The studies regarding prevalence, outcomes, and predictors of prolonged corrected QT (QTc) among COVID-19 patients not on QTc-prolonging medication are not available in the literature. In this retrospective cohort study, the QTc of 295 hospital-admitted COVID-19 patients was analyzed and its association with in-hospital mortality was determined. The QTc was prolonged in 14.6% (43/295) of the study population. Prolonged QTc was seen in patients with older age (P = 0.018), coronary artery disease (P = 0.001), congestive heart failure (P = 0.042), elevated N-terminal-pro-B-type natriuretic peptide (NT-ProBNP) (P < 0.0001), and on remdesivir (P = 0.046). No episode of torsades de pointes arrhythmia or any arrhythmic death was observed among patients with prolonged QTc. The mortality was significantly high in patients with prolonged QTc (P = 0.003). The multivariate logistic regression analysis showed coronary artery disease (odds ratio (OR): 4.153, 95% CI 1.37-14.86; P = 0.013), and NT-ProBNP (ng/L) (OR: 1.000, 95% CI 1.000-1.000; P = 0.007) as predictors of prolonged QTc. The prolonged QTc was associated with the worst in-hospital survival (p by log-rank 0.001). A significant independent association was observed between prolonged QTc and in-hospital mortality in multivariate cox-regression analysis (adjusted hazard ratio: 3.861; (95% CI 1.719-6.523), P < 0.0001). QTc was found to be a marker of underlying comorbidities among COVID-19 patients. Prolonged QTc in hospitalized COVID-19 patients was independently associated with in-hospital mortality.
有关未服用QTc延长药物的COVID-19患者中校正QT(QTc)延长的发生率、结果和预测因素的研究在文献中并不多见。在这项回顾性队列研究中,对 295 名入院的 COVID-19 患者的 QTc 进行了分析,并确定了其与院内死亡率的关系。研究人群中有 14.6%(43/295)的患者 QTc 延长。QTc延长见于年龄较大(P = 0.018)、患有冠状动脉疾病(P = 0.001)、充血性心力衰竭(P = 0.042)、N-末端前 B 型钠尿肽(NT-ProBNP)升高(P = 0.001)、N-末端前 B 型钠尿肽(NT-ProBNP)升高(P = 0.042)和N-末端前 B 型钠尿肽(NT-ProBNP)升高(P = 0.018)的患者。
{"title":"Prevalence, Outcomes, and Predictors of Prolonged Corrected QT Interval in Hydroxychloroquine-Naïve Hospitalized COVID-19 Patients.","authors":"Praveen Gupta, Anunay Gupta, Kapil Gupta, Sandeep Bansal, Monica Sharma, Ira Balakrishnan","doi":"10.1007/s12012-024-09886-x","DOIUrl":"10.1007/s12012-024-09886-x","url":null,"abstract":"<p><p>The studies regarding prevalence, outcomes, and predictors of prolonged corrected QT (QTc) among COVID-19 patients not on QTc-prolonging medication are not available in the literature. In this retrospective cohort study, the QTc of 295 hospital-admitted COVID-19 patients was analyzed and its association with in-hospital mortality was determined. The QTc was prolonged in 14.6% (43/295) of the study population. Prolonged QTc was seen in patients with older age (P = 0.018), coronary artery disease (P = 0.001), congestive heart failure (P = 0.042), elevated N-terminal-pro-B-type natriuretic peptide (NT-ProBNP) (P < 0.0001), and on remdesivir (P = 0.046). No episode of torsades de pointes arrhythmia or any arrhythmic death was observed among patients with prolonged QTc. The mortality was significantly high in patients with prolonged QTc (P = 0.003). The multivariate logistic regression analysis showed coronary artery disease (odds ratio (OR): 4.153, 95% CI 1.37-14.86; P = 0.013), and NT-ProBNP (ng/L) (OR: 1.000, 95% CI 1.000-1.000; P = 0.007) as predictors of prolonged QTc. The prolonged QTc was associated with the worst in-hospital survival (p by log-rank 0.001). A significant independent association was observed between prolonged QTc and in-hospital mortality in multivariate cox-regression analysis (adjusted hazard ratio: 3.861; (95% CI 1.719-6.523), P < 0.0001). QTc was found to be a marker of underlying comorbidities among COVID-19 patients. Prolonged QTc in hospitalized COVID-19 patients was independently associated with in-hospital mortality.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1053-1066"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-08DOI: 10.1007/s12012-024-09889-8
Xiaobiao Cao, Jun Yang, Lujun He, Cangcang Liu
