Aims: Sterile inflammation is implicated in the development of heart failure (HF). Mitochondria plays important roles in triggering and maintaining inflammation. Mitophagy is important for regulation of mitochondrial quality and maintenance of cardiac function under pressure overload. The association of mitophagy with inflammation in HF is largely unclear. As PINK1 is a central mediator of mitophagy, our objective was to investigate its involvement in cardiac hypertrophy, and the effect of PINK1-mediated mitophagy on cGAS-STING activation during cardiac hypertrophy.
Methods and results: PINK1 knockout and cardiac-specific PINK1-overexpressing transgenic mice were created and subsequently subjected to transverse aortic constriction (TAC) surgery. In order to explore whether PINK1 regulates STING-mediated inflammation during HF, PINK1/STING (stimulator of interferon genes) double-knockout mice were created. Pressure overload was induced by TAC. Our findings indicate a significantly decline in PINK1 expression in TAC-induced hypertrophy. Cardiac hypertrophic stimuli caused the release of mitochondrial DNA (mtDNA) into the cytosol, activating the cGAS-STING signaling, which in turn initiated cardiac inflammation and promoted the progression of cardiac hypertrophy. PINK1 deficiency inhibited mitophagy activity, promoted mtDNA release, and then drove the overactivation of cGAS-STING signaling, exacerbating cardiac hypertrophy. Conversely, cardiac-specific PINK1 overexpression protected against hypertrophy thorough inhibition of the cGAS-STING signaling. Double-knockout mice revealed that the effects of PINK1 on hypertrophy were dependent on STING.
Conclusions: Our findings suggest that PINK1-mediated mitophagy plays a protective role in pressure overload-induced cardiac hypertrophy via inhibiting the mtDNA-cGAS-STING pathway.
{"title":"PINK1-mediated mitophagy attenuates pathological cardiac hypertrophy by suppressing the mtDNA release-activated cGAS-STING pathway.","authors":"Haobin Zhou, Xiao Wang, Tianyu Xu, Daojing Gan, Zhuang Ma, Hao Zhang, Jian Zhang, Qingchun Zeng, Dingli Xu","doi":"10.1093/cvr/cvae238","DOIUrl":"https://doi.org/10.1093/cvr/cvae238","url":null,"abstract":"<p><strong>Aims: </strong>Sterile inflammation is implicated in the development of heart failure (HF). Mitochondria plays important roles in triggering and maintaining inflammation. Mitophagy is important for regulation of mitochondrial quality and maintenance of cardiac function under pressure overload. The association of mitophagy with inflammation in HF is largely unclear. As PINK1 is a central mediator of mitophagy, our objective was to investigate its involvement in cardiac hypertrophy, and the effect of PINK1-mediated mitophagy on cGAS-STING activation during cardiac hypertrophy.</p><p><strong>Methods and results: </strong>PINK1 knockout and cardiac-specific PINK1-overexpressing transgenic mice were created and subsequently subjected to transverse aortic constriction (TAC) surgery. In order to explore whether PINK1 regulates STING-mediated inflammation during HF, PINK1/STING (stimulator of interferon genes) double-knockout mice were created. Pressure overload was induced by TAC. Our findings indicate a significantly decline in PINK1 expression in TAC-induced hypertrophy. Cardiac hypertrophic stimuli caused the release of mitochondrial DNA (mtDNA) into the cytosol, activating the cGAS-STING signaling, which in turn initiated cardiac inflammation and promoted the progression of cardiac hypertrophy. PINK1 deficiency inhibited mitophagy activity, promoted mtDNA release, and then drove the overactivation of cGAS-STING signaling, exacerbating cardiac hypertrophy. Conversely, cardiac-specific PINK1 overexpression protected against hypertrophy thorough inhibition of the cGAS-STING signaling. Double-knockout mice revealed that the effects of PINK1 on hypertrophy were dependent on STING.</p><p><strong>Conclusions: </strong>Our findings suggest that PINK1-mediated mitophagy plays a protective role in pressure overload-induced cardiac hypertrophy via inhibiting the mtDNA-cGAS-STING pathway.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tackling change: menopause as a cardiovascular disease risk factor and the path to health equity.","authors":"W Glen Pyle","doi":"10.1093/cvr/cvae232","DOIUrl":"https://doi.org/10.1093/cvr/cvae232","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rikeish R Muralitharan, Jan W Buikema, Francine Z Marques
