Pub Date : 2024-01-01DOI: 10.1177/09636897241270401
Zhenyang Gu, Fei Li, Meng Li, Linlin Zhang, Sai Xu, Lu Wang, Lili Wang, Yu Jing, Jian Bo, Chunji Gao, Liping Dou, Daihong Liu
The annual number of human leukocyte antigen (HLA)-haploidentical allogeneic hematopoietic stem cell transplantation (haplo-HCT) is increasing steadily. Comparative studies about haplo-HCT versus HCT with HLA-matched sibling donors (MSD-HCT) have been tried in acute myeloid leukemia and B-cell acute lymphoblastic leukemia/lymphoma (ALL). Few studies were reported in adult T-cell ALL (T-ALL). In this retrospective study, a total of 88 consecutive patients with T-ALL were enrolled who underwent MSD-HCT (n = 24) and haplo-HCT (n = 64) with antithymocyte globulin (ATG)-based graft versus host disease (GVHD) prophylaxis between 2010 and 2022. Median follow-up for survivors was similar (43.5 [range: 7-88] months for MSD-HCT versus 43.5 (range: 6-144) months in the Haplo-HCT group). The 100-day cumulative incidence of grade II to IV acute GVHD (aGVHD) was similar, 33% (95% confidence interval [CI], 16%-52%) after MSD-HCT versus 44% (95% CI, 31%-55%) after haplo-HCT, P = 0.52. The cumulative incidences of grade III-IV aGVHD were 8% (95% CI, 1%-23%) in the MSD-HCT group and 5% (95% CI, 1%-12%) in the haplo-HCT group (P = 0.50). The 2-year cumulative incidence of chronic GVHD (limited and extensive) in the haplo-HCT, 11% (95% CI, 5%-20%) was significantly lower than that in the MSD-HCT group (42% [95% CI, 21%-62%], P = 0.002). The cumulative incidence of 4-year relapse rates (44% versus 37%, P = 0.56) and non-relapse mortality (7% versus 21%, P = 0.08) did not differ between these two groups. There were also no differences in 4-year overall survival (46% versus 47%, P = 0.44) and progression-free survival (49% versus 42%, P = 0.45) between these two groups. On multivariate analysis, using busulfan/fludarabine (BU/Flu) conditioning regimen was found to be associated with worse clinical outcome. Our results suggested that ATG-based haplo-HCT platform could work as an alternative to MSD-HCT for adult patients with T-ALL. Compared with MSD-HCT, haplo-HCT might carry a low risk for cGVHD.
{"title":"Similar Survival But Less Chronic GVHD in Antithymocyte Globulin-Based Myeloablative Haploidentical Transplant Compared With Matched Sibling Transplant for Adult T-cell Acute Lymphoblastic Leukemia/Lymphoma.","authors":"Zhenyang Gu, Fei Li, Meng Li, Linlin Zhang, Sai Xu, Lu Wang, Lili Wang, Yu Jing, Jian Bo, Chunji Gao, Liping Dou, Daihong Liu","doi":"10.1177/09636897241270401","DOIUrl":"10.1177/09636897241270401","url":null,"abstract":"<p><p>The annual number of human leukocyte antigen (HLA)-haploidentical allogeneic hematopoietic stem cell transplantation (haplo-HCT) is increasing steadily. Comparative studies about haplo-HCT versus HCT with HLA-matched sibling donors (MSD-HCT) have been tried in acute myeloid leukemia and B-cell acute lymphoblastic leukemia/lymphoma (ALL). Few studies were reported in adult T-cell ALL (T-ALL). In this retrospective study, a total of 88 consecutive patients with T-ALL were enrolled who underwent MSD-HCT (<i>n</i> = 24) and haplo-HCT (<i>n</i> = 64) with antithymocyte globulin (ATG)-based graft versus host disease (GVHD) prophylaxis between 2010 and 2022. Median follow-up for survivors was similar (43.5 [range: 7-88] months for MSD-HCT versus 43.5 (range: 