Atherosclerosis (AS) is an inflammatory disease with multiple causes. Multiple circular RNAs (circRNAs) are known to be involved in the pathogenesis of AS. To explore the function and mechanism of circ_0005699 in oxidative low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) injury. Ox-LDL treatment restrained HUVECs viability, cell proliferation, and angiogenesis ability, and accelerated HUVECs apoptosis, inflammatory response, and oxidative stress. Circ_0005699 was up-regulated in the serum samples of AS patients and ox-LDL-induced HUVECs. Interference of circ_0005699 effectively rescued ox-LDL-induced injury in HUVECs. Additionally, miR-384 could bind to circ_0005699, and miR-384 depletion inverted the effects of circ_0005699 deficiency on ox-LDL-mediated HUVEC injury. Moreover, ASPH was a direct target of miR-384, and the enforced expression of ASPH overturned miR-384-induced effects on ox-LDL-induced HUVECs. Importantly, circ_0005699 regulated ASPH expression via sponging miR-384. Interference of circ_0005699 protected against ox-LDL-induced injury in HUVECs at least partly by regulating ASPH expression via acting as a miR-384 sponge.
{"title":"Circ_0005699 Expedites ox-LDL-Triggered Endothelial Cell Injury via Targeting miR-384/ASPH Axis.","authors":"Xiaobiao Cao, Jun Yang, Lujun He, Cangcang Liu","doi":"10.1007/s12012-024-09889-8","DOIUrl":"10.1007/s12012-024-09889-8","url":null,"abstract":"<p><p>Atherosclerosis (AS) is an inflammatory disease with multiple causes. Multiple circular RNAs (circRNAs) are known to be involved in the pathogenesis of AS. To explore the function and mechanism of circ_0005699 in oxidative low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) injury. Ox-LDL treatment restrained HUVECs viability, cell proliferation, and angiogenesis ability, and accelerated HUVECs apoptosis, inflammatory response, and oxidative stress. Circ_0005699 was up-regulated in the serum samples of AS patients and ox-LDL-induced HUVECs. Interference of circ_0005699 effectively rescued ox-LDL-induced injury in HUVECs. Additionally, miR-384 could bind to circ_0005699, and miR-384 depletion inverted the effects of circ_0005699 deficiency on ox-LDL-mediated HUVEC injury. Moreover, ASPH was a direct target of miR-384, and the enforced expression of ASPH overturned miR-384-induced effects on ox-LDL-induced HUVECs. Importantly, circ_0005699 regulated ASPH expression via sponging miR-384. Interference of circ_0005699 protected against ox-LDL-induced injury in HUVECs at least partly by regulating ASPH expression via acting as a miR-384 sponge.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1067-1076"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-13DOI: 10.1007/s12012-024-09912-y
Xiao-Min Luo, Min Tang, Xiao-Hui Wei, Xiaofang Tang, Yong-De Peng
Previous studies have found a possible association between nickel and metabolic syndrome (MetS), but with conflicting results. No studies have determined whether nickel exposure increases the prevalence of MetS in the general U.S. population. Therefore, we used data from the National Health and Nutrition Examination Survey (NHANES) to assess the association between urinary nickel and MetS. Since urinary nickel levels were presented as a skewed distribution, they were normalized using a logarithmic transformation. Weighted multivariate logistic models, restricted cubic spline, threshold effect analysis, and subgroup analyses were used to examine the association between urinary nickel concentration and the risk of MetS and its components. Based on data from 1577 participants, individuals in the second, third, and fourth quartiles of urinary nickel had an adjusted OR for MetS of 1.42 (95% CI: 0.88, 2.28), 2.00 (95% CI: 1.22, 3.28), and 1.68 (95% CI: 1.05, 2.70), respectively, representing an inverted "L"-shaped nonlinear dose-response relationship with an inflection point at 0.2141 ng/L. Patients over the age of 40, males, less educated, and smokers are more susceptible to nickel exposure. In addition, there were significant associations between nickel and most components of the MetS, with the strongest to weakest correlations being high fasting glucose, reduced high-density lipoprotein, abdominal obesity, and elevated blood pressure; however, there was no significant correlation between nickel and hyperlipidemia. In conclusion, environmental nickel exposure increases the prevalence of MetS in U.S. adults, particularly in males over 40 years of age, those with less education, and smokers.
