首页 > 最新文献

Cardiovascular Research最新文献

英文 中文
Colchicine and stabilization of coronary artery plaques.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-13 DOI: 10.1093/cvr/cvaf019
Valtteri Muroke, Jean-Claude Tardif
{"title":"Colchicine and stabilization of coronary artery plaques.","authors":"Valtteri Muroke, Jean-Claude Tardif","doi":"10.1093/cvr/cvaf019","DOIUrl":"https://doi.org/10.1093/cvr/cvaf019","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune cells and arrhythmias
IF 10.8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-11 DOI: 10.1093/cvr/cvaf017
Joshua A Keefe, Jian Wang, Jiangping Song, Li Ni, Xander Wehrens
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide. Emerging evidence has demonstrated that resident and infiltrating cardiac immune cells play direct, mechanistic roles in arrhythmia onset and progression. In this review, we provide a comprehensive summary and expert commentary on the role of each immune cell subtype in the pathogenesis of atrial and ventricular arrhythmias.
{"title":"Immune cells and arrhythmias","authors":"Joshua A Keefe, Jian Wang, Jiangping Song, Li Ni, Xander Wehrens","doi":"10.1093/cvr/cvaf017","DOIUrl":"https://doi.org/10.1093/cvr/cvaf017","url":null,"abstract":"Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide. Emerging evidence has demonstrated that resident and infiltrating cardiac immune cells play direct, mechanistic roles in arrhythmia onset and progression. In this review, we provide a comprehensive summary and expert commentary on the role of each immune cell subtype in the pathogenesis of atrial and ventricular arrhythmias.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"78 5 Pt 1 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging role of Cellular communication network factor 2 (CCN2) as a guardian of smooth muscle cell phenotype and vascular integrity.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-11 DOI: 10.1093/cvr/cvaf015
J H Larsen, L B Steffensen
{"title":"Emerging role of Cellular communication network factor 2 (CCN2) as a guardian of smooth muscle cell phenotype and vascular integrity.","authors":"J H Larsen, L B Steffensen","doi":"10.1093/cvr/cvaf015","DOIUrl":"https://doi.org/10.1093/cvr/cvaf015","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist tirzepatide promotes branched chain amino acid catabolism to prevent myocardial infarction in non-diabetic mice.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-10 DOI: 10.1093/cvr/cvaf005
Mengya Chen, Nan Zhao, Wenke Shi, Yun Xing, Shiqiang Liu, Xianxian Meng, Lanlan Li, Heng Zhang, Yanyan Meng, Saiyang Xie, Wei Deng

Aims: A novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 receptor agonist, tirzepatide (LY3298176, TZP), has been developed to treat Type 2 diabetes mellitus (T2DM). In ischaemic heart diseases, TZP is involved in cardiac metabolic processes. However, its efficacy and safety in treating heart failure (HF) following myocardial infarction (MI) remain uncertain.

Methods and results: Herein, 12 week C57BL/6J mice were subjected to MI surgery, followed by administration of TZP. The effects of TZP on cardiac function and metabolism were thoroughly assessed by physiological, histological, and cellular analyses. Downstream effectors of TZP were screened through untargeted metabolomics analysis and molecular docking. Construct a lower branched chain amino acid (BCAA) diet model to determine whether TZP's cardioprotective effect is associated with reducing BCAA levels. Our results demonstrated that TZP reduced mortality following MI, decreased the infarct area, and attenuated cardiomyocyte necrosis. Pathological evaluation of cardiac tissues demonstrated increased fibrosis repair and decreased inflammatory infiltration. Mechanistically, untargeted metabolomics analysis uncovered a positive correlation between TZP and the BCAA catabolism pathway. The molecular docking verified that TZP could bind with branched-chain keto acid dehydrogenase E1 subunit α (BCKDHA). TZP reduced BCKDHA phosphorylation at S293, enhanced BCAA catabolism, and inhibited the activation of metabolism by activating rapamycin (mTOR) signalling pathway. Furthermore, mice fed a low-BCAA diet post-MI demonstrated reduced cardiomyocyte necrosis, increased fibrosis repair, and decreased inflammatory infiltration. These cardioprotective effects were further enhanced when used synergistically with TZP.

Conclusion: Taken together, our findings provide new perspectives on the unrecognized role of TZP in cardiac protection. TZP enhanced BCAA catabolism and attenuated BCAA/mTOR signalling pathway in MI mice. Consequently, this study may present novel therapeutic options for patients with HF.

