Pub Date : 2025-01-30DOI: 10.1007/s00441-025-03952-8
Abdoulaye Diane, Razik Bin Abdul Mu-U-Min, Heba Hussain Al-Siddiqi
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage. Emerging β-cell replacement with human-induced pluripotent stem cell (iPSC) provides high remedial therapy hopes. Thus, tremendous progress has been made in developing β-cell differentiation protocols in vitro; however, most of the differentiated iPSC-derived β-cells showed immature phenotypes associated with low efficiency depending on the iPSC lines used, creating a crucial barrier for their clinical implementation. Multiple mechanisms including differences in genetic, cell cycle patterns, and mitochondrial dysfunction underlie the defective differentiation propensity of iPSC into insulin-producing β-cells. Accumulating evidence recently indicated that, following the reprogramming, epigenetic memory inherited from parental cells substantially affects the differentiation capacity of many iPSC lines. Therefore, differences in epigenetic signature are likely to be essential contributing factors influencing the propensity of iPSC differentiation. In this review, we will document the impact of the epigenome on the reprogramming efficacy and differentiation potential of iPSCs and how targeting the epigenetic residual memory could be an additional strategy to improve the differentiation efficiency of existing protocols to generate fully functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.
{"title":"Epigenetic memory as crucial contributing factor in directing the differentiation of human iPSC into pancreatic β-cells in vitro.","authors":"Abdoulaye Diane, Razik Bin Abdul Mu-U-Min, Heba Hussain Al-Siddiqi","doi":"10.1007/s00441-025-03952-8","DOIUrl":"https://doi.org/10.1007/s00441-025-03952-8","url":null,"abstract":"<p><p>Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage. Emerging β-cell replacement with human-induced pluripotent stem cell (iPSC) provides high remedial therapy hopes. Thus, tremendous progress has been made in developing β-cell differentiation protocols in vitro; however, most of the differentiated iPSC-derived β-cells showed immature phenotypes associated with low efficiency depending on the iPSC lines used, creating a crucial barrier for their clinical implementation. Multiple mechanisms including differences in genetic, cell cycle patterns, and mitochondrial dysfunction underlie the defective differentiation propensity of iPSC into insulin-producing β-cells. Accumulating evidence recently indicated that, following the reprogramming, epigenetic memory inherited from parental cells substantially affects the differentiation capacity of many iPSC lines. Therefore, differences in epigenetic signature are likely to be essential contributing factors influencing the propensity of iPSC differentiation. In this review, we will document the impact of the epigenome on the reprogramming efficacy and differentiation potential of iPSCs and how targeting the epigenetic residual memory could be an additional strategy to improve the differentiation efficiency of existing protocols to generate fully functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1007/s00441-025-03950-w
Klaus Unsicker
One hundred years ago, Cell and Tissue Research was founded under the title "Zeitschrift für Zellen- und Gewebelehre," later "Zeitschrift für Zellforschung und mikroskopische Anatomie." The founders were four eminent German and Swiss cell biologists and zoologists, R. Goldschmidt, W. von Möllendorff, H. Bauer, and J. Seiler.
{"title":"100 years Cell and Tissue Research: the founders and their successors.","authors":"Klaus Unsicker","doi":"10.1007/s00441-025-03950-w","DOIUrl":"https://doi.org/10.1007/s00441-025-03950-w","url":null,"abstract":"<p><p>One hundred years ago, Cell and Tissue Research was founded under the title \"Zeitschrift für Zellen- und Gewebelehre,\" later \"Zeitschrift für Zellforschung und mikroskopische Anatomie.\" The founders were four eminent German and Swiss cell biologists and zoologists, R. Goldschmidt, W. von Möllendorff, H. Bauer, and J. Seiler.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1007/s00441-024-03947-x
Ayano Shindo, Morio Azuma, Ken Fujiwara, Saishu Yoshida, Kotaro Horiguchi
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells. These findings suggest that CD9/SOX2-positive cells in the anterior pituitary have mesenchymal stem cell (MSC) properties. To substantiate this hypothesis, we examined whether CD9-positive cells isolated from IL-MCL of adult male rats differentiate into mesenchymal cells, such as endothelial cells, adipocytes, chondrocytes, and osteocytes. Immunohistochemical analysis revealed that the CD9-positive cells were positive for the MSC markers, CD349, CD105, CD271, and CD273 and were detected in the early postnatal period at the boundary between the posterior and intermediate lobes but not in the embryonic period. In addition, some adult tissue stem cells derived from neural crest cells and bone marrow haematopoietic stem cells were positive for both CD9 and MSC markers, indicating that several CD9/SOX2-positive cells in the IL-MCL of the pituitary gland are MSCs that invaded from external tissues during pituitary development in the early postnatal period and exist in the adult tissue stem cells as suppliers of hormone-producing and endothelial cells in the anterior lobe. These findings should have implications for the application of CD9/SOX2-positive cells in regenerative therapy of the pituitary.