{"title":"Association Between Nickel Exposure and Metabolic Syndrome: Data from NHANES 2017-2018.","authors":"Xiao-Min Luo, Min Tang, Xiao-Hui Wei, Xiaofang Tang, Yong-De Peng","doi":"10.1007/s12012-024-09912-y","DOIUrl":"10.1007/s12012-024-09912-y","url":null,"abstract":"<p><p>Previous studies have found a possible association between nickel and metabolic syndrome (MetS), but with conflicting results. No studies have determined whether nickel exposure increases the prevalence of MetS in the general U.S. population. Therefore, we used data from the National Health and Nutrition Examination Survey (NHANES) to assess the association between urinary nickel and MetS. Since urinary nickel levels were presented as a skewed distribution, they were normalized using a logarithmic transformation. Weighted multivariate logistic models, restricted cubic spline, threshold effect analysis, and subgroup analyses were used to examine the association between urinary nickel concentration and the risk of MetS and its components. Based on data from 1577 participants, individuals in the second, third, and fourth quartiles of urinary nickel had an adjusted OR for MetS of 1.42 (95% CI: 0.88, 2.28), 2.00 (95% CI: 1.22, 3.28), and 1.68 (95% CI: 1.05, 2.70), respectively, representing an inverted \"L\"-shaped nonlinear dose-response relationship with an inflection point at 0.2141 ng/L. Patients over the age of 40, males, less educated, and smokers are more susceptible to nickel exposure. In addition, there were significant associations between nickel and most components of the MetS, with the strongest to weakest correlations being high fasting glucose, reduced high-density lipoprotein, abdominal obesity, and elevated blood pressure; however, there was no significant correlation between nickel and hyperlipidemia. In conclusion, environmental nickel exposure increases the prevalence of MetS in U.S. adults, particularly in males over 40 years of age, those with less education, and smokers.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1028-1036"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-26DOI: 10.1007/s12012-024-09900-2
Yanping Li, Yi Zhou, Haifeng Pei, De Li
Reperfusion after myocardial infarction (MI) can lead to myocardial ischemia/reperfusion (I/R) damage. The transcription factor (TF) broad-complex, tramtrack, and bric-a-brac (BTB) and cap'n'collar (CNC) homology 1 (BACH1) is implicated in the injury. However, the downstream mechanisms of BACH1 in affecting myocardial hypoxia/reoxygenation (H/R) damage are still fully understood. AC16 cells were stimulated with H/R conditions to model cardiomyocytes under H/R. mRNA analysis was performed by quantitative real-time PCR. Protein levels were gauged by immunoblot analysis. The effect of BACH1/cyclin-dependent kinase inhibitor 3 (CDKN3) on H/R-evoked injury was assessed by measuring cell viability via Cell Counting Kit-8 (CCK-8), apoptosis (flow cytometry and caspase 3 activity), ferroptosis via Fe2+, glutathione (GSH), reactive oxygen species (ROS) and malondialdehyde (MDA) markers and inflammation cytokines interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNF-α). The BACH1/CDKN3 relationship was examined by chromatin immunoprecipitation (ChIP) experiment and luciferase assay. BACH1 was increased in MI serum and H/R-stimulated AC16 cardiomyocytes. Functionally, disruption of BACH1 mitigated H/R-evoked in vitro apoptosis, ferroptosis and inflammation of AC16 cardiomyocytes. Mechanistically, BACH1 activated CDKN3 transcription and enhanced CDKN3 protein expression in AC16 cardiomyocytes. Our rescue experiments validated that BACH1 disruption attenuated H/R-evoked AC16 cardiomyocyte apoptosis, ferroptosis and inflammation by downregulating CDKN3. Additionally, BACH1 disruption could activate the adenosine monophosphate-activated protein kinase (AMPK) signaling by downregulating CDKN3 in H/R-stimulated AC16 cardiomyocytes. Our study demonstrates that BACH1 activates CDKN3 transcription to induce H/R-evoked damage of AC16 cardiomyocytes partially via AMPK signaling.