6-144) months in the Haplo-HCT group). The 100-day cumulative incidence of grade II to IV acute GVHD (aGVHD) was similar, 33% (95% confidence interval [CI], 16%-52%) after MSD-HCT versus 44% (95% CI, 31%-55%) after haplo-HCT, <i>P</i> = 0.52. The cumulative incidences of grade III-IV aGVHD were 8% (95% CI, 1%-23%) in the MSD-HCT group and 5% (95% CI, 1%-12%) in the haplo-HCT group (<i>P</i> = 0.50). The 2-year cumulative incidence of chronic GVHD (limited and extensive) in the haplo-HCT, 11% (95% CI, 5%-20%) was significantly lower than that in the MSD-HCT group (42% [95% CI, 21%-62%], <i>P</i> = 0.002). The cumulative incidence of 4-year relapse rates (44% versus 37%, <i>P</i> = 0.56) and non-relapse mortality (7% versus 21%, <i>P</i> = 0.08) did not differ between these two groups. There were also no differences in 4-year overall survival (46% versus 47%, <i>P</i> = 0.44) and progression-free survival (49% versus 42%, <i>P</i> = 0.45) between these two groups. On multivariate analysis, using busulfan/fludarabine (BU/Flu) conditioning regimen was found to be associated with worse clinical outcome. Our results suggested that ATG-based haplo-HCT platform could work as an alternative to MSD-HCT for adult patients with T-ALL. Compared with MSD-HCT, haplo-HCT might carry a low risk for cGVHD.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241270401"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to explore the role of ovarian cancer patient-derived organoids (PDOs) in their replicating genetic characteristics and testing drug responsiveness. Ovarian cancer PDOs were cultured in Matrigel with a specialized medium. The successful rate and proliferation rate were calculated. Morphology, histology, and immunohistochemistry (IHC) (PAX8, P53, and WT1) were used to identify the tumor characteristics. Gene sequencing, variant allele frequency (VAF), and copy number variation were used to explore the mutation profile. The sensitivity to chemodrugs (carboplatin, paclitaxel, gemcitabine, doxorubicin, and olaparib) was conducted. Successful generation of organoids occurred in 54% (7/13) of attempts, encompassing 4 high-grade serous carcinomas (HGSC), 1 mucinous carcinoma (MC), 1 clear cell carcinoma (CCC), and 1 carcinosarcoma. The experiments used six organoids (3 HGSC, 1 CCC, 1 MC, and 1 carcinosarcoma). The derived organoids exhibited spherical-like morphology, and the diameter ranged from 100 to 500 μm. The histology and IHC exhibited the same between organoids and primary tumors. After cryopreservation, the organoid's growth rate was slower than the primary culture (14 days vs 10 days, P < 0.01). Targeted sequencing revealed shared DNA variants, including mutations in key genes, such as BRCA1, PIK3CA, ARID1A, and TP53. VAF was similar between primary tumors and organoids. The organoids maintained inherited most copy number alterations. Drug sensitivity testing revealed varying responses, with carcinosarcoma organoids showing higher sensitivity to paclitaxel and gemcitabine than HGSC organoids. Our preliminary results showed that ovarian cancer PDOs could be successfully derived and histology, mutations, and diverse copy numbers of genotypes could be faithfully captured. Drug testing could reveal the individual PDO's responsiveness to drugs. PDOs might be as valuable resources for investigating genomic biomarkers for personalized treatment.
