ABSTARCTIn this study, Lactarius deliciosus biomass was used as a biosorbent for the biosorption of three tetracycline antibiotics, chlortetracycline (CTC), doxycycline (DC), and tetracycline (TC), from aqueous solution. The biomass was characterized by Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of biosorbent amount (0.01–0.1g), pH (3.0–8.0), initial antibiotic concentration (30–300 mg/L for CTC and DC, and 5–50 mg/L for TC), contact time (2–120 min), and temperature (7 °C, 16 °C, 25 °C) were investigated. The maximum biosorption amount of CTC, DC, and TC was 216.4 ± 4.2 mg/g (pH 4.0), 121.2 ± 6.2 mg/g (pH 3.0), and 23.2 ± 2.1 mg/g (pH 7.0) at 25 °C, respectively. The biosorption amount of tetracyclines decreased with increasing temperature demonstrating that the biosorption processes were exothermic. The biosorptions of tetracyclines were favorable with negative ΔG° values for all temperatures. CTC and DC biosorption processes were well fitted to the pseudo-second-order kinetic and Freundlich isotherm models. TC biosorption data obeyed the pseudo-first-order kinetic model. Tap and drinking water samples spiked with tetracyclines were used as real samples for biosorption. The results showed that L. deliciosus biomass could be effectively used as a biosorbent for tetracycline antibiotics with high adsorption capacities.Keywords: BiosorptionbiomassLactarius deliciosusremovaltetracyclinesthermodynamic Disclosure statementThe authors confirm that this article content has no conflict of interest.Data availabilityThe authors declare that the data supporting the findings of this study are available within the paper and supporting information.Additional informationFundingThis work was supported by the Research Foundation of Bursa Uludag University (Project No: FHIZ-2021-590).
{"title":"Biosorption of tetracycline antibiotics by <i>Lactarius deliciosus</i> biomass","authors":"Aslı Göçenoğlu Sarıkaya, Bilgen Osman, Elif Tümay Özer","doi":"10.1080/00986445.2023.2266684","DOIUrl":"https://doi.org/10.1080/00986445.2023.2266684","url":null,"abstract":"ABSTARCTIn this study, Lactarius deliciosus biomass was used as a biosorbent for the biosorption of three tetracycline antibiotics, chlortetracycline (CTC), doxycycline (DC), and tetracycline (TC), from aqueous solution. The biomass was characterized by Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of biosorbent amount (0.01–0.1g), pH (3.0–8.0), initial antibiotic concentration (30–300 mg/L for CTC and DC, and 5–50 mg/L for TC), contact time (2–120 min), and temperature (7 °C, 16 °C, 25 °C) were investigated. The maximum biosorption amount of CTC, DC, and TC was 216.4 ± 4.2 mg/g (pH 4.0), 121.2 ± 6.2 mg/g (pH 3.0), and 23.2 ± 2.1 mg/g (pH 7.0) at 25 °C, respectively. The biosorption amount of tetracyclines decreased with increasing temperature demonstrating that the biosorption processes were exothermic. The biosorptions of tetracyclines were favorable with negative ΔG° values for all temperatures. CTC and DC biosorption processes were well fitted to the pseudo-second-order kinetic and Freundlich isotherm models. TC biosorption data obeyed the pseudo-first-order kinetic model. Tap and drinking water samples spiked with tetracyclines were used as real samples for biosorption. The results showed that L. deliciosus biomass could be effectively used as a biosorbent for tetracycline antibiotics with high adsorption capacities.Keywords: BiosorptionbiomassLactarius deliciosusremovaltetracyclinesthermodynamic Disclosure statementThe authors confirm that this article content has no conflict of interest.Data availabilityThe authors declare that the data supporting the findings of this study are available within the paper and supporting information.Additional informationFundingThis work was supported by the Research Foundation of Bursa Uludag University (Project No: FHIZ-2021-590).","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136353055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1080/00986445.2023.2266677
Betul Tuba Gemici
AbstractThe present study investigated crystal violet removal by modifying the chestnut shell with a chemical activation method. For this purpose, H2SO4 and NaOH pretreatments were applied to the chestnut shell and the pretreatment method that gave the best performance under the same conditions was determined. The best adsorption efficiency was achieved with the NaOH pretreatment (99.06%) and the crystal violet adsorption reached equilibrium within 60 min. After selecting the best chemical activation method, the modified chestnut shell was characterized before and after adsorption (FTIR and SEM). Furthermore, the effects of parameters such as pH, initial crystal violet concentration, adsorbent dosage, temperature, and contact time were observed. Moreover, isotherm, kinetics and thermodynamics of the adsorption process were researched in detail. The best results were obtained with the Langmuir isotherm model (R2=0.99) and the pseudo-second-order kinetic model (R2=0.99). Thermodynamic parameters showed that the adsorption process is spontaneous, endothermic and feasible.Keywords: Adsorptioncrystal violetisothermkineticsmodified chestnut shellthermodynamic Authors’ contributionsB.T.G. conducted all the experiments and data analyses and prepared original draft.Disclosure statementThe author declares that there is no conflict of interest.