{"title":"Disruption of BACH1 Protects AC16 Cardiomyocytes Against Hypoxia/Reoxygenation-Evoked Injury by Diminishing CDKN3 Transcription.","authors":"Yanping Li, Yi Zhou, Haifeng Pei, De Li","doi":"10.1007/s12012-024-09900-2","DOIUrl":"10.1007/s12012-024-09900-2","url":null,"abstract":"<p><p>Reperfusion after myocardial infarction (MI) can lead to myocardial ischemia/reperfusion (I/R) damage. The transcription factor (TF) broad-complex, tramtrack, and bric-a-brac (BTB) and cap'n'collar (CNC) homology 1 (BACH1) is implicated in the injury. However, the downstream mechanisms of BACH1 in affecting myocardial hypoxia/reoxygenation (H/R) damage are still fully understood. AC16 cells were stimulated with H/R conditions to model cardiomyocytes under H/R. mRNA analysis was performed by quantitative real-time PCR. Protein levels were gauged by immunoblot analysis. The effect of BACH1/cyclin-dependent kinase inhibitor 3 (CDKN3) on H/R-evoked injury was assessed by measuring cell viability via Cell Counting Kit-8 (CCK-8), apoptosis (flow cytometry and caspase 3 activity), ferroptosis via Fe<sup>2+</sup>, glutathione (GSH), reactive oxygen species (ROS) and malondialdehyde (MDA) markers and inflammation cytokines interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNF-α). The BACH1/CDKN3 relationship was examined by chromatin immunoprecipitation (ChIP) experiment and luciferase assay. BACH1 was increased in MI serum and H/R-stimulated AC16 cardiomyocytes. Functionally, disruption of BACH1 mitigated H/R-evoked in vitro apoptosis, ferroptosis and inflammation of AC16 cardiomyocytes. Mechanistically, BACH1 activated CDKN3 transcription and enhanced CDKN3 protein expression in AC16 cardiomyocytes. Our rescue experiments validated that BACH1 disruption attenuated H/R-evoked AC16 cardiomyocyte apoptosis, ferroptosis and inflammation by downregulating CDKN3. Additionally, BACH1 disruption could activate the adenosine monophosphate-activated protein kinase (AMPK) signaling by downregulating CDKN3 in H/R-stimulated AC16 cardiomyocytes. Our study demonstrates that BACH1 activates CDKN3 transcription to induce H/R-evoked damage of AC16 cardiomyocytes partially via AMPK signaling.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1105-1115"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study focused on exploring the clinical value and molecular mechanism of LncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in sepsis and sepsis-induced myocardial dysfunction (SIMD). 122 sepsis patients and 90 healthy were included. Sepsis patients were categorized into SIMD and non-MD. The expression levels of MCM3AP-AS1 and miRNA were examined using RT-qPCR. Diagnostic value of MCM3AP-AS1 in sepsis assessed by ROC curves. Logistic regression to explore risk factors influencing the occurrence of SIMD. Cardiomyocytes were induced by LPS to construct cell models in vitro. CCK-8, flow cytometry, and ELISA to analyze cell viability, apoptosis, and inflammation levels. Serum MCM3AP-AS1 was upregulated in patients with sepsis. The sensitivity and specificity of MCM3AP-AS1 were 75.41% and 93.33%, for recognizing sepsis from healthy controls. Additionally, elevated MCM3AP-AS1 is a risk factor for SIMD and can predict SIMD development. Compared with the LPS-induced cardiomyocytes, inhibition of MCM3AP-AS1 significantly attenuated LPS-induced apoptosis and inflammation; however, this attenuation was partially reversed by lowered miR-28-5p, but this reversal was partially eliminated by CASP2. MCM3AP-AS1 may be a novel diagnostic biomarker for sepsis and can predict the development of SIMD. MCM3AP-AS1 probably participated in SIMD progression by regulating cardiomyocyte inflammation and apoptosis through the target miR-28-5p/CASP2 axis.
