Spinal cord injury (SCI) severely affects the quality of life and autonomy of patients, and effective treatments are currently lacking. Autophagy, an essential cellular metabolic process, plays a crucial role in neuroprotection and repair after SCI. Glycoprotein non-metastatic melanoma protein B (GPNMB) has been shown to promote neural regeneration and synapse reconstruction, potentially through the facilitation of autophagy. However, the specific role of GPNMB in autophagy after SCI is still unclear. In this study, we utilized the spinal cord transection method to establish SCI rats model and overexpressed GPNMB using adenoviral vectors. We assessed tissue damage using hematoxylin and eosin (H&E) and Nissl staining, and observed cell apoptosis using TUNEL staining. We evaluated the inflammatory response by measuring inflammatory factors using enzyme-linked immunosorbent assay (ELISA). In addition, we measured reactive oxygen species (ROS) levels using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and assessed oxidative stress levels by measuring malondialdehyde (MDA) and glutathione (GSH) using ELISA. To evaluate autophagy levels, we performed immunofluorescence staining for the autophagy marker Beclin-1 and conducted Western blot analysis for autophagy-related proteins. We also assessed limb recovery through functional evaluation. Meanwhile, we induced cell injury using lipopolysaccharide (LPS) and added an autophagy inhibitor to verify the impact of GPNMB on SCI through autophagy modulation. The results demonstrated that GPNMB alleviated the inflammatory response, reduced oxidative stress levels, inhibited cell apoptosis, and promoted autophagy following SCI. Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.
Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived β cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.