Introduction: The SARS-CoV-2 pandemic that spread swiftly is now a major global public health issue. Vaccines are currently being distributed in an effort to limit the viral transmission and mortality. The aim of the study was monitoring of both safety and efficacy in determining the overall effectiveness of the vaccine and identifying any potential safety concerns.
Material and methods: A retrospective, cross-sectional study employing a validated 13-item structured questionnaire divided into two sections was performed between March 2022 and September 2022. Different post-vaccination side effects (SE) according to symptoms severity in terms of age and sex for participants were reported. Additionally, some pertinent serological assays for participants' post-vaccinations were investigated.
Results: A total of 502 participants (male: 262, female: 240) with comorbidity (healthy: 258, morbid: 244) who received two Pfizer/BioNTech mRNA vaccine doses were included. Importantly, second dose (D2) vaccination was associated with significantly more SE than single dose (D1) vaccination (p < 0.0001). In D1 vaccination injection site pain (ISP) (45%), followed by equal proportions of headache and fever (40%) were the most common vaccine SE, while in D2 vaccination, ISP (66%) and nausea (57%) were reported. In all, 97% (p < 0.0001) of participants were IgG antibody positive at D2 vaccination. Similarly, serum CR protein level was elevated significantly (p < 0.0001) corresponding to the severity of SE between D1 and D2. Significant differences in IgG concentration were found between D1 and D2 vaccination in different gender and age groups (p < 0.0001).
Conclusions: In light of the extensive data from this study, it is evident that mRNA vaccines, particularly the Pfizer/BioNTech vaccine, have proven to be highly safe and effective in mitigating the impact of the SARS-CoV-2 pandemic.
Introduction: Until the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death from a single infectious agent, ranking above HIV/AIDS. It is also the key cause of death among people infected with HIV. Tuberculosis incidence in Latvia has decreased by 25% during the last 30 years, but the mortality level of TB remains significant. The HLA class II genes are responsible for antigen presentation and regulation of immune responses, which plays an important role in individual susceptibility to infection disease. Whether or not differential HLA polymorphism contributes to TB with HIV infection and TB without HIV infection in Latvian patients is unknown.
Material and methods: For the detection of HLA class II DQA1, DQB1, and DRB1 alleles a total of 616 subjects were enrolled, including 80 primary active TB (PATB) patients, 168 HIV-1/TB patients, 168 HIV-1 patients and 200 HC individuals.
Results: For immunodeficiency caused by TB, HIV-1 or HIV-1/TB coinfection, alleles DRB1*12:01, 14:01, 16:01, DQA1*01:02, 01:03, 02:01, 06:01, DQB1*03:03, 06:01 are identified as protective, but DRB1*07:01, 11:01, 15:01, DQA1*02:01, 03:01, DQB1*03:01, 05:01 are identified as risk alleles.
Conclusions: The results of our experimental pilot studies demonstrated that HLA class II genes may contribute to the genetic risk of TB and HIV-1/TB co-infection, possibly by reducing the presentation of protective Mycobacterium tuberculosis antigens to T-helpers. It is necessary to conduct repetitive, multicentre, and large sample studies in order to draw more scientific conclusions and to confirm the relationship between TB, HIV and HIV-1/TB co-infection susceptibility and gene polymorphisms.
There is evidence that influenza vaccination may provide additional benefits by inducing training of innate immunity and increasing humoral responses to heterologous challenges. Immunoglobulin A (IgA) antibodies dominate the early phase of the adaptive response to SARS-CoV-2 infection, but whether their production may be associated with previous influenza vaccination has not been a subject of any study. This study compared serum SARS-CoV-2-specific IgA responses, measured with Microblot-Array assay, in individuals who experienced COVID-19 (N = 1318) and differed in the status of the seasonal influenza vaccine, age, sex, and disease severity. Influenza-vaccinated individuals had a higher seroprevalence of IgA antibodies against nucleocapsid (anti-NP; by 10.1%), receptor-binding domain of spike protein (anti-RBD; by 11.8%) and the S2 subunit of spike protein (anti-S2; by 6.8%). Multivariate analysis, including age, sex, and COVID-19 severity, confirmed that receiving the influenza vaccine was associated with higher odds of being seropositive for anti-NP (OR, 95% CI = 1.57, 1.2-2.0), anti-RBD (OR, 95% CI = 1.6, 1.3-2.0), and anti-S2 (OR, 95% CI = 1.9, 1.4-2.7), as well as being seropositive for at least one anti-SARS-CoV-2 IgA antibody (OR, 95% CI = 1.7, 1.3-2.1) and all three of them (OR, 95% CI = 2.6, 1.7-4.0). Age ≥ 50 years was an additional factor predicting better IgA responses. However, the concentration of particular antibodies in seropositive subjects did not differ in relation to the influenza vaccination status. The study evidenced that influenza vaccination was associated with improved serum IgA levels produced in response to SARS-CoV-2 infection. Further studies are necessary to assess whether trained immunity is involved in the observed phenomenon.