{"title":"Diagnostic and Predictive Value of LncRNA MCM3AP-AS1 in Sepsis and Its Regulatory Role in Sepsis-Induced Myocardial Dysfunction.","authors":"Yunwei Wei, Cui Bai, Shuying Xu, Mingli Cui, Ruixia Wang, Meizhen Wu","doi":"10.1007/s12012-024-09903-z","DOIUrl":"10.1007/s12012-024-09903-z","url":null,"abstract":"<p><p>The present study focused on exploring the clinical value and molecular mechanism of LncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in sepsis and sepsis-induced myocardial dysfunction (SIMD). 122 sepsis patients and 90 healthy were included. Sepsis patients were categorized into SIMD and non-MD. The expression levels of MCM3AP-AS1 and miRNA were examined using RT-qPCR. Diagnostic value of MCM3AP-AS1 in sepsis assessed by ROC curves. Logistic regression to explore risk factors influencing the occurrence of SIMD. Cardiomyocytes were induced by LPS to construct cell models in vitro. CCK-8, flow cytometry, and ELISA to analyze cell viability, apoptosis, and inflammation levels. Serum MCM3AP-AS1 was upregulated in patients with sepsis. The sensitivity and specificity of MCM3AP-AS1 were 75.41% and 93.33%, for recognizing sepsis from healthy controls. Additionally, elevated MCM3AP-AS1 is a risk factor for SIMD and can predict SIMD development. Compared with the LPS-induced cardiomyocytes, inhibition of MCM3AP-AS1 significantly attenuated LPS-induced apoptosis and inflammation; however, this attenuation was partially reversed by lowered miR-28-5p, but this reversal was partially eliminated by CASP2. MCM3AP-AS1 may be a novel diagnostic biomarker for sepsis and can predict the development of SIMD. MCM3AP-AS1 probably participated in SIMD progression by regulating cardiomyocyte inflammation and apoptosis through the target miR-28-5p/CASP2 axis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1125-1138"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1007/s12012-024-09920-y
Bhavana Sivakumar, Gino A. Kurian
Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM2.5) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM2.5 exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM2.5 at 250 µg/m3 for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM2.5 followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM2.5 is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.
{"title":"The Worsening of Myocardial Ischemia–Reperfusion Injury in Uremic Cardiomyopathy is Further Aggravated by PM2.5 Exposure: Mitochondria Serve as the Central Focus of Pathology","authors":"Bhavana Sivakumar, Gino A. Kurian","doi":"10.1007/s12012-024-09920-y","DOIUrl":"https://doi.org/10.1007/s12012-024-09920-y","url":null,"abstract":"<p>Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM<sub>2.5</sub>) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM<sub>2.5</sub> exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM<sub>2.5</sub> at 250 µg/m<sup>3</sup> for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM<sub>2.5</sub> followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM<sub>2.5</sub> is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":"68 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.
{"title":"Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review","authors":"Sihan Tan, Chang Qi, Hao Zeng, Qi Wei, Qin Huang, Xin Pu, Weimin Li, Yalun Li, Panwen Tian","doi":"10.1007/s12012-024-09918-6","DOIUrl":"https://doi.org/10.1007/s12012-024-09918-6","url":null,"abstract":"<p>Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-15DOI: 10.1007/s12012-024-09893-y
Na Sun, Yi-Qiang Chen, Yan-Sheng Chen, Lei Gao, Run-Wei Deng, Jing Huang, You-Li Fan, Xuan Gao, Bin-Feng Sun, Na-Na Dong, Bo Yu, Xia Gu, Bing-Xiang Wu
This study aimed to evaluate the correlation of plasma deoxycholic acid (DCA) levels with clinical and hemodynamic parameters in acute pulmonary embolism (APE) patients. Total 149 APE adult patients were prospectively recruited. Plasma DCA levels were measured using rapid resolution liquid chromatography-quadrupole time-of-flight mass spectrometry. Baseline clinical and hemodynamic parameters were evaluated according to plasma DCA levels. The plasma DCA levels were significantly lower in APE patients than in those without APE (P < 0.001). APE patients with adverse events had lower plasma DCA levels (P < 0.001). Low DCA group patients presented more adverse cardiac function, higher NT-proBNP levels (P = 0.010), and higher WHO functional class levels (P = 0.023). Low DCA group also presented with an adverse hemodynamic status, with higher pulmonary vascular resistance levels (P = 0.027) and lower cardiac index levels (P = 0.024). Both cardiac function and hemodynamic parameters correlated well with plasma DCA levels. Kaplan-Meier survival analysis demonstrated that APE patients with lower plasma DCA levels had a significantly higher event rate (P = 0.009). In the univariate and multivariate Cox regression analyses, the plasma DCA level was an independent predictor of clinical worsening events after adjusting for age, sex, WHO functional class, NT-proBNP level, pulmonary vascular resistance, and cardiac index (HR 0.370, 95% CI 0.161, 0.852; P = 0.019). Low plasma DCA levels predicted adverse cardiac function and hemodynamic collapse. A low DCA level was correlated with a higher clinical worsening event rate and could be an independent predictor of clinical outcomes in multivariate analysis.
