首页 > 最新文献

Cell stem cell最新文献

英文 中文
Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei 生成具有延髓脊髓三叉神经核的特定区域人脑器官组织
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-28 DOI: 10.1016/j.stem.2024.08.004
Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Des…
具有细胞核特异性的脑器官组织为更精细地研究人脑发育和疾病提供了独特的平台。设计...
{"title":"Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei","authors":"","doi":"10.1016/j.stem.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.004","url":null,"abstract":"Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Des…","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"28 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells 线粒体 LONP1 在协调气道祖细胞与后代细胞之间的平衡中的作用与环境有关
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.08.001
Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun

While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.

虽然所有真核细胞的功能都依赖于线粒体,但在一个复杂的组织中,哪种细胞类型和哪种细胞行为对线粒体缺乏更敏感仍然无法预测。在这里,我们发现在小鼠气道中,通过使线粒体蛋白酶基因 Lonp1 失活而损害线粒体功能会导致发育过程中祖细胞增殖和分化减少、终末分化的纤毛细胞凋亡并在稳态过程中被基底祖细胞和鹅口疮细胞取代,以及流感感染后气道祖细胞向受损肺泡迁移失败。ATF4 和综合应激反应(ISR)通路升高并导致气道表型。Bok 的选择性表达预测了这种环境依赖性敏感性,而 Bok 是 ISR 激活所必需的。在鳞状化生的慢性阻塞性肺病(COPD)气道中发现 LONP1 表达减少。这些发现说明了线粒体功能受损可能有利于病理细胞类型出现的细胞能量图谱。
{"title":"Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells","authors":"Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun","doi":"10.1016/j.stem.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.001","url":null,"abstract":"<p>While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene <em>Lonp1</em> led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of <em>Bok</em>, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"42 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury 线粒体丝氨酸分解为维持造血干细胞池的平衡和损伤提供保障
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.07.009
Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang

Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.

造血干细胞(HSCs)采用一种非常独特的代谢模式来维持自身,而其代谢适应性的范围仍不完全清楚。在这里,我们揭示了造血干细胞内独特而异质的丝氨酸代谢,并确定小鼠造血干细胞是一种丝氨酸辅助营养细胞,其维持依赖于外源丝氨酸以及随后由羟甲基转移酶2(SHMT2)-亚甲基四氢叶酸脱氢酶2(MTHFD2)轴驱动的线粒体丝氨酸分解代谢。线粒体丝氨酸分解代谢主要为 NAD(P)H 的生成提供能量,以维持氧化还原平衡,从而降低造血干细胞的铁中毒易感性。膳食中缺乏丝氨酸,或对 SHMT2-MTHFD2 轴进行遗传或药物抑制,都会增加造血干细胞的铁中毒易感性,导致造血干细胞池的维持能力受损。此外,外源性丝氨酸通过促进线粒体丝氨酸分解代谢来减轻铁卟啉沉积,从而保护造血干细胞免受辐照诱导的骨髓抑制性损伤。这些发现重塑了人们对丝氨酸的传统看法,即丝氨酸从一种非必需氨基酸变为维持造血干细胞池的必需代谢物。
{"title":"Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury","authors":"Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang","doi":"10.1016/j.stem.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.009","url":null,"abstract":"<p>Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"37 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism 细胞粘附不相容是种间嵌合的障碍
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.07.010
Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu

Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during in vitro assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.

种间囊胚互补具有巨大潜力,可通过在动物体内培育人类器官来解决全球可移植器官短缺的问题。然而,这种方法面临的一个主要挑战是,由于各种异种障碍,人类细胞在进化遥远的动物宿主中的嵌合能力有限。在这里,我们发现人类多能干细胞(PSCs)很难与动物多能干细胞粘附。为了克服这一障碍,我们开发了一种合成生物学策略,利用纳米抗体与抗原的相互作用来增强种间细胞粘附。我们设计了表达纳米抗体及其外膜上相应抗原的细胞,在体外实验中显著提高了不同物种间造血干细胞的粘附性,并提高了人类造血干细胞在小鼠胚胎中的嵌合率。研究和操纵种间多能细胞粘附将为嵌合体形成和早期胚胎发育过程中的细胞相互作用动力学提供有价值的见解。
{"title":"Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism","authors":"Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu","doi":"10.1016/j.stem.2024.07.010","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.010","url":null,"abstract":"<p>Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during <em>in vitro</em> assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"18 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development 一种灵长类特异性内源性逆转录病毒包膜蛋白能封存 SFRP2,从而调节人类心肌细胞的发育
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-14 DOI: 10.1016/j.stem.2024.07.006

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.

