Pub Date : 2024-10-18DOI: 10.1038/s41419-024-07153-z
Zhixin Huang, Ying Li, Yan Qian, Ertao Zhai, Zeyu Zhao, Tianhao Zhang, Yinan Liu, Linying Ye, Ran Wei, Risheng Zhao, Zikang Li, Zhi Liang, Shirong Cai, Jianhui Chen
Gastric cancer (GC) is one of the most lethal malignancies worldwide. Despite extensive efforts to develop novel therapeutic targets, effective drugs for GC remain limited. Recent studies have indicated that Lipocalin (LCN)2 abnormalities significantly impact GC progression; however, its regulatory network remains unclear. Our study investigates the functional role and regulatory mechanism of action of LCN2 in GC progression. We observed a positive correlation between LCN2 expression, lower GC grade, and better prognosis in patients with GC. LCN2 overexpression suppressed GC proliferation and metastasis both in vitro and in vivo. Transcriptome sequencing identified secreted protein acidic and rich in cysteine (SPARC) as a pivotal downstream target of LCN2. Mechanistically, c-Jun acted as a transcription factor inducing SPARC expression, and LCN2 downregulated SPARC by inhibiting the JNK/c-Jun pathway. Moreover, LCN2 bound to its receptor, 24p3R, via autocrine signaling, which directly inhibited JNK phosphorylation and then inhibited the JNK/c-Jun pathway. Finally, analysis of clinical data demonstrated that SPARC expression correlated negatively with lower GC grade and better prognosis, and that LCN2 expression correlated negatively with p-JNK, c-Jun, and SPARC expression in GC. These findings suggest that the LCN2/24p3R/JNK/c-Jun/SPARC axis is crucial in the malignant progression of GC, offering novel prognostic markers and therapeutic targets.
{"title":"Tumor-secreted LCN2 impairs gastric cancer progression via autocrine inhibition of the 24p3R/JNK/c-Jun/SPARC axis.","authors":"Zhixin Huang, Ying Li, Yan Qian, Ertao Zhai, Zeyu Zhao, Tianhao Zhang, Yinan Liu, Linying Ye, Ran Wei, Risheng Zhao, Zikang Li, Zhi Liang, Shirong Cai, Jianhui Chen","doi":"10.1038/s41419-024-07153-z","DOIUrl":"10.1038/s41419-024-07153-z","url":null,"abstract":"<p><p>Gastric cancer (GC) is one of the most lethal malignancies worldwide. Despite extensive efforts to develop novel therapeutic targets, effective drugs for GC remain limited. Recent studies have indicated that Lipocalin (LCN)2 abnormalities significantly impact GC progression; however, its regulatory network remains unclear. Our study investigates the functional role and regulatory mechanism of action of LCN2 in GC progression. We observed a positive correlation between LCN2 expression, lower GC grade, and better prognosis in patients with GC. LCN2 overexpression suppressed GC proliferation and metastasis both in vitro and in vivo. Transcriptome sequencing identified secreted protein acidic and rich in cysteine (SPARC) as a pivotal downstream target of LCN2. Mechanistically, c-Jun acted as a transcription factor inducing SPARC expression, and LCN2 downregulated SPARC by inhibiting the JNK/c-Jun pathway. Moreover, LCN2 bound to its receptor, 24p3R, via autocrine signaling, which directly inhibited JNK phosphorylation and then inhibited the JNK/c-Jun pathway. Finally, analysis of clinical data demonstrated that SPARC expression correlated negatively with lower GC grade and better prognosis, and that LCN2 expression correlated negatively with p-JNK, c-Jun, and SPARC expression in GC. These findings suggest that the LCN2/24p3R/JNK/c-Jun/SPARC axis is crucial in the malignant progression of GC, offering novel prognostic markers and therapeutic targets.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"756"},"PeriodicalIF":8.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41419-024-07135-1
Ssu-Yu Chen, Jianli Wu, Yubin Chen, Ya-En Wang, Yasaman Setayeshpour, Chiara Federico, Alexander A Mestre, Chao-Chieh Lin, Jen-Tsan Chi
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
{"title":"NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation.","authors":"Ssu-Yu Chen, Jianli Wu, Yubin Chen, Ya-En Wang, Yasaman Setayeshpour, Chiara Federico, Alexander A Mestre, Chao-Chieh Lin, Jen-Tsan Chi","doi":"10.1038/s41419-024-07135-1","DOIUrl":"10.1038/s41419-024-07135-1","url":null,"abstract":"<p><p>Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"755"},"PeriodicalIF":8.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41419-024-07146-y