{"title":"Crystal violet adsorption onto modified biosorbent prepared from agricultural waste: kinetics, isotherm and thermodynamic studies","authors":"Betul Tuba Gemici","doi":"10.1080/00986445.2023.2266677","DOIUrl":"https://doi.org/10.1080/00986445.2023.2266677","url":null,"abstract":"AbstractThe present study investigated crystal violet removal by modifying the chestnut shell with a chemical activation method. For this purpose, H2SO4 and NaOH pretreatments were applied to the chestnut shell and the pretreatment method that gave the best performance under the same conditions was determined. The best adsorption efficiency was achieved with the NaOH pretreatment (99.06%) and the crystal violet adsorption reached equilibrium within 60 min. After selecting the best chemical activation method, the modified chestnut shell was characterized before and after adsorption (FTIR and SEM). Furthermore, the effects of parameters such as pH, initial crystal violet concentration, adsorbent dosage, temperature, and contact time were observed. Moreover, isotherm, kinetics and thermodynamics of the adsorption process were researched in detail. The best results were obtained with the Langmuir isotherm model (R2=0.99) and the pseudo-second-order kinetic model (R2=0.99). Thermodynamic parameters showed that the adsorption process is spontaneous, endothermic and feasible.Keywords: Adsorptioncrystal violetisothermkineticsmodified chestnut shellthermodynamic Authors’ contributionsB.T.G. conducted all the experiments and data analyses and prepared original draft.Disclosure statementThe author declares that there is no conflict of interest.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136352734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.1080/00986445.2023.2255530
Afia Abida Sultana, Md. Habibur Rahman, Md. Tuhinur R. Joy, Shahed Rana, Javed Masood Khan, Dileep Kumar, Anis Ahmad, Md. Anamul Hoque, Mohammad Majibur Rahman, Shariff E. Kabir
AbstractInteractions between sodium dodecyl sulfate (SDS) and sodium alginate (NaAlg) in aq. salts/hydrotrope (HDT) media have been investigated using conductivity method with changing the micellar parameters (e.g., critical micelles concentration (CMC), extent of micelle ionization (α), and bound counterions (β)) and thermodynamics of the micellization of SDS + NaAlg mixtures. CMC values and α were assessed from the plots of conductivity versus [SDS]. The micellization of SDS + NaAlg was enhanced in aq. electrolyte and aq. HDTs media. The formation of SDS + NaAlg micelles was found to happen delayed with an increase in temperature in water and aq. 10% (w/w) glycerol (GLY) solution, while in other employed solvents, micelle creation was observed to favor with an upsurge of working temperature. Thermodynamics of SDS + NaAlg mixtures were computed from temperature dependency of CMC. The values of ΔG0m were found negative for all the experiments, thereby, examined. The values of ΔHm0 in the micellization of SDS + NaAlg mixtures in H2O, H2O + sodium acetate (NaOAc), H2O + sodium benzoate (NaBenz), and H2O + 4-amino benzoic acid (4-ABA) media were observed positive, and, hence, the process was endothermic in these solvents. Micellization of SDS + NaAlg was exothermic in 10% (w/w) glycerol (GLY) solutions at all temperatures and in H2O + NaCl at 298.15 and 303.15 K. The values of ΔHm0 and ΔSm0 for SDS + NaAlg show that the hydrophobic, van der Waals and exothermic interactions are the driving forces between SDS and NaAlg in electrolytes and HDT media.Keywords: CMChydrophobic interactionhydrotropessodium alginatesodium dodecyl sulfatethermodynamics Data availability statementOur data are provided as electronic supplementary material.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingResearchers Supporting Project number (RSP2023R360), King Saud University, Riyadh, Saudi Arabia.