{"title":"Ovarian Cancer Patient-Derived Organoids Used as a Model for Replicating Genetic Characteristics and Testing Drug Responsiveness: A Preliminary Study.","authors":"Yu-Hsun Chang, Kun-Chi Wu, Kai-Hung Wang, Dah-Ching Ding","doi":"10.1177/09636897241281869","DOIUrl":"https://doi.org/10.1177/09636897241281869","url":null,"abstract":"<p><p>This study aimed to explore the role of ovarian cancer patient-derived organoids (PDOs) in their replicating genetic characteristics and testing drug responsiveness. Ovarian cancer PDOs were cultured in Matrigel with a specialized medium. The successful rate and proliferation rate were calculated. Morphology, histology, and immunohistochemistry (IHC) (PAX8, P53, and WT1) were used to identify the tumor characteristics. Gene sequencing, variant allele frequency (VAF), and copy number variation were used to explore the mutation profile. The sensitivity to chemodrugs (carboplatin, paclitaxel, gemcitabine, doxorubicin, and olaparib) was conducted. Successful generation of organoids occurred in 54% (7/13) of attempts, encompassing 4 high-grade serous carcinomas (HGSC), 1 mucinous carcinoma (MC), 1 clear cell carcinoma (CCC), and 1 carcinosarcoma. The experiments used six organoids (3 HGSC, 1 CCC, 1 MC, and 1 carcinosarcoma). The derived organoids exhibited spherical-like morphology, and the diameter ranged from 100 to 500 μm. The histology and IHC exhibited the same between organoids and primary tumors. After cryopreservation, the organoid's growth rate was slower than the primary culture (14 days vs 10 days, <i>P</i> < 0.01). Targeted sequencing revealed shared DNA variants, including mutations in key genes, such as <i>BRCA1</i>, <i>PIK3CA, ARID1A</i>, and <i>TP53</i>. VAF was similar between primary tumors and organoids. The organoids maintained inherited most copy number alterations. Drug sensitivity testing revealed varying responses, with carcinosarcoma organoids showing higher sensitivity to paclitaxel and gemcitabine than HGSC organoids. Our preliminary results showed that ovarian cancer PDOs could be successfully derived and histology, mutations, and diverse copy numbers of genotypes could be faithfully captured. Drug testing could reveal the individual PDO's responsiveness to drugs. PDOs might be as valuable resources for investigating genomic biomarkers for personalized treatment.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241281869"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Circadian dysregulation involved in the pathophysiology of spinal cord injury (SCI). Modulation of circadian rhythms hold promise for the SCI treatment. Here, we aim to investigated the mechanism of olfactory ensheathing cells (OEC) in alleviating neuroinflammation via modulating clock gene expression in microglia. In this study, SCI rats were randomly divided into OEC group and vehicle group. At 1 day after the surgery, OECs were intravenously transplanted into OEC group SCI rat, while the rats in vehicle group received culture medium. After 7 days post of OEC transplantation, tissues were collected from the brain (prefrontal cortex, hypothalamus, spinal cord) for PCR, western blotting and immunohistochemistry (IHC) assay at zeitgeber time (ZT) 6, ZT 12, ZT 18, and ZT 24. The roles of OEC in modulating REV-ERBα in microglia were studied by experimental inhibition of gene expression and the co-culture experiment. In the vehicle group, IHC showed a significant increase of Iba-1 expression in the cerebral white matter and spinal cord compared with control group (P < 0.0001 for all comparisons). The expression of Iba-1 was significantly decreased (P < 0.0001 for all comparisons). In the OEC group, the expression of PER 1, PER 2, CLOCK, and REV-ERBα was in a rhythmical manner in both spinal cord and brain regions. SCI disrupted their typical rhythms. And OECs transplantation could modulate those dysregulations by upregulating REV-ERBα. In vitro study showed that OECs couldn't reduce the activation of REV-ERBα inhibited microglia. The intravenous transplantation of OECs can mediate cerebral and spinal microglia activation through upregulation REV-ERBα after SCI.