Yeonhee Cho, Zhongzheng Cao, Xin Luo, Jennifer J Tian, Renee R Hukkanen, Rajaa Hussien, Belinda Cancilla, Priyanka Chowdhury, Fei Li, Shining Ma, Edward L LaGory, Mark Schroeder, Amanda Dusenberry, Leslie Marshall, Jenn Hawkins, Menno van Lookeren Campagne, Yi Zhou
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by disrupted epidermal barrier function and aberrant immune responses. Despite recent developments in new therapeutics for AD, there is still a large unmet medical need for disease management due to the complex and multifactorial nature of AD. Recent genome-wide association studies (GWAS) have identified NLRP10 as a susceptible gene for AD but the physiological role of NLRP10 in skin homeostasis and AD remains unknown. Here we show that NLRP10 is downregulated in AD skin samples. Using an air-lift human skin equivalent culture, we demonstrate that NLRP10 promotes keratinocyte survival and is required for epidermal differentiation and barrier function. Mechanistically, NLRP10 limits cell death by preventing the recruitment of caspase-8 to the death inducing signaling complex (DISC) and by inhibiting its subsequent activation. NLRP10 also stabilizes p63, the master regulator of keratinocyte differentiation, to drive proper keratinocyte differentiation and to reinforce the barrier function. Our findings underscore NLRP10 as a key player in atopic dermatitis pathogenesis, highlighting NLRP10 as a potential target for therapeutic intervention to restore skin barrier function and homeostasis in AD.
特应性皮炎(AD)是一种常见的慢性炎症性皮肤病,其特点是表皮屏障功能紊乱和免疫反应异常。尽管最近在特应性皮炎新疗法方面取得了进展,但由于特应性皮炎的复杂性和多因素性,在疾病管理方面仍有大量医疗需求未得到满足。最近的全基因组关联研究(GWAS)发现 NLRP10 是 AD 的易感基因,但 NLRP10 在皮肤稳态和 AD 中的生理作用仍然未知。在这里,我们发现 NLRP10 在 AD 皮肤样本中下调。通过气提人体皮肤等效培养,我们证明了 NLRP10 能促进角质形成细胞的存活,并且是表皮分化和屏障功能所必需的。从机理上讲,NLRP10通过阻止caspase-8招募到死亡诱导信号复合体(DISC)并抑制其随后的激活来限制细胞死亡。NLRP10 还能稳定角质形成细胞分化的主调控因子 p63,从而推动角质形成细胞的正常分化并加强屏障功能。我们的研究结果表明,NLRP10是特应性皮炎发病机制中的一个关键角色,并强调NLRP10是治疗干预的一个潜在靶点,可用于恢复AD的皮肤屏障功能和平衡。
{"title":"NLRP10 maintains epidermal homeostasis by promoting keratinocyte survival and P63-dependent differentiation and barrier function.","authors":"Yeonhee Cho, Zhongzheng Cao, Xin Luo, Jennifer J Tian, Renee R Hukkanen, Rajaa Hussien, Belinda Cancilla, Priyanka Chowdhury, Fei Li, Shining Ma, Edward L LaGory, Mark Schroeder, Amanda Dusenberry, Leslie Marshall, Jenn Hawkins, Menno van Lookeren Campagne, Yi Zhou","doi":"10.1038/s41419-024-07146-y","DOIUrl":"10.1038/s41419-024-07146-y","url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by disrupted epidermal barrier function and aberrant immune responses. Despite recent developments in new therapeutics for AD, there is still a large unmet medical need for disease management due to the complex and multifactorial nature of AD. Recent genome-wide association studies (GWAS) have identified NLRP10 as a susceptible gene for AD but the physiological role of NLRP10 in skin homeostasis and AD remains unknown. Here we show that NLRP10 is downregulated in AD skin samples. Using an air-lift human skin equivalent culture, we demonstrate that NLRP10 promotes keratinocyte survival and is required for epidermal differentiation and barrier function. Mechanistically, NLRP10 limits cell death by preventing the recruitment of caspase-8 to the death inducing signaling complex (DISC) and by inhibiting its subsequent activation. NLRP10 also stabilizes p63, the master regulator of keratinocyte differentiation, to drive proper keratinocyte differentiation and to reinforce the barrier function. Our findings underscore NLRP10 as a key player in atopic dermatitis pathogenesis, highlighting NLRP10 as a potential target for therapeutic intervention to restore skin barrier function and homeostasis in AD.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"759"},"PeriodicalIF":8.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41419-024-07145-z
Maoxiao Feng, Qinlian Jiao, Yidan Ren, Xiaoyan Liu, Zihan Gao, Zhengjun Li, Yunshan Wang, Miaoqing Zhao, Lei Bi
