Introduction: The SARS-CoV-2 pandemic that spread swiftly is now a major global public health issue. Vaccines are currently being distributed in an effort to limit the viral transmission and mortality. The aim of the study was monitoring of both safety and efficacy in determining the overall effectiveness of the vaccine and identifying any potential safety concerns.
Material and methods: A retrospective, cross-sectional study employing a validated 13-item structured questionnaire divided into two sections was performed between March 2022 and September 2022. Different post-vaccination side effects (SE) according to symptoms severity in terms of age and sex for participants were reported. Additionally, some pertinent serological assays for participants' post-vaccinations were investigated.
Results: A total of 502 participants (male: 262, female: 240) with comorbidity (healthy: 258, morbid: 244) who received two Pfizer/BioNTech mRNA vaccine doses were included. Importantly, second dose (D2) vaccination was associated with significantly more SE than single dose (D1) vaccination (p < 0.0001). In D1 vaccination injection site pain (ISP) (45%), followed by equal proportions of headache and fever (40%) were the most common vaccine SE, while in D2 vaccination, ISP (66%) and nausea (57%) were reported. In all, 97% (p < 0.0001) of participants were IgG antibody positive at D2 vaccination. Similarly, serum CR protein level was elevated significantly (p < 0.0001) corresponding to the severity of SE between D1 and D2. Significant differences in IgG concentration were found between D1 and D2 vaccination in different gender and age groups (p < 0.0001).
Conclusions: In light of the extensive data from this study, it is evident that mRNA vaccines, particularly the Pfizer/BioNTech vaccine, have proven to be highly safe and effective in mitigating the impact of the SARS-CoV-2 pandemic.
Introduction: Until the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death from a single infectious agent, ranking above HIV/AIDS. It is also the key cause of death among people infected with HIV. Tuberculosis incidence in Latvia has decreased by 25% during the last 30 years, but the mortality level of TB remains significant. The HLA class II genes are responsible for antigen presentation and regulation of immune responses, which plays an important role in individual susceptibility to infection disease. Whether or not differential HLA polymorphism contributes to TB with HIV infection and TB without HIV infection in Latvian patients is unknown.
Material and methods: For the detection of HLA class II DQA1, DQB1, and DRB1 alleles a total of 616 subjects were enrolled, including 80 primary active TB (PATB) patients, 168 HIV-1/TB patients, 168 HIV-1 patients and 200 HC individuals.
Results: For immunodeficiency caused by TB, HIV-1 or HIV-1/TB coinfection, alleles DRB1*12:01, 14:01, 16:01, DQA1*01:02, 01:03, 02:01, 06:01, DQB1*03:03, 06:01 are identified as protective, but DRB1*07:01, 11:01, 15:01, DQA1*02:01, 03:01, DQB1*03:01, 05:01 are identified as risk alleles.
Conclusions: The results of our experimental pilot studies demonstrated that HLA class II genes may contribute to the genetic risk of TB and HIV-1/TB co-infection, possibly by reducing the presentation of protective Mycobacterium tuberculosis antigens to T-helpers. It is necessary to conduct repetitive, multicentre, and large sample studies in order to draw more scientific conclusions and to confirm the relationship between TB, HIV and HIV-1/TB co-infection susceptibility and gene polymorphisms.
Introduction: Neonatal sepsis (NS) seriously threatens the health of infants. Coactosin-like protein 1 (COTL1) is a binding protein of F-actin and 5-lipoxygenase which is known to regulate the progression of neonatal sepsis. Nevertheless, the function of COTL1 in NS is not clear.
Material and methods: An in vivo model of NS was established using cecal slurry (CS). H&E staining was applied for observing the severity of lung injury in tissues of mice. MTT assay was applied for determining cell viability, and the inflammatory factors were examined using ELISA. Apoptosis was assessed via flow cytometry. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) levels were assessed by commercial kits. The interaction between basic leucine zipper ATF-like transcription factor (BATF) and COTL1 was verified using dual luciferase reporter and chromatin immunoprecipitation (ChIP) assay.
Results: COTL1 knockdown alleviated the progression of NS-induced lung injury. COTL1 knockdown enhanced the viability and decreased interleukin (IL)-6 and IL-1 β levels in lipopolysaccharides (LPS)-stimulated pulmonary microvascular endothelial cells. Silencing of COTL1 inhibited LPS induced apoptosis and oxidative stress. More importantly, BATF activated MAPK/NF-κB signaling through transcriptionally upregulating COTL1. Furthermore, BATF improved the LPS-induced inflammatory response and apoptosis in pulmonary microvascular endothelial cells through mediation of COTL1.
Conclusions: BATF knockdown alleviated NS-induced lung injury by activating the MAPK/NF-κB pathway via transcriptionally upregulating COTL1 expression.