{"title":"Olfactory Ensheathing Cell Ameliorate Neuroinflammation Following Spinal Cord Injury Through Upregulating REV-ERBα in Microglia.","authors":"Lijian Zhang, Luxuan Wang, Yanli Tan, Chunhui Li, Chuan Fang","doi":"10.1177/09636897241261234","DOIUrl":"10.1177/09636897241261234","url":null,"abstract":"<p><p>Circadian dysregulation involved in the pathophysiology of spinal cord injury (SCI). Modulation of circadian rhythms hold promise for the SCI treatment. Here, we aim to investigated the mechanism of olfactory ensheathing cells (OEC) in alleviating neuroinflammation via modulating clock gene expression in microglia. In this study, SCI rats were randomly divided into OEC group and vehicle group. At 1 day after the surgery, OECs were intravenously transplanted into OEC group SCI rat, while the rats in vehicle group received culture medium. After 7 days post of OEC transplantation, tissues were collected from the brain (prefrontal cortex, hypothalamus, spinal cord) for PCR, western blotting and immunohistochemistry (IHC) assay at zeitgeber time (ZT) 6, ZT 12, ZT 18, and ZT 24. The roles of OEC in modulating REV-ERBα in microglia were studied by experimental inhibition of gene expression and the co-culture experiment. In the vehicle group, IHC showed a significant increase of Iba-1 expression in the cerebral white matter and spinal cord compared with control group (<i>P</i> < 0.0001 for all comparisons). The expression of Iba-1 was significantly decreased (<i>P</i> < 0.0001 for all comparisons). In the OEC group, the expression of PER 1, PER 2, CLOCK, and REV-ERBα was in a rhythmical manner in both spinal cord and brain regions. SCI disrupted their typical rhythms. And OECs transplantation could modulate those dysregulations by upregulating REV-ERBα. In vitro study showed that OECs couldn't reduce the activation of REV-ERBα inhibited microglia. The intravenous transplantation of OECs can mediate cerebral and spinal microglia activation through upregulation REV-ERBα after SCI.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241261234"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/09636897241265808
{"title":"Retraction Notice: Neurospheres Induced from Human Adipose-Derived Stem Cells as a New Source of Neural Progenitor Cells.","authors":"","doi":"10.1177/09636897241265808","DOIUrl":"10.1177/09636897241265808","url":null,"abstract":"","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241265808"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/09636897241290367
Jodi Scholz, Frank J Secreto, Joan Wobig, Joe Kurian, Clint Hagen, Alexandra Zinnen, Don Vu, Steven J Johnson, Frank Cetta, Yasir Qureshi, Rachel Reams, Bryan Cannon, Christina M Heyer, Minhwang Chang, Numrah Fadra, Jennifer Coonen, Heather A Simmons, Andres Mejia, Jennifer M Hayes, Puja Basu, Saverio Capuano, Viktoriya Bondarenko, Jeanette M Metzger, Timothy J Nelson, Marina E Emborg
Cardiac ventricular pressure overload affects patients with congenital heart defects and can cause cardiac insufficiency. Grafts of stem cell-derived cardiomyocytes are proposed as a complementary treatment to surgical repair of the cardiac defect, aiming to support ventricular function. Here, we report successful engraftment of human induced pluripotent stem cell-derived cardiac lineage cells into the heart of immunosuppressed rhesus macaques with a novel surgical model of right ventricular pressure overload. The human troponin+ grafts were detected in low-dose (2 × 106 cells/kg) and high-dose (10 × 106 cells/kg) treatment groups up to 12 weeks post-injection. Transplanted cells integrated and progressively matched the organization of the surrounding host myocardium. Ventricular tachycardia occurred in five out of 16 animals receiving cells, with episodes of incessant tachycardia observed in two animals; ventricular tachycardia events resolved within 19 days. Our results demonstrate that grafted cardiomyocytes mature and integrate into the myocardium of nonhuman primates modeling right ventricular pressure overload.