Pancreatic ductal adenocarcinoma (PDAC) is a common malignant tumor of the digestive tract. Although gemcitabine and other therapeutic agents are effective in patients with advanced and metastatic pancreatic cancer, drug resistance has severely limited their use. However, the mechanisms of gemcitabine resistance in pancreatic cancer are poorly understood. In this study, ATAC-seq, ChIP-seq, and RNA-seq were performed to compare chromatin accessibility and gene expression in a patient-derived tumor xenograft (PDX) model of pancreatic cancer with or without gemcitabine resistance. Analyzing these sequencing data, we found a dramatic change in chromatin accessibility in the PDX model of gemcitabine-resistant tissues and identified a key gene, UBR7, which plays an important role in mediating gemcitabine resistance. Further research found that depletion of UBR7 significantly increased pancreatic carcinogenesis and the immunosuppressive microenvironment. Mechanistically, depleted UBR7 increased the stability of PRMT5, thereby promoting glycolysis in pancreatic cancer cells. Finally, an inhibitor that blocks PRMT5 (DS-437) significantly reduced gemcitabine resistance in pancreatic cancer caused by UBR7 depletion. In conclusion, our results illustrate that the UBR7-PRMT5 axis is a key metabolic regulator of PDAC and a promising target for the clinical treatment of gemcitabine resistance in PDAC.
{"title":"The interaction between UBR7 and PRMT5 drives PDAC resistance to gemcitabine by regulating glycolysis and immune microenvironment.","authors":"Maoxiao Feng, Qinlian Jiao, Yidan Ren, Xiaoyan Liu, Zihan Gao, Zhengjun Li, Yunshan Wang, Miaoqing Zhao, Lei Bi","doi":"10.1038/s41419-024-07145-z","DOIUrl":"https://doi.org/10.1038/s41419-024-07145-z","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a common malignant tumor of the digestive tract. Although gemcitabine and other therapeutic agents are effective in patients with advanced and metastatic pancreatic cancer, drug resistance has severely limited their use. However, the mechanisms of gemcitabine resistance in pancreatic cancer are poorly understood. In this study, ATAC-seq, ChIP-seq, and RNA-seq were performed to compare chromatin accessibility and gene expression in a patient-derived tumor xenograft (PDX) model of pancreatic cancer with or without gemcitabine resistance. Analyzing these sequencing data, we found a dramatic change in chromatin accessibility in the PDX model of gemcitabine-resistant tissues and identified a key gene, UBR7, which plays an important role in mediating gemcitabine resistance. Further research found that depletion of UBR7 significantly increased pancreatic carcinogenesis and the immunosuppressive microenvironment. Mechanistically, depleted UBR7 increased the stability of PRMT5, thereby promoting glycolysis in pancreatic cancer cells. Finally, an inhibitor that blocks PRMT5 (DS-437) significantly reduced gemcitabine resistance in pancreatic cancer caused by UBR7 depletion. In conclusion, our results illustrate that the UBR7-PRMT5 axis is a key metabolic regulator of PDAC and a promising target for the clinical treatment of gemcitabine resistance in PDAC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"758"},"PeriodicalIF":8.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroRNAs, including the tumor-suppressor miR-126 and the oncogene miR-221, regulate tumor formation and growth in colitis-associated cancer (CAC) and colorectal cancer (CRC). This study explores the impact of the epithelial cytokine heparin-binding epidermal growth factor (HB-EGF) and its receptor epidermal growth factor receptor (EGFR) on the pathogenesis of CAC and CRC, particularly in the regulation of microRNA-driven tumor growth and protease expression. In murine models of CRC and CAC, lack of miR-126 and elevated miR-221 expression in colonic tissues enhanced tumor formation and growth. MiR-126 downregulation in colon cells established a pro-tumorigenic proteolytic niche by targeting HB-EGF-active metalloproteinase-7, -9 (MMP7/MMP9), disintegrin, and metalloproteinase domain-containing protein 9, and modulating chemokine-mediated recruitment of HB-EGF-loaded inflammatory cells. Mechanistically, downregulation of HB-EGF and EGFR in the colon suppressed miR-221 and enhanced miR-126 expression via activating enhancer-binding protein 2 alpha. Reintroducing miR-126 reduced tumor development and HB-EGF expression. Combining miR-126 reintroduction, which targets specific HB-EGF-active proteases but not ADAM17, with MMP inhibitors like Batimastat or Marimastat effectively suppressed tumor growth. This combination normalized protease expression and balanced miR-126 and miR-221 levels in developing and growing tumors. These findings demonstrate that suppressing HB-EGF and EGFR1 shifts the balance from oncogenic miR-221 to tumor-suppressive miR-126 action. Consequently, normalizing miR-126 expression could open new avenues for treating patients with CAC and CRC, and this normalization is intertwined with the anticancer efficacy of MMP inhibitors.