本研究旨在评估急性肺栓塞(APE)患者血浆脱氧胆酸(DCA)水平与临床和血液动力学参数的相关性。研究前瞻性地招募了 149 名急性肺栓塞成人患者。采用快速分辨液相色谱-四极杆飞行时间质谱法测定血浆中的DCA水平。根据血浆DCA水平评估了基线临床和血液动力学参数。APE 患者的血浆 DCA 水平明显低于无 APE 患者(P<0.05)。
{"title":"Plasma Deoxycholic Acid Levels are Associated with Hemodynamic and Clinical Outcomes in Acute Pulmonary Embolism Patients.","authors":"Na Sun, Yi-Qiang Chen, Yan-Sheng Chen, Lei Gao, Run-Wei Deng, Jing Huang, You-Li Fan, Xuan Gao, Bin-Feng Sun, Na-Na Dong, Bo Yu, Xia Gu, Bing-Xiang Wu","doi":"10.1007/s12012-024-09893-y","DOIUrl":"10.1007/s12012-024-09893-y","url":null,"abstract":"<p><p>This study aimed to evaluate the correlation of plasma deoxycholic acid (DCA) levels with clinical and hemodynamic parameters in acute pulmonary embolism (APE) patients. Total 149 APE adult patients were prospectively recruited. Plasma DCA levels were measured using rapid resolution liquid chromatography-quadrupole time-of-flight mass spectrometry. Baseline clinical and hemodynamic parameters were evaluated according to plasma DCA levels. The plasma DCA levels were significantly lower in APE patients than in those without APE (P < 0.001). APE patients with adverse events had lower plasma DCA levels (P < 0.001). Low DCA group patients presented more adverse cardiac function, higher NT-proBNP levels (P = 0.010), and higher WHO functional class levels (P = 0.023). Low DCA group also presented with an adverse hemodynamic status, with higher pulmonary vascular resistance levels (P = 0.027) and lower cardiac index levels (P = 0.024). Both cardiac function and hemodynamic parameters correlated well with plasma DCA levels. Kaplan-Meier survival analysis demonstrated that APE patients with lower plasma DCA levels had a significantly higher event rate (P = 0.009). In the univariate and multivariate Cox regression analyses, the plasma DCA level was an independent predictor of clinical worsening events after adjusting for age, sex, WHO functional class, NT-proBNP level, pulmonary vascular resistance, and cardiac index (HR 0.370, 95% CI 0.161, 0.852; P = 0.019). Low plasma DCA levels predicted adverse cardiac function and hemodynamic collapse. A low DCA level was correlated with a higher clinical worsening event rate and could be an independent predictor of clinical outcomes in multivariate analysis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"879-888"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-11DOI: 10.1007/s12012-024-09890-1
Zeinab Vafaeipour, Mohsen Imenshahidi, Amir Hooshang Mohammadpour, Seyed Mohammad Taghdisi, Noor Mohammad Danesh, Mohammad Moshiri, Amir Hossein Jafarian, Khalil Abnous
Aluminum phosphide (AlP) is the main component of rice tablets (a pesticide), which produces phosphine gas (PH3) when exposed to stomach acid. The most important symptoms of PH3 toxicity include, lethargy, tachycardia, hypotension, and cardiac shock. It was shown that Iodine can chemically react with PH3, and the purpose of this study is to investigate the protective effects of Lugol solution in poisoning with rice tablets. Five doses (12, 15, 21, 23, and 25 mg/kg) of AlP were selected, for calculating its lethal dose (LD50). Then, the rats were divided into 4 groups: AlP, Lugol, AlP + Lugol, and Almond oil (as a control). After 4 h, the blood pressure and electrocardiogram (ECG) were recorded, and blood samples were obtained for biochemical tests, then liver, lung, kidney, heart, and brain tissues were removed for histopathological examination. The results of the blood pressure showed no significant changes (P > 0.05). In ECG, the PR interval showed a significant decrease in the AlP + Lugol