{"title":"Interaction of sodium alginate biopolymer with sodium dodecyl sulfate in aqueous medium and different additive solutions at several temperatures","authors":"Afia Abida Sultana, Md. Habibur Rahman, Md. Tuhinur R. Joy, Shahed Rana, Javed Masood Khan, Dileep Kumar, Anis Ahmad, Md. Anamul Hoque, Mohammad Majibur Rahman, Shariff E. Kabir","doi":"10.1080/00986445.2023.2255530","DOIUrl":"https://doi.org/10.1080/00986445.2023.2255530","url":null,"abstract":"AbstractInteractions between sodium dodecyl sulfate (SDS) and sodium alginate (NaAlg) in aq. salts/hydrotrope (HDT) media have been investigated using conductivity method with changing the micellar parameters (e.g., critical micelles concentration (CMC), extent of micelle ionization (α), and bound counterions (β)) and thermodynamics of the micellization of SDS + NaAlg mixtures. CMC values and α were assessed from the plots of conductivity versus [SDS]. The micellization of SDS + NaAlg was enhanced in aq. electrolyte and aq. HDTs media. The formation of SDS + NaAlg micelles was found to happen delayed with an increase in temperature in water and aq. 10% (w/w) glycerol (GLY) solution, while in other employed solvents, micelle creation was observed to favor with an upsurge of working temperature. Thermodynamics of SDS + NaAlg mixtures were computed from temperature dependency of CMC. The values of ΔG0m were found negative for all the experiments, thereby, examined. The values of ΔHm0 in the micellization of SDS + NaAlg mixtures in H2O, H2O + sodium acetate (NaOAc), H2O + sodium benzoate (NaBenz), and H2O + 4-amino benzoic acid (4-ABA) media were observed positive, and, hence, the process was endothermic in these solvents. Micellization of SDS + NaAlg was exothermic in 10% (w/w) glycerol (GLY) solutions at all temperatures and in H2O + NaCl at 298.15 and 303.15 K. The values of ΔHm0 and ΔSm0 for SDS + NaAlg show that the hydrophobic, van der Waals and exothermic interactions are the driving forces between SDS and NaAlg in electrolytes and HDT media.Keywords: CMChydrophobic interactionhydrotropessodium alginatesodium dodecyl sulfatethermodynamics Data availability statementOur data are provided as electronic supplementary material.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingResearchers Supporting Project number (RSP2023R360), King Saud University, Riyadh, Saudi Arabia.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136248784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1080/00986445.2023.2261105
Johan Michelson, Päivi Mäki-Arvela, Pasi Rajala, Markus Hallapuro, Daniel Schmid, Oskar Karlström, Johan Wärnå, Dmitry Yu Murzin
AbstractCO2 capture experiments were carried out in a small-scale bubble column reactor using alkaline solutions of sodium hydroxide. The results of the experiments show that a higher NaOH content in the liquid phase and elevated CO2 concentrations in the gas mixture led to a higher CO2 removal efficiency. A mathematical model was developed to describe the CO2 absorption as a function of CO2 gas inlet and OH- concentrations at low CO2 and OH- concentrations. The CO2 uptake at high OH- concentrations (high pH) was accurately predicted by the model, whereas the CO2 uptake at lower OH- concentrations could not be predicted with the same accuracy.Keywords: CO2 removalNaOHabsorption isothermpH dependencemodellingbubble column Disclosure statementNo potential conflict of interest was reported by the authors.