{"title":"Heparin-binding EGF-like growth factor via miR-126 controls tumor formation/growth and the proteolytic niche in murine models of colorectal and colitis-associated cancers.","authors":"Yousef Salama, Shinya Munakata, Taro Osada, Satoshi Takahashi, Koichi Hattori, Beate Heissig","doi":"10.1038/s41419-024-07126-2","DOIUrl":"https://doi.org/10.1038/s41419-024-07126-2","url":null,"abstract":"<p><p>MicroRNAs, including the tumor-suppressor miR-126 and the oncogene miR-221, regulate tumor formation and growth in colitis-associated cancer (CAC) and colorectal cancer (CRC). This study explores the impact of the epithelial cytokine heparin-binding epidermal growth factor (HB-EGF) and its receptor epidermal growth factor receptor (EGFR) on the pathogenesis of CAC and CRC, particularly in the regulation of microRNA-driven tumor growth and protease expression. In murine models of CRC and CAC, lack of miR-126 and elevated miR-221 expression in colonic tissues enhanced tumor formation and growth. MiR-126 downregulation in colon cells established a pro-tumorigenic proteolytic niche by targeting HB-EGF-active metalloproteinase-7, -9 (MMP7/MMP9), disintegrin, and metalloproteinase domain-containing protein 9, and modulating chemokine-mediated recruitment of HB-EGF-loaded inflammatory cells. Mechanistically, downregulation of HB-EGF and EGFR in the colon suppressed miR-221 and enhanced miR-126 expression via activating enhancer-binding protein 2 alpha. Reintroducing miR-126 reduced tumor development and HB-EGF expression. Combining miR-126 reintroduction, which targets specific HB-EGF-active proteases but not ADAM17, with MMP inhibitors like Batimastat or Marimastat effectively suppressed tumor growth. This combination normalized protease expression and balanced miR-126 and miR-221 levels in developing and growing tumors. These findings demonstrate that suppressing HB-EGF and EGFR1 shifts the balance from oncogenic miR-221 to tumor-suppressive miR-126 action. Consequently, normalizing miR-126 expression could open new avenues for treating patients with CAC and CRC, and this normalization is intertwined with the anticancer efficacy of MMP inhibitors.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"753"},"PeriodicalIF":8.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s41419-024-07124-4
Lucia Iannotta, Rachel Fasiczka, Giulia Favetta, Yibo Zhao, Elena Giusto, Elena Dall'Ara, Jianning Wei, Franz Y Ho, Claudia Ciriani, Susanna Cogo, Isabella Tessari, Ciro Iaccarino, Maxime Liberelle, Luigi Bubacco, Jean-Marc Taymans, Claudia Manzoni, Arjan Kortholt, Laura Civiero, Sabine Hilfiker, Michael L Lu, Elisa Greggio
P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins. Here, to gain more insights into PAK6 physiological function, we performed protein-protein interaction arrays and identified a subgroup of PAK6 binders related to ciliogenesis. We confirmed that endogenous PAK6 localizes at both the centrosome and the cilium, and positively regulates ciliogenesis not only in tumor cells but also in neurons and astrocytes. Notably, PAK6 rescues ciliogenesis and centrosomal cohesion defects associated with the G2019S but not the R1441C LRRK2 PD mutation. Since PAK6 binds LRRK2 via its GTPase/Roc-COR domain and the R1441C mutation is located in the Roc domain, we used microscale thermophoresis and AlphaFold2-based computational analysis to demonstrate that PD mutations in LRRK2 affecting the Roc-COR structure substantially decrease PAK6 affinity, providing a rationale for the differential protective effect of PAK6 toward the distinct forms of mutant LRRK2. Altogether, our study discloses a novel role of PAK6 in ciliogenesis and points to PAK6 as the first LRRK2 modifier with PD mutation-specificity.