{"title":"Minimizing gut microbiome confounding factors in cardiovascular research.","authors":"Rikeish R Muralitharan, Jan W Buikema, Francine Z Marques","doi":"10.1093/cvr/cvae228","DOIUrl":"https://doi.org/10.1093/cvr/cvae228","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect.","authors":"","doi":"10.1093/cvr/cvae227","DOIUrl":"https://doi.org/10.1093/cvr/cvae227","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher J Derrick, Lorraine Eley, Ahlam Alqahtani, Deborah J Henderson, Bill Chaudhry
Aims Bicuspid Aortic Valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and ultimately, whether functional testing of BAV variants could be carried out. Methods and Results Using a combination of live imaging, immunohistochemistry and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. Conclusions Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
{"title":"Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors","authors":"Christopher J Derrick, Lorraine Eley, Ahlam Alqahtani, Deborah J Henderson, Bill Chaudhry","doi":"10.1093/cvr/cvae230","DOIUrl":"https://doi.org/10.1093/cvr/cvae230","url":null,"abstract":"Aims Bicuspid Aortic Valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and ultimately, whether functional testing of BAV variants could be carried out. Methods and Results Using a combination of live imaging, immunohistochemistry and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. Conclusions Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"15 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuyu Sun, Qutuba G Karwi, Nathan Wong, Gary D Lopaschuk
The very high energy demand of the heart is primarily met by ATP production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit, that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure (including HFrEF, HFpEF, and diabetic cardiomyopathies) is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signaling, and posttranslational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
心脏的高能量需求主要由线粒体氧化磷酸化产生的 ATP 来满足,糖酵解产生的 ATP 量较少。心力衰竭时,这种 ATP 的产生会发生明显变化,主要是由于线粒体氧化代谢的减少。虽然糖酵解 ATP 生成的增加部分弥补了线粒体 ATP 生成的减少,但衰竭的心脏仍面临能量不足的问题,这也是导致收缩功能障碍的严重原因。在衰竭心脏中,不同燃料对线粒体产生 ATP 的相对贡献发生了显著变化,这在很大程度上取决于心衰的类型。各种类型心衰(包括高频心衰、高频心衰和糖尿病心肌病)的一个共同代谢缺陷是线粒体氧化葡萄糖产生的丙酮酸(即葡萄糖氧化)减少。无论糖酵解是否增加,葡萄糖氧化都会减少,导致糖酵解与葡萄糖氧化脱钩,从而降低心脏效率。心脏线粒体对脂肪酸的氧化会增加或减少,这取决于心衰的类型。例如,高频心力衰竭和糖尿病心肌病患者的心肌脂肪酸氧化增加,而高频心力衰竭患者的心肌脂肪酸氧化减少或保持不变。酮体的氧化(为衰竭的心脏提供重要的能量来源)也因心衰类型的不同而不同,HFrEF 的酮体氧化增加,而 HFpEF 和糖尿病心肌病的酮体氧化减少。衰竭心脏线粒体氧化代谢和糖酵解的改变是由于参与代谢途径的关键酶的转录变化,以及能量代谢酶的氧化还原状态、代谢信号转导和翻译后表观遗传变化的改变造成的。重要的是,靶向线粒体能量代谢途径已成为改善衰竭心脏的心功能和心脏效率的一种新型治疗方法。
{"title":"Advances in myocardial energy metabolism: metabolic remodeling in heart failure and beyond","authors":"Qiuyu Sun, Qutuba G Karwi, Nathan Wong, Gary D Lopaschuk","doi":"10.1093/cvr/cvae231","DOIUrl":"https://doi.org/10.1093/cvr/cvae231","url":null,"abstract":"The very high energy demand of the heart is primarily met by ATP production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit, that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure (including HFrEF, HFpEF, and diabetic cardiomyopathies) is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signaling, and posttranslational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"26 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erbb3 and Hspa2, two novel predictors of heart failure in diabetic patients.","authors":"Maurizio Forte,Mattia Galli,Sebastiano Sciarretta","doi":"10.1093/cvr/cvae220","DOIUrl":"https://doi.org/10.1093/cvr/cvae220","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"30 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TRAF7: a new member of the E3 ligase family in cardiac hypertrophy.","authors":"Chen Gao,Jinyun Zhu,Ningjing Song,Yibin Wang","doi":"10.1093/cvr/cvae225","DOIUrl":"https://doi.org/10.1093/cvr/cvae225","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"211 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hidden role of TH17 cells in doxorubicin-induced cardiac ferroptosis.","authors":"Yangfeng Hou,Wentao Gao,Kathy O Lui","doi":"10.1093/cvr/cvae226","DOIUrl":"https://doi.org/10.1093/cvr/cvae226","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"113 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hidden role of TH17 cells in doxorubicin-induced cardiac ferroptosis.","authors":"Yangfeng Hou, Wentao Gao, Kathy O Lui","doi":"10.1093/cvr/cvae226","DOIUrl":"https://doi.org/10.1093/cvr/cvae226","url":null,"abstract":"","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}