{"title":"Modeling of a bubble column for CO <sub>2</sub> removal by absorption with NaOH","authors":"Johan Michelson, Päivi Mäki-Arvela, Pasi Rajala, Markus Hallapuro, Daniel Schmid, Oskar Karlström, Johan Wärnå, Dmitry Yu Murzin","doi":"10.1080/00986445.2023.2261105","DOIUrl":"https://doi.org/10.1080/00986445.2023.2261105","url":null,"abstract":"AbstractCO2 capture experiments were carried out in a small-scale bubble column reactor using alkaline solutions of sodium hydroxide. The results of the experiments show that a higher NaOH content in the liquid phase and elevated CO2 concentrations in the gas mixture led to a higher CO2 removal efficiency. A mathematical model was developed to describe the CO2 absorption as a function of CO2 gas inlet and OH- concentrations at low CO2 and OH- concentrations. The CO2 uptake at high OH- concentrations (high pH) was accurately predicted by the model, whereas the CO2 uptake at lower OH- concentrations could not be predicted with the same accuracy.Keywords: CO2 removalNaOHabsorption isothermpH dependencemodellingbubble column Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135425096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1080/00986445.2023.2261099
Yvonne Maphosa, Daniel I. Ikhu-Omoregbe, Oladayo Adeyi, Victoria A. Jideani
AbstractNanocomposites are a promising material for the stabilization and rheology modification of food emulsions due to their unique physicochemical properties. The effects of storage time and temperature on the rheological and stability properties of Bambara groundnut starch-soluble dietary fiber nanocomposite (STASOL) stabilized emulsions were evaluated. Emulsions were formulated with orange oil (30%), water (50%) and STASOL (20%). The backscattering profile of emulsions stored at 5 and 45 °C showed the least and most separation between scans, respectively. On day 20, the emulsions stored at 45 °C had completely separated into two layers. The viscosity of emulsions stored at 20 and 45 °C decreased after the third day while that of emulsions stored at 5 °C had significantly (p < 0.05) decreased after nine days. Time and temperature both played a major role in the destabilization of emulsions, with those stored at 5 and 45 °C showing the least and most destabilization over time, respectively.Keywords: Bambara groundnutemulsionsnanocompositerheologystability Authors’ contributionsYvonne Maphosa: conceived and designed the experiments; performed the experiments; analyzed and interpreted the data; authored the paper. Daniel Ikhu-Omoregbe: conceived and designed the engineering experiments; interpreted the data; proofread the paper. Oladayo Adeyi: conceived and designed the engineering experiments; interpreted the data; authored part of the paper. Victoria Jideani: conceived and designed the experiments; analyzed and interpreted the data; contributed reagents, materials and analysis tools.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported by the South African National Research Foundation, the Cape Peninsula University of Technology Vice Chancellor’s Fund and the Cape Peninsula University of Technology Research Fund.
{"title":"Effect of storage time and temperature on the stability and rheological properties of starch-soluble dietary fiber nanocomposite stabilized emulsion","authors":"Yvonne Maphosa, Daniel I. Ikhu-Omoregbe, Oladayo Adeyi, Victoria A. Jideani","doi":"10.1080/00986445.2023.2261099","DOIUrl":"https://doi.org/10.1080/00986445.2023.2261099","url":null,"abstract":"AbstractNanocomposites are a promising material for the stabilization and rheology modification of food emulsions due to their unique physicochemical properties. The effects of storage time and temperature on the rheological and stability properties of Bambara groundnut starch-soluble dietary fiber nanocomposite (STASOL) stabilized emulsions were evaluated. Emulsions were formulated with orange oil (30%), water (50%) and STASOL (20%). The backscattering profile of emulsions stored at 5 and 45 °C showed the least and most separation between scans, respectively. On day 20, the emulsions stored at 45 °C had completely separated into two layers. The viscosity of emulsions stored at 20 and 45 °C decreased after the third day while that of emulsions stored at 5 °C had significantly (p < 0.05) decreased after nine days. Time and temperature both played a major role in the destabilization of emulsions, with those stored at 5 and 45 °C showing the least and most destabilization over time, respectively.Keywords: Bambara groundnutemulsionsnanocompositerheologystability Authors’ contributionsYvonne Maphosa: conceived and designed the experiments; performed the experiments; analyzed and interpreted the data; authored the paper. Daniel Ikhu-Omoregbe: conceived and designed the engineering experiments; interpreted the data; proofread the paper. Oladayo Adeyi: conceived and designed the engineering experiments; interpreted the data; authored part of the paper. Victoria Jideani: conceived and designed the experiments; analyzed and interpreted the data; contributed reagents, materials and analysis tools.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported by the South African National Research Foundation, the Cape Peninsula University of Technology Vice Chancellor’s Fund and the Cape Peninsula University of Technology Research Fund.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135424956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-27DOI: 10.1080/00986445.2023.2261100
Hengzhi Chen, Wangyang Zou
AbstractBubble behavior in a vacuum fluidized bed was investigated in this work. Experimental results showed that bubble diameter and rise velocity increased with declining the pressure, whereas bubble density decreased. The evolution of bubble density with bed height could be divided into three stages on the basis of the corresponding net-coalescence rates. The decrease in bubble density in the bottom region accelerated as the pressure decreased, whereas the increase in bubble density in the top region was gentle. Increasing the vacuum degree enlarged the variation in bubble size, resulting in the decline of operating stability in the fluidized bed. A new correlation that considered the effect of operating pressure on bubble behaviors exhibited accurate prediction in the vacuum fluidized bed. Bubble velocity was proportional to bubble diameter for small bubbles, and bed structure obviously affected the rise velocity of large bubbles. The distribution of the bubble aspect ratio was positively skewed and many bubbles had a tendency to become slender as the operating pressure decreased.Keywords: Bubble behaviorcoalescence ratedigital image processingvacuum fluidized bed Disclosure statementNo potential conflict of interest was reported by the authors.