{"title":"CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.","authors":"Ayano Shindo, Morio Azuma, Ken Fujiwara, Saishu Yoshida, Kotaro Horiguchi","doi":"10.1007/s00441-024-03947-x","DOIUrl":"https://doi.org/10.1007/s00441-024-03947-x","url":null,"abstract":"<p><p>Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells. These findings suggest that CD9/SOX2-positive cells in the anterior pituitary have mesenchymal stem cell (MSC) properties. To substantiate this hypothesis, we examined whether CD9-positive cells isolated from IL-MCL of adult male rats differentiate into mesenchymal cells, such as endothelial cells, adipocytes, chondrocytes, and osteocytes. Immunohistochemical analysis revealed that the CD9-positive cells were positive for the MSC markers, CD349, CD105, CD271, and CD273 and were detected in the early postnatal period at the boundary between the posterior and intermediate lobes but not in the embryonic period. In addition, some adult tissue stem cells derived from neural crest cells and bone marrow haematopoietic stem cells were positive for both CD9 and MSC markers, indicating that several CD9/SOX2-positive cells in the IL-MCL of the pituitary gland are MSCs that invaded from external tissues during pituitary development in the early postnatal period and exist in the adult tissue stem cells as suppliers of hormone-producing and endothelial cells in the anterior lobe. These findings should have implications for the application of CD9/SOX2-positive cells in regenerative therapy of the pituitary.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands. The CD has a thick musculature, whereas the Ep of the PY are characterized by numerous villi and columnar Ep cells with a thinner layer of Cu. The inner longitudinal (LM) and the outer circular (CM) muscles were both present in the PY. The MG is lined by Ep cells which are connected to the basement membrane, and it lacks Cu. Microvilli, and subapical vacuoles are visible on the apical surface of Ep cells of the MG. The outermost layer is characterized by a dense strip of elastic fibers and a cluster of collagen fibers. The HG has the Ep cells with a thin Cu layer, and the HG glands form a rosette-like structure. The HG is surrounded by the CM and the LM fibers. The reactivities of Periodic Acid Schiff and Alcian Blue in these digestive organs altered throughout the ovarian cycle, and this was supported by the increased expression of mucin levels as ovarian maturation progressed. Our results offer novel and significant insights into the anatomical and histochemical structures of these digestive organs, and demonstrate a significant correlation between ovarian development and feeding in the female prawn, M. rosenbergii.
{"title":"Morphological and histochemical characteristics of the foregut, midgut, and hindgut, and their alterations during ovarian development in female freshwater prawn, Macrobrachium rosenbergii.","authors":"Warinthip Vetkama, Ruchanok Tinikul, Prasert Sobhon, Yotsawan Tinikul","doi":"10.1007/s00441-024-03948-w","DOIUrl":"https://doi.org/10.1007/s00441-024-03948-w","url":null,"abstract":"<p><p>The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands. The CD has a thick musculature, whereas the Ep of the PY are characterized by numerous villi and columnar Ep cells with a thinner layer of Cu. The inner longitudinal (LM) and the outer circular (CM) muscles were both present in the PY. The MG is lined by Ep cells which are connected to the basement membrane, and it lacks Cu. Microvilli, and subapical vacuoles are visible on the apical surface of Ep cells of the MG. The outermost layer is characterized by a dense strip of elastic fibers and a cluster of collagen fibers. The HG has the Ep cells with a thin Cu layer, and the HG glands form a rosette-like structure. The HG is surrounded by the CM and the LM fibers. The reactivities of Periodic Acid Schiff and Alcian Blue in these digestive organs altered throughout the ovarian cycle, and this was supported by the increased expression of mucin levels as ovarian maturation progressed. Our results offer novel and significant insights into the anatomical and histochemical structures of these digestive organs, and demonstrate a significant correlation between ovarian development and feeding in the female prawn, M. rosenbergii.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s00441-024-03935-1
Mana Domae, Masazumi Iwasaki, Hiroshi Nishino
The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P. fuliginosa. By using pheromone compounds, periplanones A, B, C, and D, as stimulants to the antenna, we identified four distinct types of interneurons (projection neurons) that relay pheromonal signals from a single olfactory glomerulus of the first-order olfactory center (antennal lobe) to higher-order centers in the ipsilateral hemibrain. All glomeruli innervated by pheromone-responsive projection neurons clustered near the antennal nerve entrance of the antennal lobe. The projection neuron with dendrites in the largest glomerulus was tuned specifically to periplanone-D, and adding other components to periplanone-D counteracted the excitation elicited by periplanone-D alone. Likewise, the projection neuron with dendrites in the second largest glomerulus and that with dendrites in a medium-sized glomerulus were tuned to periplanone-A and periplanone-B, respectively. Our results are, therefore, consistent with behavioral findings that periplanone-D alone acts as a primary sex attractant and that other components act as potential behavioral antagonists. Moreover, a comparison of the glomeruli in P. fuliginosa and P. americana suggested that there are differences in the sizes of homologous glomeruli, as well as in the ligands they process.
