Pub Date : 2024-09-01Epub Date: 2024-07-02DOI: 10.1007/s00441-024-03900-y
Vito Antonio Baldassarro, Giuseppe Alastra, Maura Cescatti, Corinne Quadalti, Luca Lorenzini, Luciana Giardino, Laura Calzà
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in "long-COVID" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator®) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFβ2 and cytokine mix (IL-1β, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFβ pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.
{"title":"SARS-CoV-2-related peptides induce endothelial-to-mesenchymal transition in endothelial capillary cells derived from different body districts: focus on membrane (M) protein.","authors":"Vito Antonio Baldassarro, Giuseppe Alastra, Maura Cescatti, Corinne Quadalti, Luca Lorenzini, Luciana Giardino, Laura Calzà","doi":"10.1007/s00441-024-03900-y","DOIUrl":"10.1007/s00441-024-03900-y","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in \"long-COVID\" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator<sup>®</sup>) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFβ2 and cytokine mix (IL-1β, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFβ pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"241-262"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na+/K+-ATPase (NKA) and anti-vacuolar-type H+-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na+/H+ exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.
{"title":"Development of branchial ionocytes in embryonic and larval stages of cloudy catshark, Scyliorhinus torazame.","authors":"Mayu Inokuchi, Yumiko Someya, Keitaro Endo, Katsunori Kamioka, Wataru Katano, Wataru Takagi, Yuki Honda, Nobuhiro Ogawa, Kazuko Koshiba-Takeuchi, Ritsuko Ohtani-Kaneko, Susumu Hyodo","doi":"10.1007/s00441-024-03897-4","DOIUrl":"10.1007/s00441-024-03897-4","url":null,"abstract":"<p><p>In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and anti-vacuolar-type H<sup>+</sup>-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na<sup>+</sup>/H<sup>+</sup> exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"81-95"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-03DOI: 10.1007/s00441-024-03899-2
Ankur Singh, Bechan Lal, Pankaj Kumar, Ishwar S Parhar, Robert P Millar
Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.
一氧化氮(NO)是一种调节各种生殖功能的气体分子。它是脊椎动物(包括鱼类)GnRH-FSH/LH-性类固醇分泌的公认调节剂。Kisspeptin 是最近发现的一种神经肽,它也能调节 GnRH 的分泌。据报道,在哺乳动物大脑中,尼氏能神经元和吻肽(kisspeptin)神经元有密切的物理接触,这表明它们在 GnRH 的释放过程中起着交互作用。在脊椎动物性腺中也有吻肽(kisspeptin)和 NOS 的存在,但关于它们在性腺中的相互关系(如果有的话)的信息并不清楚。因此,本研究试图通过给鲶鱼性腺注射一氧化氮合酶(NOS)抑制剂 L-NAME {N(G)-nitro-L-ginine methyl ester}(可减少 NO 的产生)和吻肽激动剂(KP-10),评估一氧化氮和吻肽在性腺中的功能互作关系(如果有的话),并评估它们对性腺组织中吻肽 1、不同 NOS 同工酶、NO 和类固醇产生的影响。结果显示,L-NAME抑制了鲶鱼性腺中kiss1的表达,确定了NO在kisspeptin表达中的作用。然而,KP-10 增加了卵巢和睾丸中所有 NOS 异构体(iNOS、eNOS、nNOS)以及 NO 和类固醇的表达。体外研究也表明,kisspeptin 能刺激性腺外植体和培养基中 NO 的产生以及雌二醇和睾酮的水平。因此,体内研究结果清楚地表明,在调节鲶鱼性腺活动的过程中,kisspeptin 和 NO 之间存在相互影响的作用。体外研究结果进一步证实了我们关于吻肽和 NO 在性腺类固醇生成过程中的交互作用的论点。
{"title":"Nitric oxide mediated kisspeptin regulation of steroidogenesis and gametogenesis in the catfish, Clarias batrachus.","authors":"Ankur Singh, Bechan Lal, Pankaj Kumar, Ishwar S Parhar, Robert P Millar","doi":"10.1007/s00441-024-03899-2","DOIUrl":"10.1007/s00441-024-03899-2","url":null,"abstract":"<p><p>Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"111-124"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.