{"title":"Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload.","authors":"Jodi Scholz, Frank J Secreto, Joan Wobig, Joe Kurian, Clint Hagen, Alexandra Zinnen, Don Vu, Steven J Johnson, Frank Cetta, Yasir Qureshi, Rachel Reams, Bryan Cannon, Christina M Heyer, Minhwang Chang, Numrah Fadra, Jennifer Coonen, Heather A Simmons, Andres Mejia, Jennifer M Hayes, Puja Basu, Saverio Capuano, Viktoriya Bondarenko, Jeanette M Metzger, Timothy J Nelson, Marina E Emborg","doi":"10.1177/09636897241290367","DOIUrl":"10.1177/09636897241290367","url":null,"abstract":"<p><p>Cardiac ventricular pressure overload affects patients with congenital heart defects and can cause cardiac insufficiency. Grafts of stem cell-derived cardiomyocytes are proposed as a complementary treatment to surgical repair of the cardiac defect, aiming to support ventricular function. Here, we report successful engraftment of human induced pluripotent stem cell-derived cardiac lineage cells into the heart of immunosuppressed rhesus macaques with a novel surgical model of right ventricular pressure overload. The human troponin+ grafts were detected in low-dose (2 × 10<sup>6</sup> cells/kg) and high-dose (10 × 10<sup>6</sup> cells/kg) treatment groups up to 12 weeks post-injection. Transplanted cells integrated and progressively matched the organization of the surrounding host myocardium. Ventricular tachycardia occurred in five out of 16 animals receiving cells, with episodes of incessant tachycardia observed in two animals; ventricular tachycardia events resolved within 19 days. Our results demonstrate that grafted cardiomyocytes mature and integrate into the myocardium of nonhuman primates modeling right ventricular pressure overload.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241290367"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The therapeutic efficacy of bone marrow mesenchymal stem cells (BMSCs) in myocardial infarction (MI) is hindered by poor cell survival. This study explored the role of N6-methyladenosine (m6A) regulation, specifically YTHDC1, in improving BMSC transplantation for MI. By screening m6A-related regulators in hypoxia and serum deprivation (HSD)-induced BMSC apoptosis, YTHDC1 was found to be downregulated. Overexpression of Ythdc1 in BMSCs reduced apoptosis markers, reactive oxygen species (ROS) release, and improved cell survival under HSD conditions. Conversely, Ythdc1 knockdown enhanced apoptosis. In rat MI models, transplantation of Ythdc1-overexpressing BMSCs improved cardiac function and reduced myocardial fibrosis. Mechanistically, YTHDC1 interacts with nuclear factor kappa B (NF-κB) inhibitor-alpha mRNA, suggesting its involvement in BMSC survival pathways. This study identifies YTHDC1 as a potential target to enhance BMSC efficacy in MI therapy.
{"title":"YTHDC1 Mitigates Apoptosis in Bone Marrow Mesenchymal Stem Cells by Inhibiting <i>NfƙBiα</i> and Augmenting Cardiac Function Following Myocardial Infarction.","authors":"Weiyu Han, Weidong Xiong, Weixing Sun, Weiwei Liu, Yu Zhang, Chaofu Li, Ning Gu, Youcheng Shen, Zhimei Qiu, Chaozhong Li, Yongchao Zhao, Ranzun Zhao","doi":"10.1177/09636897241290910","DOIUrl":"10.1177/09636897241290910","url":null,"abstract":"<p><p>The therapeutic efficacy of bone marrow mesenchymal stem cells (BMSCs) in myocardial infarction (MI) is hindered by poor cell survival. This study explored the role of N6-methyladenosine (m6A) regulation, specifically YTHDC1, in improving BMSC transplantation for MI. By screening m6A-related regulators in hypoxia and serum deprivation (HSD)-induced BMSC apoptosis, YTHDC1 was found to be downregulated. Overexpression of Ythdc1 in BMSCs reduced apoptosis markers, reactive oxygen species (ROS) release, and improved cell survival under HSD conditions. Conversely, Ythdc1 knockdown enhanced apoptosis. In rat MI models, transplantation of Ythdc1-overexpressing BMSCs improved cardiac function and reduced myocardial fibrosis. Mechanistically, YTHDC1 interacts with nuclear factor kappa B (NF-κB) inhibitor-alpha mRNA, suggesting its involvement in BMSC survival pathways. This study identifies YTHDC1 as a potential target to enhance BMSC efficacy in MI therapy.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241290910"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapy that has shown significant success in treating certain hematologic malignancies. However, there are still challenges and limitations associated with this therapy, and not all cancer patients benefit from this therapy alone. Therefore, modifying CAR-T-cell therapy based on immune checkpoints, and its combination with immune checkpoint inhibitors (ICIs), shows promise as a potentially more effective strategy for treating hematologic malignancies. This article outlines the progress of preclinical and clinical trials of CAR-T-cell therapy based on immune checkpoint modulation in the treatment of hematologic malignancies.