{"title":"Neurological confirmation of periplanone-D exploitation as a primary sex pheromone and counteractions of other components in the smoky brown cockroach Periplaneta fuliginosa.","authors":"Mana Domae, Masazumi Iwasaki, Hiroshi Nishino","doi":"10.1007/s00441-024-03935-1","DOIUrl":"10.1007/s00441-024-03935-1","url":null,"abstract":"<p><p>The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P. fuliginosa. By using pheromone compounds, periplanones A, B, C, and D, as stimulants to the antenna, we identified four distinct types of interneurons (projection neurons) that relay pheromonal signals from a single olfactory glomerulus of the first-order olfactory center (antennal lobe) to higher-order centers in the ipsilateral hemibrain. All glomeruli innervated by pheromone-responsive projection neurons clustered near the antennal nerve entrance of the antennal lobe. The projection neuron with dendrites in the largest glomerulus was tuned specifically to periplanone-D, and adding other components to periplanone-D counteracted the excitation elicited by periplanone-D alone. Likewise, the projection neuron with dendrites in the second largest glomerulus and that with dendrites in a medium-sized glomerulus were tuned to periplanone-A and periplanone-B, respectively. Our results are, therefore, consistent with behavioral findings that periplanone-D alone acts as a primary sex attractant and that other components act as potential behavioral antagonists. Moreover, a comparison of the glomeruli in P. fuliginosa and P. americana suggested that there are differences in the sizes of homologous glomeruli, as well as in the ligands they process.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1007/s00441-024-03945-z
Nejc Umek, Marija Meznarič, Žiga Šink, Kaja Blagotinšek Cokan, Uršula Prosenc Zmrzljak, Simon Horvat
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres. Manual segmentation of muscle fibres allowed accurate comparisons of transcript densities across fibre types and subcellular regions, overcoming limitations in the platform's automated segmentation. The analysis revealed higher transcript density in type 1 fibres, particularly in nuclear and perinuclear areas, and identified 191 out of 377 genes with differential expression between muscle fibres and perimysium. Genes such as PROX1, S100A1, LGR5, ACTA2, and LPL exhibited higher expression in type 1 fibres, whereas PEBP4, CAVIN1, GATM, and PVALB in type 2 fibres. We demonstrated that the Xenium platform is capable of high-resolution spatial in situ transcriptomic analysis of skeletal muscle histological sections. This study demonstrates that, with manual segmentation, the Xenium platform effectively performs fibre type-specific transcriptomic analysis, providing new insights into skeletal muscle biology.