{"title":"Glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist tirzepatide promotes branched chain amino acid catabolism to prevent myocardial infarction in non-diabetic mice.","authors":"Mengya Chen, Nan Zhao, Wenke Shi, Yun Xing, Shiqiang Liu, Xianxian Meng, Lanlan Li, Heng Zhang, Yanyan Meng, Saiyang Xie, Wei Deng","doi":"10.1093/cvr/cvaf005","DOIUrl":"https://doi.org/10.1093/cvr/cvaf005","url":null,"abstract":"<p><strong>Aims: </strong>A novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 receptor agonist, tirzepatide (LY3298176, TZP), has been developed to treat Type 2 diabetes mellitus (T2DM). In ischaemic heart diseases, TZP is involved in cardiac metabolic processes. However, its efficacy and safety in treating heart failure (HF) following myocardial infarction (MI) remain uncertain.</p><p><strong>Methods and results: </strong>Herein, 12 week C57BL/6J mice were subjected to MI surgery, followed by administration of TZP. The effects of TZP on cardiac function and metabolism were thoroughly assessed by physiological, histological, and cellular analyses. Downstream effectors of TZP were screened through untargeted metabolomics analysis and molecular docking. Construct a lower branched chain amino acid (BCAA) diet model to determine whether TZP's cardioprotective effect is associated with reducing BCAA levels. Our results demonstrated that TZP reduced mortality following MI, decreased the infarct area, and attenuated cardiomyocyte necrosis. Pathological evaluation of cardiac tissues demonstrated increased fibrosis repair and decreased inflammatory infiltration. Mechanistically, untargeted metabolomics analysis uncovered a positive correlation between TZP and the BCAA catabolism pathway. The molecular docking verified that TZP could bind with branched-chain keto acid dehydrogenase E1 subunit α (BCKDHA). TZP reduced BCKDHA phosphorylation at S293, enhanced BCAA catabolism, and inhibited the activation of metabolism by activating rapamycin (mTOR) signalling pathway. Furthermore, mice fed a low-BCAA diet post-MI demonstrated reduced cardiomyocyte necrosis, increased fibrosis repair, and decreased inflammatory infiltration. These cardioprotective effects were further enhanced when used synergistically with TZP.</p><p><strong>Conclusion: </strong>Taken together, our findings provide new perspectives on the unrecognized role of TZP in cardiac protection. TZP enhanced BCAA catabolism and attenuated BCAA/mTOR signalling pathway in MI mice. Consequently, this study may present novel therapeutic options for patients with HF.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redirecting glucose into anabolic pathways participates in the protective effects of NRF2 activation in the heart under stress.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-10 DOI: 10.1093/cvr/cvaf003
Thomas Eschenhagen
{"title":"Redirecting glucose into anabolic pathways participates in the protective effects of NRF2 activation in the heart under stress.","authors":"Thomas Eschenhagen","doi":"10.1093/cvr/cvaf003","DOIUrl":"https://doi.org/10.1093/cvr/cvaf003","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interleukin-37 attenuates aortic valve lesions by inhibiting m6A-mediated IRAK-M degradation
IF 10.8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-05 DOI: 10.1093/cvr/cvaf012
Gaopeng Xian, Rong Huang, Dongtu Hu, Minhui Xu, Yangchao Chen, Hao Ren, Dingli Xu, Qingchun Zeng
Aims Calcific aortic valve disease (CAVD) has become an increasingly important global medical problem without effective pharmacological intervention. Accumulating evidence indicates that aortic valve calcification is driven by inflammation. Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator of inflammation, but its role in CAVD remains unclear. Methods and Results Here, we stimulated aortic valve interstitial cells (AVICs) with low-dose lipopolysaccharide (LPS) to mimic the inflammatory response in aortic valve calcification and observed the expression pattern of IRAK-M. Furthermore, we generated IRAK-M-/- mice to explore the effect of IRAK-M deficiency on the aortic valve in vivo. Additionally, overexpression and knockdown experiments were performed to verify the role of IRAK-M in AVICs. MeRIP‒qPCR was used to detect the N6-methyladenosine (m6A) level of IRAK-M, and recombinant interleukin (IL)-37-treated AVICs were used to determine the regulatory relationship between IL-37 and IRAK-M. We found that IRAK-M expression was upregulated in the early stages of inflammation as part of a negative feedback mechanism to modulate the immune response. However, persistent inflammation increased overall m6A levels, ultimately leading to reduced IRAK-M expression. In vivo, IRAK-M-/- mice exhibited a propensity for aortic valve thickening and calcification. Overexpression and knockdown experiments showed that IRAK-M inhibited inflammation and osteogenic responses in AVICs. In addition, IL-37 restored IRAK-M expression by inhibiting m6A-mediated IRAK-M degradation to suppress inflammation and aortic valve calcification. Conclusions Our findings confirm that inflammation and epigenetic modifications synergistically regulate IRAK-M expression. Moreover, IRAK-M represents a potential target for mitigating aortic valve calcification. Meanwhile, IL-37 exhibited inhibitory effects on CAVD development both in vivo and in vitro, giving us hope that CAVD can be treated with drugs rather than surgery.
{"title":"Interleukin-37 attenuates aortic valve lesions by inhibiting m6A-mediated IRAK-M degradation","authors":"Gaopeng Xian, Rong Huang, Dongtu Hu, Minhui Xu, Yangchao Chen, Hao Ren, Dingli Xu, Qingchun Zeng","doi":"10.1093/cvr/cvaf012","DOIUrl":"https://doi.org/10.1093/cvr/cvaf012","url":null,"abstract":"Aims Calcific aortic valve disease (CAVD) has become an increasingly important global medical problem without effective pharmacological intervention. Accumulating evidence indicates that aortic valve calcification is driven by inflammation. Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator of inflammation, but its role in CAVD remains unclear. Methods and Results Here, we stimulated aortic valve interstitial cells (AVICs) with low-dose lipopolysaccharide (LPS) to mimic the inflammatory response in aortic valve calcification and observed the expression pattern of IRAK-M. Furthermore, we generated IRAK-M-/- mice to explore the effect of IRAK-M deficiency on the aortic valve in vivo. Additionally, overexpression and knockdown experiments were performed to verify the role of IRAK-M in AVICs. MeRIP‒qPCR was used to detect the N6-methyladenosine (m6A) level of IRAK-M, and recombinant interleukin (IL)-37-treated AVICs were used to determine the regulatory relationship between IL-37 and IRAK-M. We found that IRAK-M expression was upregulated in the early stages of inflammation as part of a negative feedback mechanism to modulate the immune response. However, persistent inflammation increased overall m6A levels, ultimately leading to reduced IRAK-M expression. In vivo, IRAK-M-/- mice exhibited a propensity for aortic valve thickening and calcification. Overexpression and knockdown experiments showed that IRAK-M inhibited inflammation and osteogenic responses in AVICs. In addition, IL-37 restored IRAK-M expression by inhibiting m6A-mediated IRAK-M degradation to suppress inflammation and aortic valve calcification. Conclusions Our findings confirm that inflammation and epigenetic modifications synergistically regulate IRAK-M expression. Moreover, IRAK-M represents a potential target for mitigating aortic valve calcification. Meanwhile, IL-37 exhibited inhibitory effects on CAVD development both in vivo and in vitro, giving us hope that CAVD can be treated with drugs rather than surgery.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"14 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single cell RNA sequencing of hematopoietic cells in fresh and frozen human atheroma tissue. 新鲜和冷冻人体动脉瘤组织中造血细胞的单细胞 RNA 测序。
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-05 DOI: 10.1093/cvr/cvaf014
Herra Ahmad, J K Gopakumar, Daniel C Nachun, Lisa Ma, Jessica D'Addabbo, Xianxi Huang, Tiffany Koyano, Jack Boyd, Y Joseph Woo, Robyn Fong, Oliver Aalami, Patricia K Nguyen, Siddhartha Jaiswal