内源性逆转录病毒(ERV)占据了人类基因组的很大一部分,其中一些编码的蛋白质可影响免疫系统或调节胚外早期发育中的细胞-细胞融合。然而,ERV 衍生的蛋白质是否调控体细胞发育尚不清楚。在这里,我们报告了灵长类特有的 ERVH48-1(SUPYN/Suppressyn)的体细胞发育功能。ERVH48-1编码在胚胎早期发育过程中表达的病毒包膜片段。缺失ERVH48-1会导致中胚层和心肌细胞承诺受损,并使细胞转向类似外胚层的命运。从机理上讲,ERVH48-1 通过功能性 N 端信号肽定位到亚细胞膜区室,并与 WNT 拮抗剂 SFRP2 结合,促进其多泛素化和降解,从而限制 SFRP2 的分泌,阻断对 WNT/β-catenin 信号的抑制。敲除SFRP2或表达带有ERVH48-1信号肽的嵌合SFRP2可挽救心肌细胞的分化。这项研究证明了ERVH48-1如何在体细胞发育过程中调节WNT/β-catenin信号传导和细胞类型承诺。
{"title":"A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development","authors":"","doi":"10.1016/j.stem.2024.07.006","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.006","url":null,"abstract":"<p>Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific <em>ERVH48-1</em> (<em>SUPYN</em>/Suppressyn). <em>ERVH48-1</em> encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of <em>ERVH48-1</em> led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of <em>SFRP2</em> or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how <em>ERVH48-1</em> modulates WNT/β-catenin signaling and cell type commitment in somatic development.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"40 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis 中间肺泡干细胞中持续表达两性胰岛素会导致渐进性纤维化
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-02 DOI: 10.1016/j.stem.2024.07.004

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic disease. Recent studies have highlighted the persistence of an intermediate state of alveolar stem cells in IPF lungs. In this study, we discovered a close correlation between the distribution pattern of intermediate alveolar stem cells and the progression of fibrotic changes. We showed that amphiregulin (AREG) expression is significantly elevated in intermediate alveolar stem cells of mouse fibrotic lungs and IPF patients. High levels of serum AREG correlate significantly with profound deteriorations in lung function in IPF patients. We demonstrated that AREG in alveolar stem cells is both required and sufficient for activating EGFR in fibroblasts, thereby driving lung fibrosis. Moreover, pharmacological inhibition of AREG using a neutralizing antibody effectively blocked the initiation and progression of lung fibrosis in mice. Our study underscores the therapeutic potential of anti-AREG antibodies in attenuating IPF progression, offering a promising strategy for treating fibrotic diseases.

特发性肺纤维化(IPF)是一种进行性的致命纤维化疾病。最近的研究强调,在IPF肺中,肺泡干细胞持续处于中间状态。在这项研究中,我们发现中间状态肺泡干细胞的分布模式与纤维化变化的进展密切相关。我们发现,在小鼠纤维化肺和IPF患者的中间肺泡干细胞中,安非拉酮(AREG)的表达明显升高。高水平的血清 AREG 与 IPF 患者肺功能的严重恶化密切相关。我们证实,肺泡干细胞中的 AREG 是激活成纤维细胞中表皮生长因子受体的必要条件和充分条件,从而推动肺纤维化。此外,使用中和抗体对 AREG 进行药理抑制,可有效阻止小鼠肺纤维化的发生和发展。我们的研究强调了抗AREG抗体在减轻IPF进展方面的治疗潜力,为治疗纤维化疾病提供了一种前景广阔的策略。
{"title":"Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis","authors":"","doi":"10.1016/j.stem.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.004","url":null,"abstract":"<p>Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic disease. Recent studies have highlighted the persistence of an intermediate state of alveolar stem cells in IPF lungs. In this study, we discovered a close correlation between the distribution pattern of intermediate alveolar stem cells and the progression of fibrotic changes. We showed that amphiregulin (AREG) expression is significantly elevated in intermediate alveolar stem cells of mouse fibrotic lungs and IPF patients. High levels of serum AREG correlate significantly with profound deteriorations in lung function in IPF patients. We demonstrated that AREG in alveolar stem cells is both required and sufficient for activating EGFR in fibroblasts, thereby driving lung fibrosis. Moreover, pharmacological inhibition of AREG using a neutralizing antibody effectively blocked the initiation and progression of lung fibrosis in mice. Our study underscores the therapeutic potential of anti-AREG antibodies in attenuating IPF progression, offering a promising strategy for treating fibrotic diseases.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages: A missing key in cardiac tissue engineering for sustained vascularization 巨噬细胞:心脏组织工程中缺失的关键--持续血管化
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.07.001

Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.1 demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.