传统的转录组学研究往往忽略了骨骼肌的复杂异质性,因为它们通常从混合的肌肉纤维和细胞群中分离RNA,导致平均转录组谱模糊了纤维类型特异性差异。本研究评估了最近开发的Xenium平台对人类骨骼肌组织切片进行高分辨率空间转录组分析的潜力。使用Xenium平台和Human Multi-Tissue and Cancer Panel对来自两个人的人类股外侧肌样本进行分析,针对377个基因,并通过连续切片的Myosin重链异型染色来区分1型和2型肌纤维。手工分割肌纤维可以准确比较纤维类型和亚细胞区域的转录本密度,克服了平台自动分割的局限性。分析显示,1型纤维的转录本密度更高,特别是在核和核周区域,并鉴定出377个基因中的191个在肌纤维和肌围膜之间具有差异表达。PROX1、S100A1、LGR5、ACTA2和LPL等基因在1型纤维中表达较高,而PEBP4、CAVIN1、GATM和PVALB在2型纤维中表达较高。我们证明了Xenium平台能够对骨骼肌组织切片进行高分辨率的空间原位转录组分析。这项研究表明,通过人工分割,Xenium平台有效地执行纤维类型特异性转录组分析,为骨骼肌生物学提供了新的见解。
{"title":"In situ spatial transcriptomic analysis of human skeletal muscle using the Xenium platform.","authors":"Nejc Umek, Marija Meznarič, Žiga Šink, Kaja Blagotinšek Cokan, Uršula Prosenc Zmrzljak, Simon Horvat","doi":"10.1007/s00441-024-03945-z","DOIUrl":"https://doi.org/10.1007/s00441-024-03945-z","url":null,"abstract":"<p><p>Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres. Manual segmentation of muscle fibres allowed accurate comparisons of transcript densities across fibre types and subcellular regions, overcoming limitations in the platform's automated segmentation. The analysis revealed higher transcript density in type 1 fibres, particularly in nuclear and perinuclear areas, and identified 191 out of 377 genes with differential expression between muscle fibres and perimysium. Genes such as PROX1, S100A1, LGR5, ACTA2, and LPL exhibited higher expression in type 1 fibres, whereas PEBP4, CAVIN1, GATM, and PVALB in type 2 fibres. We demonstrated that the Xenium platform is capable of high-resolution spatial in situ transcriptomic analysis of skeletal muscle histological sections. This study demonstrates that, with manual segmentation, the Xenium platform effectively performs fibre type-specific transcriptomic analysis, providing new insights into skeletal muscle biology.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hematopoietic tissue (HPT) and anterior proliferation center (APC) are the main hemocyte-producing organs of the freshwater crayfish, Pacifastacus leniusculus. To deepen our understanding of immune responses to various pathogens, it is essential to identify distinct hemocyte subpopulations with specific functions and to further explore how these cells are generated. Here we provide an in-depth histological study of the HPT and APC in order to localize cell types in different developmental stages, and to provide some information regarding the hemocyte differentiation in the crayfish. We localized mRNA expression of previously identified genes in the HPT/APC and hemocytes by RNA-FISH. The expression of hemolectin and transglutaminase 1 was shown to be co-localized in a high number of the HPT cells, while transglutaminase 2 was expressed in different cell types mainly associated with epithelium or endothelium. Furthermore, by double RNA-FISH for hemolectin and a previously unidentified PDGF-like factor, combined with immunostaining for prophenoloxidase, we could identify several different subtypes of hemocytes, indicating that the immune function of hemocytes in crayfish is more diversified and complex than previously appreciated.
{"title":"The hematopoietic tissue of the freshwater crayfish, Pacifastacus leniusculus: organization and expression analysis.","authors":"Thanapong Kruangkum, Kenneth Söderhäll, Irene Söderhäll","doi":"10.1007/s00441-024-03943-1","DOIUrl":"https://doi.org/10.1007/s00441-024-03943-1","url":null,"abstract":"<p><p>The hematopoietic tissue (HPT) and anterior proliferation center (APC) are the main hemocyte-producing organs of the freshwater crayfish, Pacifastacus leniusculus. To deepen our understanding of immune responses to various pathogens, it is essential to identify distinct hemocyte subpopulations with specific functions and to further explore how these cells are generated. Here we provide an in-depth histological study of the HPT and APC in order to localize cell types in different developmental stages, and to provide some information regarding the hemocyte differentiation in the crayfish. We localized mRNA expression of previously identified genes in the HPT/APC and hemocytes by RNA-FISH. The expression of hemolectin and transglutaminase 1 was shown to be co-localized in a high number of the HPT cells, while transglutaminase 2 was expressed in different cell types mainly associated with epithelium or endothelium. Furthermore, by double RNA-FISH for hemolectin and a previously unidentified PDGF-like factor, combined with immunostaining for prophenoloxidase, we could identify several different subtypes of hemocytes, indicating that the immune function of hemocytes in crayfish is more diversified and complex than previously appreciated.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study explores the advantages of enriching the freezing medium with membrane lipids and antioxidants in improving the outcome of prepubertal testicular tissue cryopreservation. For the study, testicular tissue from Swiss albino mice of prepubertal age group (2 weeks) was cryopreserved by slow freezing method either in control freezing medium (CFM; containing DMSO and FBS in DMEM/F12) or test freezing medium (TFM; containing soy lecithin, phosphatidylserine, phosphatidylethanolamine, cholesterol, vitamin C, sodium selenite, DMSO and FBS in DMEM/F12 medium) and stored in liquid nitrogen for at least one week. The tissues were thawed and enzymatically digested to assess viability, DNA damage, and oxidative stress in the testicular cells. The results indicate that TFM significantly mitigated freeze-thaw-induced cell death, DNA damage, and lipid peroxidation compared to tissue cryopreserved in CFM. Further, a decrease in Cyt C, Caspase-3, and an increase in Gpx4 mRNA transcripts were observed in tissues frozen with TFM. Spermatogonial germ cells (SGCs) collected from tissues frozen with TFM exhibited higher cell survival and superior DNA integrity compared to those frozen in CFM. Proteomic analysis revealed that SGCs experienced a lower degree of freeze-thaw-induced damage when cryopreserved in TFM, as evident from an increase in the level of proteins involved in mitigating the heat stress response, transcriptional and translational machinery. These results emphasize the beneficial role of membrane lipids and antioxidants in enhancing the cryosurvival of prepubertal testicular tissue offering a significant stride towards improving the clinical outcome of prepubertal testicular tissue cryopreservation.