Aims: Single-cell RNA sequencing (scRNA-seq) is a powerful method for exploring the cellular heterogeneity within human atheroma but typically requires fresh tissue to preserve cell membrane integrity, limiting the feasibility of large-scale biobanking for later analysis. The aim of this study was to determine whether cryopreservation of fragile and necrotic atheroma tissue affects the viability and transcriptomic profiles of hematopoietic cells in subsequent scRNA-seq analysis, enabling the use of cryopreserved atheroma samples for future research.

Methods and results: We performed scRNA-seq on five paired fresh and cryopreserved atheroma samples - three from coronary arteries and two from carotid arteries. Each sample was enzymatically digested, sorted for CD45+ hematopoietic cells, and processed using the 10X Genomics scRNA-seq workflow. Half of each sample was processed immediately, while the other half was cryopreserved in liquid nitrogen for an average of five weeks before thawing and processing. In carotid artery samples, we noted the absence of LYVE1+ macrophages, likely due to the loss of the adventitial layer during endarterectomy procedures. Our results indicated that cryopreservation modestly affected cellular integrity, leading to an increase in the relative abundance of mitochondrial RNA in frozen samples. Minimal differences were observed between fresh and cryopreserved samples in uniquely detected transcripts, cell clustering, or transcriptional profiles within hematopoietic populations.