{"title":"Bubble behavior in a vacuum fluidized bed","authors":"Hengzhi Chen, Wangyang Zou","doi":"10.1080/00986445.2023.2261100","DOIUrl":"https://doi.org/10.1080/00986445.2023.2261100","url":null,"abstract":"AbstractBubble behavior in a vacuum fluidized bed was investigated in this work. Experimental results showed that bubble diameter and rise velocity increased with declining the pressure, whereas bubble density decreased. The evolution of bubble density with bed height could be divided into three stages on the basis of the corresponding net-coalescence rates. The decrease in bubble density in the bottom region accelerated as the pressure decreased, whereas the increase in bubble density in the top region was gentle. Increasing the vacuum degree enlarged the variation in bubble size, resulting in the decline of operating stability in the fluidized bed. A new correlation that considered the effect of operating pressure on bubble behaviors exhibited accurate prediction in the vacuum fluidized bed. Bubble velocity was proportional to bubble diameter for small bubbles, and bed structure obviously affected the rise velocity of large bubbles. The distribution of the bubble aspect ratio was positively skewed and many bubbles had a tendency to become slender as the operating pressure decreased.Keywords: Bubble behaviorcoalescence ratedigital image processingvacuum fluidized bed Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135538603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1080/00986445.2023.2255533
Qing-Zhou Zhai
AbstractIn order to study the adsorption effect of peanut shell as adsorbent on dye wastewater in industry, the optimum adsorption conditions of peanut shell for methylene blue were explored in this article. The decolorized peanut shell was activated by zinc chloride and the adsorption rate of methylene blue dye was improved. Through the research of different conditions such as pH value, contact time, adsorption temperature, initial dye concentration and adsorbent dosage, the optimal adsorption conditions of methylene blue dye were obtained. The adsorption effect achieved was the best at pH 10. Kinetics, thermodynamics, adsorption isotherm properties of the adsorption of methylene blue onto the peanut shell activated by zinc chloride were studied. The adsorption satisfied the Freundlich isothermal adsorption equation and the adsorption process was exothermic. The present adsorption system is a heterogeneous adsorption. The adsorption of methylene blue onto peanut shell accorded with a quasi-second-order adsorption kinetics. This adsorption was a physicochemical adsorption. Finally, the involved adsorption materials prepared were characterized by scanning electron microscopy, X-ray diffraction and infrared spectroscopy. This method can effectively adsorb the methylene blue pollutants in water and solves the problem of the environmental pollution caused by the direct discharge of dye wastewater, which has certain economic and social benefits.Keywords: Adsorptionisothermkinetic propertymethylene bluepeanutshellthermodynamic propertyzinc chloride modification Availability of data and materialsThe datasets used or analyzed during the current study are available from the corresponding author on reasonable request.Authors’ contributionQ.-Z. Zhai conceived and designed the experiments. The experiments were performed by Q.-Z. Zhai. Data was analyzed by Q.-Z. Zhai. The manuscript was written by Q.-Z. Zhai. The manuscript was reviewed and corrected by Q.-Z. Zhai.Consent for publicationAll authors have read this manuscript and consent for publication.Disclosure statementThe authors declare no competing interests.Additional informationFundingThe authors thank the financial support “Research on the Adsorption of Water and Soil Pollutants Heavy Metals and Harmful Dyes by Waste Tea and Peanut Shell” by the Natural Science Foundation of Jilin Provincial Science and Technology Department from the Science and Technology Development Program of Jilin Province, China (20220101096JC/611220683029/KYC-JC-XM-2022−111).