{"title":"Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium.","authors":"Reyon Dcunha, Anjana Aravind, Smitha Bhaskar, Sadhana Mutalik, Srinivas Mutalik, Sneha Guruprasad Kalthur, Anujith Kumar, Padmaraj Hegde, Satish Kumar Adiga, Yulian Zhao, Nagarajan Kannan, Thottethodi Subrahmanya Keshava Prasad, Guruprasad Kalthur","doi":"10.1007/s00441-024-03930-6","DOIUrl":"10.1007/s00441-024-03930-6","url":null,"abstract":"<p><p>The present study explores the advantages of enriching the freezing medium with membrane lipids and antioxidants in improving the outcome of prepubertal testicular tissue cryopreservation. For the study, testicular tissue from Swiss albino mice of prepubertal age group (2 weeks) was cryopreserved by slow freezing method either in control freezing medium (CFM; containing DMSO and FBS in DMEM/F12) or test freezing medium (TFM; containing soy lecithin, phosphatidylserine, phosphatidylethanolamine, cholesterol, vitamin C, sodium selenite, DMSO and FBS in DMEM/F12 medium) and stored in liquid nitrogen for at least one week. The tissues were thawed and enzymatically digested to assess viability, DNA damage, and oxidative stress in the testicular cells. The results indicate that TFM significantly mitigated freeze-thaw-induced cell death, DNA damage, and lipid peroxidation compared to tissue cryopreserved in CFM. Further, a decrease in Cyt C, Caspase-3, and an increase in Gpx4 mRNA transcripts were observed in tissues frozen with TFM. Spermatogonial germ cells (SGCs) collected from tissues frozen with TFM exhibited higher cell survival and superior DNA integrity compared to those frozen in CFM. Proteomic analysis revealed that SGCs experienced a lower degree of freeze-thaw-induced damage when cryopreserved in TFM, as evident from an increase in the level of proteins involved in mitigating the heat stress response, transcriptional and translational machinery. These results emphasize the beneficial role of membrane lipids and antioxidants in enhancing the cryosurvival of prepubertal testicular tissue offering a significant stride towards improving the clinical outcome of prepubertal testicular tissue cryopreservation.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97-117"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1007/s00441-024-03942-2
Małgorzata Durbas
Pleckstrin homology-like domain, family A, member 1 (PHLDA1), one of the three members of PHLDA (1-3) family, has been reported to be expressed in mammalian cells and tissues and play diverse roles in various biological processes such as apoptosis, pyroptosis, and differentiation. Nevertheless, new roles and mechanisms of PHLDA1 action have come to light, with some needing further clarification. The major aim of the publication is to review proapoptotic or antiapoptotic roles of PHLDA1 in cancer, including ample evidence on PHLDA1 role as a tumor suppressor gene or oncogene and its influence on tumor progression. The role of PHLDA1 as a prognostic marker of cancer emerges, as well as its role in drug response and resistance. PHLDA1 involvement in autophagy, endoplasmic reticulum stress, pyroptosis, or differentiation is also scrutinized. It is also important to note that the association of PHLDA1 with miRNA regulation is described. Additionally, the emerging functions of PHLDA1 are indicated, specifically in inflammation and ischemia/reperfusion injury.