Conclusion(s): Our study demonstrates that cryopreserved human atheroma samples can be successfully profiled using scRNA-seq, with comparable transcriptomic data to that obtained from fresh samples. These findings suggest that cryopreservation is a viable method for biobanking atheroma tissues, facilitating large-scale studies without the need for immediate sample processing.

{"title":"Single cell RNA sequencing of hematopoietic cells in fresh and frozen human atheroma tissue.","authors":"Herra Ahmad, J K Gopakumar, Daniel C Nachun, Lisa Ma, Jessica D'Addabbo, Xianxi Huang, Tiffany Koyano, Jack Boyd, Y Joseph Woo, Robyn Fong, Oliver Aalami, Patricia K Nguyen, Siddhartha Jaiswal","doi":"10.1093/cvr/cvaf014","DOIUrl":"https://doi.org/10.1093/cvr/cvaf014","url":null,"abstract":"<p><strong>Aims: </strong>Single-cell RNA sequencing (scRNA-seq) is a powerful method for exploring the cellular heterogeneity within human atheroma but typically requires fresh tissue to preserve cell membrane integrity, limiting the feasibility of large-scale biobanking for later analysis. The aim of this study was to determine whether cryopreservation of fragile and necrotic atheroma tissue affects the viability and transcriptomic profiles of hematopoietic cells in subsequent scRNA-seq analysis, enabling the use of cryopreserved atheroma samples for future research.</p><p><strong>Methods and results: </strong>We performed scRNA-seq on five paired fresh and cryopreserved atheroma samples - three from coronary arteries and two from carotid arteries. Each sample was enzymatically digested, sorted for CD45+ hematopoietic cells, and processed using the 10X Genomics scRNA-seq workflow. Half of each sample was processed immediately, while the other half was cryopreserved in liquid nitrogen for an average of five weeks before thawing and processing. In carotid artery samples, we noted the absence of LYVE1+ macrophages, likely due to the loss of the adventitial layer during endarterectomy procedures. Our results indicated that cryopreservation modestly affected cellular integrity, leading to an increase in the relative abundance of mitochondrial RNA in frozen samples. Minimal differences were observed between fresh and cryopreserved samples in uniquely detected transcripts, cell clustering, or transcriptional profiles within hematopoietic populations.</p><p><strong>Conclusion(s): </strong>Our study demonstrates that cryopreserved human atheroma samples can be successfully profiled using scRNA-seq, with comparable transcriptomic data to that obtained from fresh samples. These findings suggest that cryopreservation is a viable method for biobanking atheroma tissues, facilitating large-scale studies without the need for immediate sample processing.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotective effects of a 'twincretin' drug tirzepatide in heart failure following myocardial infarction.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-04 DOI: 10.1093/cvr/cvaf006
Rui Shang, Brian Rodrigues
{"title":"Cardioprotective effects of a 'twincretin' drug tirzepatide in heart failure following myocardial infarction.","authors":"Rui Shang, Brian Rodrigues","doi":"10.1093/cvr/cvaf006","DOIUrl":"https://doi.org/10.1093/cvr/cvaf006","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CircRNAs increase during vascular cell differentiation and are biomarkers for vascular disease
IF 10.8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-04 DOI: 10.1093/cvr/cvaf013
Bernd H Northoff, Andreas Herbst, Catharina Wenk, Lena Weindl, Gabor Gäbel, Andre Brezski, Kathi Zarnack, Alina Küpper, Stefanie Dimmeler, Alessandra Moretti, Karl-Ludwig Laugwitz, Stefan Engelhardt, Lars Maegdefessel, Reinier Boon, Stefanie Doppler, Martina Dreßen, Harald Lahm, Rüdiger Lange, Markus Krane, Knut Krohn, Alexander Kohlmaier, Lesca M Holdt, Daniel Teupser
Aims The role of circular RNAs (circRNAs) and their regulation in health and disease are poorly understood. Here, we systematically investigated the temporally resolved transcriptomic expression of circRNAs during differentiation of human induced pluripotent stem cells (iPSC) into vascular endothelial cells (EC) and smooth muscle cells (SMC) and explored their potential as biomarkers for human vascular disease. Methods and Results Using high-throughput RNA sequencing and a de novo circRNA detection pipeline, we quantified the daily levels of 31,369 circRNAs in a two-week differentiation trajectory from human stem cells to proliferating mesoderm progenitors to quiescent, differentiated EC and SMC. We detected a significant global increase in RNA circularization, with 397 and 214 circRNAs upregulated &gt; 2 fold (adjusted P &lt; 0.05) in mature EC