{"title":"CAR-T-Cell Therapy Based on Immune Checkpoint Modulation in the Treatment of Hematologic Malignancies.","authors":"Manqi Su, Zhanna Zhang, Panruo Jiang, Xiaoxia Wang, Xiangmin Tong, Gongqiang Wu","doi":"10.1177/09636897241293964","DOIUrl":"10.1177/09636897241293964","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapy that has shown significant success in treating certain hematologic malignancies. However, there are still challenges and limitations associated with this therapy, and not all cancer patients benefit from this therapy alone. Therefore, modifying CAR-T-cell therapy based on immune checkpoints, and its combination with immune checkpoint inhibitors (ICIs), shows promise as a potentially more effective strategy for treating hematologic malignancies. This article outlines the progress of preclinical and clinical trials of CAR-T-cell therapy based on immune checkpoint modulation in the treatment of hematologic malignancies.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241293964"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/09636897241256462
Ming Yao, Jarmo Henriksson, Henrik Fahlander, Pablo Guisti Coitinho, Torbjörn Lundgren, Nils Ågren, Bo-Göran Ericzon, Makiko Kumagai-Braesch
Regulatory cell therapies have shown promise in tolerance-induction protocols in living donor organ transplantation. These protocols should be pursued in deceased donor transplantation. Donor peripheral mononuclear cells (PBMCs) are an optimal source of donor antigens for the induction of donor-specific regulatory cells. During the development of a regulatory cell tolerance-induction protocol with organs from deceased donors, we compared 3 methods of obtaining PBMCs from deceased donors focusing on cell yield, viability, and contamination of unwanted cell types. PBMC procurement methods: 1. During organ procurement at the time of cold perfusion, blood was collected from the vena cava and placed into a 10-liter blood collection bag, and thereafter transported to Karolinska University Hospital, where leukapheresis was performed (BCL). 2. Blood was collected via the vena cava into blood donation bags before cold perfusion. The bags underwent buffy coat separation and thereafter automated leukocyte isolation system (BCS). 3. To collect PBMCs, leukapheresis was performed via a central dialysis catheter on deceased donors in the intensive care unit (ICU) prior to the organ procurement procedure (LEU).All 3 methods to obtain PBMC from deceased donors were safe and did not affect the procurement of organs. BCL contained around 50% of NK cells in lymphocytes population. LEU had a highest yield of donor PBMC among 3 groups. LEU had the lower amount of granulocyte contamination, compared to BCS and BCL. Based on these results, we choose LEU as the preferred method to obtain donor PBMC in the development of our tolerance-induction protocol.
{"title":"Evaluation of Methods to Obtain Peripheral Blood Mononuclear Cells From Deceased Donors for Tolerance-Induction Protocols.","authors":"Ming Yao, Jarmo Henriksson, Henrik Fahlander, Pablo Guisti Coitinho, Torbjörn Lundgren, Nils Ågren, Bo-Göran Ericzon, Makiko Kumagai-Braesch","doi":"10.1177/09636897241256462","DOIUrl":"10.1177/09636897241256462","url":null,"abstract":"<p><p>Regulatory cell therapies have shown promise in tolerance-induction protocols in living donor organ transplantation. These protocols should be pursued in deceased donor transplantation. Donor peripheral mononuclear cells (PBMCs) are an optimal source of donor antigens for the induction of donor-specific regulatory cells. During the development of a regulatory cell tolerance-induction protocol with organs from deceased donors, we compared 3 methods of obtaining PBMCs from deceased donors focusing on cell yield, viability, and contamination of unwanted cell types. PBMC procurement methods: 1. During organ procurement at the time of cold perfusion, blood was collected from the vena cava and placed into a 10-liter blood collection bag, and thereafter transported to Karolinska University Hospital, where leukapheresis was performed (BCL). 2. Blood was collected via the vena cava into blood donation bags before cold perfusion. The bags underwent buffy coat separation and thereafter automated leukocyte isolation system (BCS). 3. To collect PBMCs, leukapheresis was performed via a central dialysis catheter on deceased donors in the intensive care unit (ICU) prior to the organ procurement procedure (LEU).All 3 methods to obtain PBMC from deceased donors were safe and did not affect the procurement of organs. BCL contained around 50% of NK cells in lymphocytes population. LEU had a highest yield of donor PBMC among 3 groups. LEU had the lower amount of granulocyte contamination, compared to BCS and BCL. Based on these results, we choose LEU as the preferred method to obtain donor PBMC in the development of our tolerance-induction protocol.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241256462"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/09636897241259722