{"title":"Study on adsorption of methylene blue by modified peanut shell: adsorption kinetics, thermodynamics, isotherm properties","authors":"Qing-Zhou Zhai","doi":"10.1080/00986445.2023.2255533","DOIUrl":"https://doi.org/10.1080/00986445.2023.2255533","url":null,"abstract":"AbstractIn order to study the adsorption effect of peanut shell as adsorbent on dye wastewater in industry, the optimum adsorption conditions of peanut shell for methylene blue were explored in this article. The decolorized peanut shell was activated by zinc chloride and the adsorption rate of methylene blue dye was improved. Through the research of different conditions such as pH value, contact time, adsorption temperature, initial dye concentration and adsorbent dosage, the optimal adsorption conditions of methylene blue dye were obtained. The adsorption effect achieved was the best at pH 10. Kinetics, thermodynamics, adsorption isotherm properties of the adsorption of methylene blue onto the peanut shell activated by zinc chloride were studied. The adsorption satisfied the Freundlich isothermal adsorption equation and the adsorption process was exothermic. The present adsorption system is a heterogeneous adsorption. The adsorption of methylene blue onto peanut shell accorded with a quasi-second-order adsorption kinetics. This adsorption was a physicochemical adsorption. Finally, the involved adsorption materials prepared were characterized by scanning electron microscopy, X-ray diffraction and infrared spectroscopy. This method can effectively adsorb the methylene blue pollutants in water and solves the problem of the environmental pollution caused by the direct discharge of dye wastewater, which has certain economic and social benefits.Keywords: Adsorptionisothermkinetic propertymethylene bluepeanutshellthermodynamic propertyzinc chloride modification Availability of data and materialsThe datasets used or analyzed during the current study are available from the corresponding author on reasonable request.Authors’ contributionQ.-Z. Zhai conceived and designed the experiments. The experiments were performed by Q.-Z. Zhai. Data was analyzed by Q.-Z. Zhai. The manuscript was written by Q.-Z. Zhai. The manuscript was reviewed and corrected by Q.-Z. Zhai.Consent for publicationAll authors have read this manuscript and consent for publication.Disclosure statementThe authors declare no competing interests.Additional informationFundingThe authors thank the financial support “Research on the Adsorption of Water and Soil Pollutants Heavy Metals and Harmful Dyes by Waste Tea and Peanut Shell” by the Natural Science Foundation of Jilin Provincial Science and Technology Department from the Science and Technology Development Program of Jilin Province, China (20220101096JC/611220683029/KYC-JC-XM-2022−111).","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The extraction of curcuminoids [curcumin (C21H20O6, CUR), demethoxycurcumin (C20H18O5, DMC), and bisdemethoxycurcumin (C19H16O4, BDMC)] from Curcuma longa rhizomes was investigated using an aqueous two-phase system (ATPS) with ethanol/salt. The optimized conditions for the extraction process were determined by a central composite design to be an ethanol concentration of 13.6%, an ammonium sulfate concentration of 33.2%, and a temperature of 66.8 °C. Under these conditions, the highest yield of 97.9% was achieved, accompanied by a notable antioxidant activity of 84.38%. The experimental data exhibited good agreement with a second-order kinetic model, as confirmed by the evaluation of the coefficient of determination (R2), normalized standard deviation, and average relative error.
{"title":"Curcuminoid extraction from rhizomes of <i>Curcuma longa</i> via aqueous two phases system","authors":"Pinutta Kasemwattanarot, Naphaphan Kunthakudee, Boonta Chutvirasakul, Prakorn Ramakul","doi":"10.1080/00986445.2023.2253159","DOIUrl":"https://doi.org/10.1080/00986445.2023.2253159","url":null,"abstract":"The extraction of curcuminoids [curcumin (C21H20O6, CUR), demethoxycurcumin (C20H18O5, DMC), and bisdemethoxycurcumin (C19H16O4, BDMC)] from Curcuma longa rhizomes was investigated using an aqueous two-phase system (ATPS) with ethanol/salt. The optimized conditions for the extraction process were determined by a central composite design to be an ethanol concentration of 13.6%, an ammonium sulfate concentration of 33.2%, and a temperature of 66.8 °C. Under these conditions, the highest yield of 97.9% was achieved, accompanied by a notable antioxidant activity of 84.38%. The experimental data exhibited good agreement with a second-order kinetic model, as confirmed by the evaluation of the coefficient of determination (R2), normalized standard deviation, and average relative error.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}