本研究采用传统组织学、组织化学、扫描电子显微镜和 X 射线断层扫描等多种技术,揭示了大宗淡水对虾 AnG 的复杂组织结构。研究结果显示了 AnG 中细胞的多样性,以及迷宫小管从中央区到外围区分为四个辐射区的详细组织结构。研究还通过 qPCR 验证了一些脊椎动物肾脏相关同源基因的表达,包括水蒸气素(AQP)、溶质运载家族 22(SLC-22)、肾素和尿调节蛋白。原位杂交的结果进一步表明,SLC-22 和 AQP 转录本定位于膀胱和迷宫上皮,特别是 2、3 和 4 区。此外,研究还通过 qPCR 和原位杂交发现了 AnG 中神经肽的表达,即甲壳动物高血糖激素(CHH)和蜕皮抑制激素(MIH),这意味着 AnG 可能在激素分泌中发挥作用。此外,雌雄对虾在蜕皮前和蜕皮间期表现出不同水平的AQP、SLC-22、肾素和CHH表达,这表明雌雄对虾在蜕皮阶段起着关键作用。总之,本研究澄清了罗氏螯虾 AnG 的复杂结构,并首次证明了脊椎动物肾脏相关基因的表达以及 AnG 可能的内分泌作用。要明确这些基因的作用,尤其是在蜕皮过程中的作用,还需要进一步的研究。这些发现的意义将极大地推动我们对十足甲壳动物AnG的了解。
{"title":"Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii.","authors":"Thanapong Kruangkum, Kornchanok Jaiboon, Phakkhananan Pakawanit, Jirawat Saetan, Arnon Pudgerd, Suttipong Wannapaiboon, Charoonroj Chotwiwatthanakun, Scott F Cummins, Prasert Sobhon, Rapeepun Vanichviriyakit","doi":"10.1007/s00441-024-03898-3","DOIUrl":"10.1007/s00441-024-03898-3","url":null,"abstract":"<p><p>In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"125-146"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-20DOI: 10.1007/s00441-024-03901-x
Maria Del Mar de Miguel Bonet, Volker Hartenstein
The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.
{"title":"Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano.","authors":"Maria Del Mar de Miguel Bonet, Volker Hartenstein","doi":"10.1007/s00441-024-03901-x","DOIUrl":"10.1007/s00441-024-03901-x","url":null,"abstract":"<p><p>The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"147-177"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-21DOI: 10.1007/s00441-024-03895-6
Julieta Emilse Sallemi, María Paula Di Yorio, Gladys Noemí Hermida, Andrés Breccia, Ariadna Gabriela Battista, Paula Gabriela Vissio
The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.
{"title":"The saccus vasculosus of the neotropical cichlid fish Cichlasoma dimerus: characterization, developmental studies and its response to photoperiod.","authors":"Julieta Emilse Sallemi, María Paula Di Yorio, Gladys Noemí Hermida, Andrés Breccia, Ariadna Gabriela Battista, Paula Gabriela Vissio","doi":"10.1007/s00441-024-03895-6","DOIUrl":"10.1007/s00441-024-03895-6","url":null,"abstract":"<p><p>The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97-110"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.
动情素(MLN)是一种肽类激素,最初是从猪肠粘膜中分离出来的。它的同源物已在多种脊椎动物中被发现。虽然 MLN 在从两栖动物到哺乳动物的四足动物中调节胃肠道运动,但最近的研究表明,MLN 并不参与斑马鱼离体肠道运动的调节,至少在体外是如此。为了确定 MLN 在远洋鱼类中的未知功能,我们研究了 MLN 和 MLN 受体(MLNR)在日本青鳉(Oryzias latipes)细胞水平的表达。定量 PCR 发现 mln mRNA 仅在肠道中表达,而 mlnr mRNA 在肠道中未检测到,但在大脑和肾脏中表达。通过原位杂交和免疫组化,我们在大脑后区的多巴胺能神经元和肾脏肾间质的去甲肾上腺素分泌细胞中检测到了 mlnr mRNA。此外,我们通过建立表达由 mlnr 启动子驱动的增强型绿色荧光蛋白的转基因青鳉,在延髓的迷走神经叶(XL)和迷走神经运动核(NXm)中观察到了表达 mlnr 的多巴胺能神经元的传出投射。原位杂交证实了多巴胺受体 mRNA 在 NXm 的 XL 和胆碱能神经元中的表达。这些结果表明,除胃肠道外,MLN还有新的活动场所。MLN可能通过调节青鳉体内儿茶酚胺的释放而发挥中枢和外周作用。
{"title":"Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes.","authors":"Morio Azuma, Norifumi Konno, Ichiro Sakata, Taka-Aki Koshimizu, Hiroyuki Kaiya","doi":"10.1007/s00441-024-03896-5","DOIUrl":"10.1007/s00441-024-03896-5","url":null,"abstract":"<p><p>Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"61-76"},"PeriodicalIF":3.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-27DOI: 10.1007/s00441-024-03872-z
Yingbo Zhang, Christos C Zouboulis, Zhibo Xiao
Sebocyte regeneration after injury is considered a key element of functional skin repair. Exosomes from adipose-derived stem cells (ADSCs-EXO) accelerate wound healing by promoting the proliferation of fibroblasts. However, the effects of ADSCs-EXO on sebocytes are largely unknown. In this study, the effects of ADSCs-EXO on sebocyte proliferation and migration were evaluated. The levels of phosphorylated AKT (p-AKT), AKT, sterol regulatory-element binding protein (SREBP), and perilipin-1 (PLIN-1) were detected with immunofluorescence, quantitative PCR, and western blot analysis. RNA-Seq was used to analyze the differential gene expression between the ADSCs-EXO group and the control group under anaerobic conditions. Lipogenesis was assessed with Nile red staining. In animal studies, full-thickness skin wounds in BALB/c mice were treated with gelatin methacrylate (GelMA) hydrogel-loaded sebocytes alone or in combination with ADSCs-EXO. Histopathological assessments of the wound tissues were performed Masson Trichrome staining, Immunohistochemical staining and so on. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway blocker LY294002 inhibited the effects of ADSCs-EXO on p-AKT and sebocytes proliferation. ADSCs-EXO also regulated the expression of SREBP-1 and PLIN-1 through the PI3K/AKT pathway in an oxygen level-dependent manner. In BALB/c mice, ADSCs-EXO accelerated sebocyte-assisted wound healing and regeneration. These in vitro and in vivo results supported that ADSCs-EXO can promote the regeneration of fully functional skin after injury through the PI3K/AKT-dependent activation of sebocytes.
{"title":"Exosomes from adipose-derived stem cells activate sebocytes through the PI3K/AKT/SREBP-1 pathway to accelerate wound healing.","authors":"Yingbo Zhang, Christos C Zouboulis, Zhibo Xiao","doi":"10.1007/s00441-024-03872-z","DOIUrl":"10.1007/s00441-024-03872-z","url":null,"abstract":"<p><p>Sebocyte regeneration after injury is considered a key element of functional skin repair. Exosomes from adipose-derived stem cells (ADSCs-EXO) accelerate wound healing by promoting the proliferation of fibroblasts. However, the effects of ADSCs-EXO on sebocytes are largely unknown. In this study, the effects of ADSCs-EXO on sebocyte proliferation and migration were evaluated. The levels of phosphorylated AKT (p-AKT), AKT, sterol regulatory-element binding protein (SREBP), and perilipin-1 (PLIN-1) were detected with immunofluorescence, quantitative PCR, and western blot analysis. RNA-Seq was used to analyze the differential gene expression between the ADSCs-EXO group and the control group under anaerobic conditions. Lipogenesis was assessed with Nile red staining. In animal studies, full-thickness skin wounds in BALB/c mice were treated with gelatin methacrylate (GelMA) hydrogel-loaded sebocytes alone or in combination with ADSCs-EXO. Histopathological assessments of the wound tissues were performed Masson Trichrome staining, Immunohistochemical staining and so on. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway blocker LY294002 inhibited the effects of ADSCs-EXO on p-AKT and sebocytes proliferation. ADSCs-EXO also regulated the expression of SREBP-1 and PLIN-1 through the PI3K/AKT pathway in an oxygen level-dependent manner. In BALB/c mice, ADSCs-EXO accelerated sebocyte-assisted wound healing and regeneration. These in vitro and in vivo results supported that ADSCs-EXO can promote the regeneration of fully functional skin after injury through the PI3K/AKT-dependent activation of sebocytes.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"329-342"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.
{"title":"The role of vitamin D receptor in predentin mineralization and dental repair after injury.","authors":"Yudong Liu, Yinlin Wu, Xiaodong Hu, Yu Sun, Guojin Zeng, Qinglong Wang, Shanshan Liu, Meiqun Sun","doi":"10.1007/s00441-024-03886-7","DOIUrl":"10.1007/s00441-024-03886-7","url":null,"abstract":"<p><p>Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr<sup>-/-</sup>) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr<sup>-/-</sup> mice. The finding revealed a thicker predentin in Vdr<sup>-/-</sup> mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr<sup>-/-</sup> mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr<sup>-/-</sup> mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr<sup>-/-</sup> mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr<sup>-/-</sup> mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"343-351"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-19DOI: 10.1007/s00441-024-03880-z
Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
{"title":"CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model.","authors":"Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek","doi":"10.1007/s00441-024-03880-z","DOIUrl":"10.1007/s00441-024-03880-z","url":null,"abstract":"<p><p>Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"371-397"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}