Chuanhe Jiang, Jingtao Huang, Jie Shao, Tingting Yang, Ye Zhao, Meijuan Huang, Hongmei Yi, Jimin Shi, Liping Wan, Feng Chen, Yang Cao, Xiaoxia Hu
Posttransplant lymphoproliferative disorder (PTLD) is a rare lymphoid and/or plasmocytic proliferation that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aimed to identify the pathologic features and clinical outcomes of T-cell PTLD, an extremely rare subtype of PTLD, after allo-HSCT. In this study, six allo-HSCT recipients with T-cell PTLD from five transplant centers in China were enrolled. All the T-cell PTLD were donor-derived, and three patients were with monomorphic and three with polymorphic types, respectively. All patients received cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)-based chemotherapy. Five patients achieved complete response (CR), and one experienced progressive disease (PD). The median time from HSCT to onset was 4 (range: 0.6-72) months, analyzed in combination with the other 16 patients with T-cell PTLD identified from previous reports. About 56.3% of the T-cell samples (9/16) were positive for in situ hybridization with an Epstein-Barr virus (EBV)-encoded small nuclear early region (EBER ISH). CHOP-based chemotherapy might be the optimal strategy for patients who showed no response to empiric therapy with a CR rate of 87.5%. In conclusion, our study observed that T-cell PTLD has distinct clinical manifestations and morphological features, which characterized by less relation to EBV, later occurrence, and poorer prognosis when compared with B-cell PTLD.
{"title":"T-Cell Posttransplant Lymphoproliferative Disorders After Allogeneic Hematopoietic Stem Cell Transplantation: Case Series and Systemic Review.","authors":"Chuanhe Jiang, Jingtao Huang, Jie Shao, Tingting Yang, Ye Zhao, Meijuan Huang, Hongmei Yi, Jimin Shi, Liping Wan, Feng Chen, Yang Cao, Xiaoxia Hu","doi":"10.1177/09636897241259722","DOIUrl":"10.1177/09636897241259722","url":null,"abstract":"<p><p>Posttransplant lymphoproliferative disorder (PTLD) is a rare lymphoid and/or plasmocytic proliferation that occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aimed to identify the pathologic features and clinical outcomes of T-cell PTLD, an extremely rare subtype of PTLD, after allo-HSCT. In this study, six allo-HSCT recipients with T-cell PTLD from five transplant centers in China were enrolled. All the T-cell PTLD were donor-derived, and three patients were with monomorphic and three with polymorphic types, respectively. All patients received cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)-based chemotherapy. Five patients achieved complete response (CR), and one experienced progressive disease (PD). The median time from HSCT to onset was 4 (range: 0.6-72) months, analyzed in combination with the other 16 patients with T-cell PTLD identified from previous reports. About 56.3% of the T-cell samples (9/16) were positive for in situ hybridization with an Epstein-Barr virus (EBV)-encoded small nuclear early region (EBER ISH). CHOP-based chemotherapy might be the optimal strategy for patients who showed no response to empiric therapy with a CR rate of 87.5%. In conclusion, our study observed that T-cell PTLD has distinct clinical manifestations and morphological features, which characterized by less relation to EBV, later occurrence, and poorer prognosis when compared with B-cell PTLD.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241259722"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/09636897241262992
Yueying Wang, Yi Ding, Chenchen Guo