{"title":"Expanding on roles of pleckstrin homology-like domain family A member 1 protein.","authors":"Małgorzata Durbas","doi":"10.1007/s00441-024-03942-2","DOIUrl":"10.1007/s00441-024-03942-2","url":null,"abstract":"<p><p>Pleckstrin homology-like domain, family A, member 1 (PHLDA1), one of the three members of PHLDA (1-3) family, has been reported to be expressed in mammalian cells and tissues and play diverse roles in various biological processes such as apoptosis, pyroptosis, and differentiation. Nevertheless, new roles and mechanisms of PHLDA1 action have come to light, with some needing further clarification. The major aim of the publication is to review proapoptotic or antiapoptotic roles of PHLDA1 in cancer, including ample evidence on PHLDA1 role as a tumor suppressor gene or oncogene and its influence on tumor progression. The role of PHLDA1 as a prognostic marker of cancer emerges, as well as its role in drug response and resistance. PHLDA1 involvement in autophagy, endoplasmic reticulum stress, pyroptosis, or differentiation is also scrutinized. It is also important to note that the association of PHLDA1 with miRNA regulation is described. Additionally, the emerging functions of PHLDA1 are indicated, specifically in inflammation and ischemia/reperfusion injury.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"9-25"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-23DOI: 10.1007/s00441-024-03931-5
Shiori Yoshimura, Takuya Omotehara, Hiroki Nakata, Lynn A Birch, Gail S Prins, Koichiro Ichimura, Masahiro Itoh
The rete ovarii and epoophoron in females are homologous structures of the rete testis and efferent/epididymal duct in males and are derived from the developing rete cells and mesonephric tubules, respectively. Sex steroid hormones play a critical role in reproductive function for both sexes, and we recently reported expression patterns of sex steroid receptors in developing male reproductive tracts. However, their expression patterns in females remain unclear. We, therefore, investigated the three-dimensional structure and expression patterns of sex steroid receptors in the rete ovarii and epoophoron of fetal and adult female mice. In adult females, the epoophoron was not adherent to the rete ovarii. The rete ovarii had a bursa-like structure, with its extra-ovarian region protruding toward the epoophoron. A marker for mesonephric tubules, PAX2 (Paired box 2), was detected in the epoophoron and a small population of epithelial cells in the extra-ovarian rete ovarii. These epithelial cells expressed estrogen receptor and androgen receptor. During development, mesonephric tubules were adherent to the rete ovarii at first, but as the development proceeded, the continuity was lost due to the interruption of the tubule rather than separation between the tip of the tubule and rete ovarii. These findings suggest that epithelial cells, originating from the mesonephric tubules, persist even in the adult rete ovarii with maintained expressions of receptors for estrogen and androgen.
{"title":"Mesonephric tubules expressing estrogen and androgen receptors remain in the rete ovarii of adult mice.","authors":"Shiori Yoshimura, Takuya Omotehara, Hiroki Nakata, Lynn A Birch, Gail S Prins, Koichiro Ichimura, Masahiro Itoh","doi":"10.1007/s00441-024-03931-5","DOIUrl":"10.1007/s00441-024-03931-5","url":null,"abstract":"<p><p>The rete ovarii and epoophoron in females are homologous structures of the rete testis and efferent/epididymal duct in males and are derived from the developing rete cells and mesonephric tubules, respectively. Sex steroid hormones play a critical role in reproductive function for both sexes, and we recently reported expression patterns of sex steroid receptors in developing male reproductive tracts. However, their expression patterns in females remain unclear. We, therefore, investigated the three-dimensional structure and expression patterns of sex steroid receptors in the rete ovarii and epoophoron of fetal and adult female mice. In adult females, the epoophoron was not adherent to the rete ovarii. The rete ovarii had a bursa-like structure, with its extra-ovarian region protruding toward the epoophoron. A marker for mesonephric tubules, PAX2 (Paired box 2), was detected in the epoophoron and a small population of epithelial cells in the extra-ovarian rete ovarii. These epithelial cells expressed estrogen receptor and androgen receptor. During development, mesonephric tubules were adherent to the rete ovarii at first, but as the development proceeded, the continuity was lost due to the interruption of the tubule rather than separation between the tip of the tubule and rete ovarii. These findings suggest that epithelial cells, originating from the mesonephric tubules, persist even in the adult rete ovarii with maintained expressions of receptors for estrogen and androgen.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"85-96"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}