巨噬细胞调节心脏组织的血管生成、修复、传导和稳态。Landau 等人1 证明,将原始巨噬细胞纳入工程心脏组织可显著促进长期血管化和心脏成熟。这一进展证明了常驻免疫血管微环境在心脏组织工程中的重要性,标志着芯片心脏技术向前迈出了重要一步。
{"title":"Macrophages: A missing key in cardiac tissue engineering for sustained vascularization","authors":"","doi":"10.1016/j.stem.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.001","url":null,"abstract":"<p>Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.<span><span><sup>1</sup></span></span> demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting the stage for embryo segmentation 为胚胎分割创造条件
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.06.014

Morphogen gradients are critical regulators of embryonic development. In this issue, Liu et al.1 introduce a microfluidic system that externally applies morphogen gradients to an in vitro model of human embryo segmentation. It enables the investigation of signaling gradients during this developmental process at unprecedented levels of precision.

形态发生梯度是胚胎发育的关键调节因子。在本期杂志中,Liu 等人1 介绍了一种微流体系统,该系统可在体外人类胚胎分割模型中应用形态发生梯度。该系统能以前所未有的精确度研究这一发育过程中的信号梯度。
{"title":"Setting the stage for embryo segmentation","authors":"","doi":"10.1016/j.stem.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.stem.2024.06.014","url":null,"abstract":"<p>Morphogen gradients are critical regulators of embryonic development. In this issue, Liu et al.<span><span><sup>1</sup></span></span> introduce a microfluidic system that externally applies morphogen gradients to an <em>in vitro</em> model of human embryo segmentation. It enables the investigation of signaling gradients during this developmental process at unprecedented levels of precision.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 14 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mini-colons predict drug toxicity in vitro 小圆锥体可预测药物的体外毒性
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.06.013

Mitrofanova et al.1 engineer a human colonic in vitro model capable of producing an intestinal mucus barrier, with potential applications for predicting drug-induced gastrointestinal toxicity. This improved system paves the way for more accurate and efficient drug development processes.

Mitrofanova 等人1 设计了一种能够产生肠粘液屏障的人体结肠体外模型,该模型可用于预测药物引起的胃肠道毒性。这一改进的系统为更准确、更高效的药物开发过程铺平了道路。
{"title":"Mini-colons predict drug toxicity in vitro","authors":"","doi":"10.1016/j.stem.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.stem.2024.06.013","url":null,"abstract":"<p>Mitrofanova et al.<span><span><sup>1</sup></span></span> engineer a human colonic <em>in vitro</em> model capable of producing an intestinal mucus barrier, with potential applications for predicting drug-induced gastrointestinal toxicity. This improved system paves the way for more accurate and efficient drug development processes.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"291 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered vascular grafts lend unique insight to pathophysiology of aortic aneurysms 工程血管移植物为了解主动脉瘤的病理生理学提供了独特视角
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.07.002

Yang et al.1 generate tissue engineered blood vessels from hiPSC-derived smooth muscle cells harboring a mutation found in Loeys-Dietz syndrome. In vitro and in vivo data from these vessels provide new insight into the molecular physiology of aortic aneurysms and may create a paradigm for understanding a suite of vascular diseases.

Yang等人1利用携带Loeys-Dietz综合征突变的hiPSC衍生平滑肌细胞生成组织工程血管。这些血管的体外和体内数据为了解主动脉瘤的分子生理学提供了新的视角,并可能为了解一系列血管疾病提供范例。
{"title":"Engineered vascular grafts lend unique insight to pathophysiology of aortic aneurysms","authors":"","doi":"10.1016/j.stem.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.002","url":null,"abstract":"<p>Yang et al.<span><span><sup>1</sup></span></span> generate tissue engineered blood vessels from hiPSC-derived smooth muscle cells harboring a mutation found in Loeys-Dietz syndrome. <em>In vitro</em> and <em>in vivo</em> data from these vessels provide new insight into the molecular physiology of aortic aneurysms and may create a paradigm for understanding a suite of vascular diseases.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"69 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell stem cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1