卷积神经网络、决策树算法、强化学习、生成对抗网络、大数据、知识图谱,以及基于结构和配体的高通量虚拟筛选,用于新药发现和开发。DM-AI优化了生物活性、毒性、理化性质。我们使用DM-AI发现了SHP2, PIM1, DNA-PK,涉及实体肿瘤和其他疾病的激酶靶点的有效抑制剂。我们开始在给定目标激酶抑制剂(阳性集)和非激酶目标分子(阴性集)的数据库上训练生物活性预测模型,然后预测现有数百万个数据集的活性,获得数千个结构的初始输出。然后,我们使用基于激酶抑制剂与靶蛋白复合物的虚拟化学空间的药效团奖励模型来评估这些结构。为了将我们的重点缩小到更小的分子组进行分析,我们对得分较高的化合物进行了过滤,以去除专利和应用分子,同时去除带有结构警报和反应基团的分子。在目标选择后的第7天,我们选择了数十个具有结构多样性的结构进行实验验证。在第28天,他们在酶激酶试验中进行了体外抑制活性测试,在一些目标模型中,活性化合物占65%。这说明了我们的DM-AI药物发现平台在成功、快速发现候选药物方面的实用性。引用格式:谢卫东,程兴,丁正芳,邓日强,顾大伟。人工智能加速药物发现[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):278。
{"title":"Abstract 278: Artificial intelligence accelerate drug discovery","authors":"Weidong Xie, Xiaoyan Cheng, Zhengfang Ding, R. Deng, D. Gu","doi":"10.1158/1538-7445.AM2021-278","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2021-278","url":null,"abstract":"Drug discovery is resource intensive, and involves typical timelines of 10-20 years and costs that range from US$0.5 billion to US$2.6 billion. Artificial intelligence (AI) has recently started to gear-up its application in various sectors of the society and the pharmaceutical industry as a frontrunner beneficiary.Artificial intelligence can accelerate drug discovery and reduce costs by facilitating the rapid screening and identification of compounds. We have developed DM-AI drug discovery platform, including convolutional neural networks, decision treealgorithm, reinforcement learning, generative adversarial networks, big data, and knowledge graphs, along with structure and ligand-based high-throughput virtual screening , for new drug discovery and development. DM-AI optimizes biological activity,toxicity,physicochemical property. We used DM-AI to discover potent inhibitors of SHP2, PIM1, DNA-PK, kinases target implicated in solid tumor and other diseases.We started to train a biological activity prediction model on a database of the given target kinase inhibitors (positive set) and non-kinase targets molecules (negative set), and then predicted the activity of existing million data sets, obtained an initial output of thousands structures. We then evaluated these structures using a pharmacophore reward model on the basis of virtual chemical spaces of kinase inhibitors in complex with target protein. To narrow our focus to a smaller set of molecules for analysis, compounds with higher score were filtered to remove patents and applications molecules, also remove molecules bearing structural alerts and reactive groups.By day 7 after target selection, We had selected dozens structures with structural diversity for experimental validation. and by day 28, they were tested for in vitro inhibitory activity in an enzymatic kinase assay, active compounds accounted for up to 65% in some target models. This illustrates the utility of our DM-AI drug discovery platform for the successful, rapid discovery of drug candidates. Citation Format: Weidong Xie, Xing Cheng, Zhengfang Ding, Riqiang Deng, Dawei Gu. Artificial intelligence accelerate drug discovery [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 278.","PeriodicalId":9563,"journal":{"name":"Cancer Chemistry","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85813141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1