and SMC, compared with undifferentiated progenitor cells. This global increase in circRNAs was associated with upregulation of host genes and their promoters and a parallel downregulation of splicing factors. Underlying this switch, the proliferation-regulating transcription factor MYC decreased as vascular cells matured, and inhibition of MYC led to downregulation of splicing factors such as SRSF1 and SRSF2 and changes in vascular circRNA levels. Examining the identified circRNAs in arterial tissue samples and in peripheral blood mononuclear cells (PBMC) from patients, we found that circRNA levels decreased in atherosclerotic disease, in contrast to their increase during iPSC maturation into EC and SMC. Using machine learning, we determined that a set of circRNAs derived from COL4A1, COL4A2, HSPG2, and YPEL2 discriminated atherosclerotic from healthy tissue with an AUC of 0.79. CircRNAs from HSPG2 and YPEL2 in blood PBMC samples detected atherosclerosis with an AUC of 0.73. Conclusions Time-resolved transcriptional profiling of linear and circular RNA species revealed that circRNAs provide granular molecular information for disease profiling. The identified circRNAs may serve as blood biomarkers for atherosclerotic vascular disease.
{"title":"CircRNAs increase during vascular cell differentiation and are biomarkers for vascular disease","authors":"Bernd H Northoff, Andreas Herbst, Catharina Wenk, Lena Weindl, Gabor Gäbel, Andre Brezski, Kathi Zarnack, Alina Küpper, Stefanie Dimmeler, Alessandra Moretti, Karl-Ludwig Laugwitz, Stefan Engelhardt, Lars Maegdefessel, Reinier Boon, Stefanie Doppler, Martina Dreßen, Harald Lahm, Rüdiger Lange, Markus Krane, Knut Krohn, Alexander Kohlmaier, Lesca M Holdt, Daniel Teupser","doi":"10.1093/cvr/cvaf013","DOIUrl":"https://doi.org/10.1093/cvr/cvaf013","url":null,"abstract":"Aims The role of circular RNAs (circRNAs) and their regulation in health and disease are poorly understood. Here, we systematically investigated the temporally resolved transcriptomic expression of circRNAs during differentiation of human induced pluripotent stem cells (iPSC) into vascular endothelial cells (EC) and smooth muscle cells (SMC) and explored their potential as biomarkers for human vascular disease. Methods and Results Using high-throughput RNA sequencing and a de novo circRNA detection pipeline, we quantified the daily levels of 31,369 circRNAs in a two-week differentiation trajectory from human stem cells to proliferating mesoderm progenitors to quiescent, differentiated EC and SMC. We detected a significant global increase in RNA circularization, with 397 and 214 circRNAs upregulated &amp;gt; 2 fold (adjusted P &amp;lt; 0.05) in mature EC and SMC, compared with undifferentiated progenitor cells. This global increase in circRNAs was associated with upregulation of host genes and their promoters and a parallel downregulation of splicing factors. Underlying this switch, the proliferation-regulating transcription factor MYC decreased as vascular cells matured, and inhibition of MYC led to downregulation of splicing factors such as SRSF1 and SRSF2 and changes in vascular circRNA levels. Examining the identified circRNAs in arterial tissue samples and in peripheral blood mononuclear cells (PBMC) from patients, we found that circRNA levels decreased in atherosclerotic disease, in contrast to their increase during iPSC maturation into EC and SMC. Using machine learning, we determined that a set of circRNAs derived from COL4A1, COL4A2, HSPG2, and YPEL2 discriminated atherosclerotic from healthy tissue with an AUC of 0.79. CircRNAs from HSPG2 and YPEL2 in blood PBMC samples detected atherosclerosis with an AUC of 0.73. Conclusions Time-resolved transcriptional profiling of linear and circular RNA species revealed that circRNAs provide granular molecular information for disease profiling. The identified circRNAs may serve as blood biomarkers for atherosclerotic vascular disease.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"1 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incretin-based weight loss therapies and heart failure with preserved ejection fraction: guideline impactful results, but mechanisms unclear.
IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-31 DOI: 10.1093/cvr/cvaf001
Katarzyna Stefanska, Naveed Sattar
{"title":"Incretin-based weight loss therapies and heart failure with preserved ejection fraction: guideline impactful results, but mechanisms unclear.","authors":"Katarzyna Stefanska, Naveed Sattar","doi":"10.1093/cvr/cvaf001","DOIUrl":"https://doi.org/10.1093/cvr/cvaf001","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cardiovascular Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1