group (P < 0.05). In biochemical tests, LDH, Ca2+, Creatinine, ALP, Mg2+, and K+ represented significant decreases in AlP + Lugol compared to the AlP group (P < 0.05). Also, the administration of Lugol's solution to AlP-poisoned rats resulted in a significant decrease in malondialdehyde levels and a significant increase in catalase activity (P < 0.05). Histopathological evaluation indicates that Lugol improves changes in the lungs, kidneys, brain, and heart. Our results showed that the Lugol solution could reduce tissue damage and oxidative stress in AlP-poisoned rats. We assume that the positive effects of Lugol on pulmonary and cardiac tissues are due to its ability to react directly with PH3.
{"title":"Evaluation of the Protective Effects of Lugol's Solution in Rats Poisoned with Aluminum Phosphide (Rice Tablets).","authors":"Zeinab Vafaeipour, Mohsen Imenshahidi, Amir Hooshang Mohammadpour, Seyed Mohammad Taghdisi, Noor Mohammad Danesh, Mohammad Moshiri, Amir Hossein Jafarian, Khalil Abnous","doi":"10.1007/s12012-024-09890-1","DOIUrl":"10.1007/s12012-024-09890-1","url":null,"abstract":"<p><p>Aluminum phosphide (AlP) is the main component of rice tablets (a pesticide), which produces phosphine gas (PH3) when exposed to stomach acid. The most important symptoms of PH3 toxicity include, lethargy, tachycardia, hypotension, and cardiac shock. It was shown that Iodine can chemically react with PH3, and the purpose of this study is to investigate the protective effects of Lugol solution in poisoning with rice tablets. Five doses (12, 15, 21, 23, and 25 mg/kg) of AlP were selected, for calculating its lethal dose (LD50). Then, the rats were divided into 4 groups: AlP, Lugol, AlP + Lugol, and Almond oil (as a control). After 4 h, the blood pressure and electrocardiogram (ECG) were recorded, and blood samples were obtained for biochemical tests, then liver, lung, kidney, heart, and brain tissues were removed for histopathological examination. The results of the blood pressure showed no significant changes (P > 0.05). In ECG, the PR interval showed a significant decrease in the AlP + Lugol group (P < 0.05). In biochemical tests, LDH, Ca<sup>2+</sup>, Creatinine, ALP, Mg<sup>2+</sup>, and K<sup>+</sup> represented significant decreases in AlP + Lugol compared to the AlP group (P < 0.05). Also, the administration of Lugol's solution to AlP-poisoned rats resulted in a significant decrease in malondialdehyde levels and a significant increase in catalase activity (P < 0.05). Histopathological evaluation indicates that Lugol improves changes in the lungs, kidneys, brain, and heart. Our results showed that the Lugol solution could reduce tissue damage and oxidative stress in AlP-poisoned rats. We assume that the positive effects of Lugol on pulmonary and cardiac tissues are due to its ability to react directly with PH3.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"955-967"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-18DOI: 10.1007/s12012-024-09891-0
Alok D Singh, Mukesh B Chawda, Yogesh A Kulkarni
Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1β, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.
{"title":"Cardioprotective Effects of 'Vasant Kusumakar Rasa,' a Herbo-metallic Formulation, in Type 2 Diabetic Cardiomyopathy in Rats.","authors":"Alok D Singh, Mukesh B Chawda, Yogesh A Kulkarni","doi":"10.1007/s12012-024-09891-0","DOIUrl":"10.1007/s12012-024-09891-0","url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1β, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"942-954"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}