{"title":"PAK6 rescues pathogenic LRRK2-mediated ciliogenesis and centrosomal cohesion defects in a mutation-specific manner.","authors":"Lucia Iannotta, Rachel Fasiczka, Giulia Favetta, Yibo Zhao, Elena Giusto, Elena Dall'Ara, Jianning Wei, Franz Y Ho, Claudia Ciriani, Susanna Cogo, Isabella Tessari, Ciro Iaccarino, Maxime Liberelle, Luigi Bubacco, Jean-Marc Taymans, Claudia Manzoni, Arjan Kortholt, Laura Civiero, Sabine Hilfiker, Michael L Lu, Elisa Greggio","doi":"10.1038/s41419-024-07124-4","DOIUrl":"https://doi.org/10.1038/s41419-024-07124-4","url":null,"abstract":"<p><p>P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins. Here, to gain more insights into PAK6 physiological function, we performed protein-protein interaction arrays and identified a subgroup of PAK6 binders related to ciliogenesis. We confirmed that endogenous PAK6 localizes at both the centrosome and the cilium, and positively regulates ciliogenesis not only in tumor cells but also in neurons and astrocytes. Notably, PAK6 rescues ciliogenesis and centrosomal cohesion defects associated with the G2019S but not the R1441C LRRK2 PD mutation. Since PAK6 binds LRRK2 via its GTPase/Roc-COR domain and the R1441C mutation is located in the Roc domain, we used microscale thermophoresis and AlphaFold2-based computational analysis to demonstrate that PD mutations in LRRK2 affecting the Roc-COR structure substantially decrease PAK6 affinity, providing a rationale for the differential protective effect of PAK6 toward the distinct forms of mutant LRRK2. Altogether, our study discloses a novel role of PAK6 in ciliogenesis and points to PAK6 as the first LRRK2 modifier with PD mutation-specificity.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"752"},"PeriodicalIF":8.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1038/s41419-024-07140-4
Mahesh Tambe, Sarah Unterberger, Mette C Kriegbaum, Ida Vänttinen, Ezgi June Olgac, Markus Vähä-Koskela, Mika Kontro, Krister Wennerberg, Caroline A Heckman
Venetoclax plus azacitidine treatment is clinically beneficial for elderly and unfit acute myeloid leukemia (AML) patients. However, the treatment is rarely curative, and relapse due to resistant disease eventually emerges. Since no current clinically feasible treatments are known to be effective at the state of acquired venetoclax resistance, this is becoming a major challenge in AML treatment. Studying venetoclax-resistant AML cell lines, we observed that venetoclax induced sublethal apoptotic signaling and DNA damage even though cell survival and growth were unaffected. This effect could be due to venetoclax inducing a sublethal degree of mitochondrial outer membrane permeabilization. Based on these results, we hypothesized that the sublethal apoptotic signaling induced by venetoclax could constitute a vulnerability in venetoclax-resistant AML cells. This was supported by screens with a broad collection of drugs, where we observed a synergistic effect between venetoclax and PARP inhibition in venetoclax-resistant cells. Additionally, the venetoclax-PARP inhibitor combination prevented the acquisition of venetoclax resistance in treatment naïve AML cell lines. Furthermore, the addition of azacitidine to the venetoclax-PARP inhibitor combination enhanced venetoclax induced DNA damage and exhibited exceptional sensitivity and long-term responses in the venetoclax-resistant AML cell lines and samples from AML patients that had clinically relapsed under venetoclax-azacitidine therapy. In conclusion, we mechanistically identify a new vulnerability in acquired venetoclax-resistant AML cells and identify PARP inhibition as a potential therapeutic approach to overcome acquired venetoclax resistance in AML.