Transplantation of mesenchymal stem cells (MSCs) is one of the hopeful treatments for spinal cord injury (SCI). Most current studies are in animals, and less in humans, and the optimal transplantation strategy for MSCs is still controversial. In this article, we explore the optimal transplantation strategy of MSCs through a network meta-analysis of the effects of MSCs on SCI in animal models. PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases were searched by computer for randomized controlled studies on MSCs for SCI. Two investigators independently completed the literature screening and data extraction based on the inclusion and exclusion criteria. RevMan 5.4 software was used to assess the quality of the included literature. Stata 16.0 software was used for standard meta-analysis and network meta-analysis. Standardized mean difference (SMD) was used for continuous variables to combine the statistics and calculate 95% confidence interval (95% CI). P < 0.05 was considered a statistically significant difference. Cochrane's Q test and the I2 value were used to indicate the magnitude of heterogeneity. A random-effects model was used if I2 > 50% and P < 0.10 indicated significant heterogeneity between studies, and conversely, a fixed-effects model was used. Evidence network diagrams were drawn based on direct comparisons between various interventions. The surface under the cumulative ranking curve area (SUCRA) was used to predict the ranking of the treatment effects of each intervention. A total of 32 animal studies were included in this article for analysis. The results of the standard meta-analysis showed that MSCs improved motor ability after SCI. The network meta-analysis showed that the best treatment effect was achieved for adipose tissue-derived mesenchymal stromal cells (ADMSCs) in terms of cell source and intrathecal (IT) in terms of transplantation modality. For transplantation timing, the best treatment effect was achieved when transplantation was performed in the subacute phase. The available literature suggests that IT transplantation using ADMSCs in the subacute phase may be the best transplantation strategy to improve functional impairment after SCI. Future high-quality studies are still needed to further validate the results of this study to ensure the reliability of the results.
{"title":"Mesenchymal Stem Cells for the Treatment of Spinal Cord Injury in Rat Models: A Systematic Review and Network Meta-Analysis.","authors":"Yueying Wang, Yi Ding, Chenchen Guo","doi":"10.1177/09636897241262992","DOIUrl":"10.1177/09636897241262992","url":null,"abstract":"<p><p>Transplantation of mesenchymal stem cells (MSCs) is one of the hopeful treatments for spinal cord injury (SCI). Most current studies are in animals, and less in humans, and the optimal transplantation strategy for MSCs is still controversial. In this article, we explore the optimal transplantation strategy of MSCs through a network meta-analysis of the effects of MSCs on SCI in animal models. PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases were searched by computer for randomized controlled studies on MSCs for SCI. Two investigators independently completed the literature screening and data extraction based on the inclusion and exclusion criteria. RevMan 5.4 software was used to assess the quality of the included literature. Stata 16.0 software was used for standard meta-analysis and network meta-analysis. Standardized mean difference (SMD) was used for continuous variables to combine the statistics and calculate 95% confidence interval (95% CI). <i>P</i> < 0.05 was considered a statistically significant difference. Cochrane's <i>Q</i> test and the <i>I</i><sup>2</sup> value were used to indicate the magnitude of heterogeneity. A random-effects model was used if <i>I</i><sup>2</sup> > 50% and <i>P</i> < 0.10 indicated significant heterogeneity between studies, and conversely, a fixed-effects model was used. Evidence network diagrams were drawn based on direct comparisons between various interventions. The surface under the cumulative ranking curve area (SUCRA) was used to predict the ranking of the treatment effects of each intervention. A total of 32 animal studies were included in this article for analysis. The results of the standard meta-analysis showed that MSCs improved motor ability after SCI. The network meta-analysis showed that the best treatment effect was achieved for adipose tissue-derived mesenchymal stromal cells (ADMSCs) in terms of cell source and intrathecal (IT) in terms of transplantation modality. For transplantation timing, the best treatment effect was achieved when transplantation was performed in the subacute phase. The available literature suggests that IT transplantation using ADMSCs in the subacute phase may be the best transplantation strategy to improve functional impairment after SCI. Future high-quality studies are still needed to further validate the results of this study to ensure the reliability of the results.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241262992"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}