Venetoclax 加阿扎胞苷治疗对老年和体质不佳的急性髓性白血病(AML)患者有临床疗效。然而,该疗法很少能治愈疾病,最终会出现因耐药而复发的情况。由于目前临床上尚无对获得性venetoclax耐药有效的治疗方法,这已成为急性髓性白血病治疗中的一大挑战。在研究对 venetoclax 产生耐药性的 AML 细胞系时,我们观察到,尽管细胞的存活和生长未受影响,但 venetoclax 会诱导亚致死性细胞凋亡信号传导和 DNA 损伤。这种效应可能是由于 Venetoclax 诱导了亚致死程度的线粒体外膜通透。基于这些结果,我们推测,venetoclax 诱导的亚致死性凋亡信号转导可能是耐venetoclax 的 AML 细胞的一个弱点。这一点得到了多种药物筛选的支持,我们观察到 venetoclax 和 PARP 抑制剂对 venetoclax 耐药细胞有协同作用。此外,venetoclax-PARP 抑制剂组合还能防止治疗幼稚的 AML 细胞系产生 venetoclax 耐药性。此外,在 Venetoclax-PARP 抑制剂组合中加入阿扎胞苷,可增强 Venetoclax 诱导的 DNA 损伤,并在 Venetoclax 耐药的 AML 细胞系和接受 Venetoclax-azacitidine 治疗后临床复发的 AML 患者样本中显示出卓越的敏感性和长期反应。总之,我们从机理上确定了获得性 Venetoclax 耐药 AML 细胞的新弱点,并将 PARP 抑制确定为克服 AML 获得性 Venetoclax 耐药的潜在治疗方法。
{"title":"Venetoclax triggers sublethal apoptotic signaling in venetoclax-resistant acute myeloid leukemia cells and induces vulnerability to PARP inhibition and azacitidine.","authors":"Mahesh Tambe, Sarah Unterberger, Mette C Kriegbaum, Ida Vänttinen, Ezgi June Olgac, Markus Vähä-Koskela, Mika Kontro, Krister Wennerberg, Caroline A Heckman","doi":"10.1038/s41419-024-07140-4","DOIUrl":"10.1038/s41419-024-07140-4","url":null,"abstract":"<p><p>Venetoclax plus azacitidine treatment is clinically beneficial for elderly and unfit acute myeloid leukemia (AML) patients. However, the treatment is rarely curative, and relapse due to resistant disease eventually emerges. Since no current clinically feasible treatments are known to be effective at the state of acquired venetoclax resistance, this is becoming a major challenge in AML treatment. Studying venetoclax-resistant AML cell lines, we observed that venetoclax induced sublethal apoptotic signaling and DNA damage even though cell survival and growth were unaffected. This effect could be due to venetoclax inducing a sublethal degree of mitochondrial outer membrane permeabilization. Based on these results, we hypothesized that the sublethal apoptotic signaling induced by venetoclax could constitute a vulnerability in venetoclax-resistant AML cells. This was supported by screens with a broad collection of drugs, where we observed a synergistic effect between venetoclax and PARP inhibition in venetoclax-resistant cells. Additionally, the venetoclax-PARP inhibitor combination prevented the acquisition of venetoclax resistance in treatment naïve AML cell lines. Furthermore, the addition of azacitidine to the venetoclax-PARP inhibitor combination enhanced venetoclax induced DNA damage and exhibited exceptional sensitivity and long-term responses in the venetoclax-resistant AML cell lines and samples from AML patients that had clinically relapsed under venetoclax-azacitidine therapy. In conclusion, we mechanistically identify a new vulnerability in acquired venetoclax-resistant AML cells and identify PARP inhibition as a potential therapeutic approach to overcome acquired venetoclax resistance in AML.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"750"},"PeriodicalIF":8.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1038/s41419-024-07133-3
Maureen Labbé, Manon Chang, Benjamin Saintpierre, Franck Letourneur, Laurence de Beaurepaire, Joëlle Véziers, Sophie Deshayes, Marine Cotinat, Jean-François Fonteneau, Christophe Blanquart, Vincent Potiron, Stéphane Supiot, Delphine Fradin
Radiotherapy represents a major curative treatment for prostate cancer (PCa), but some patients will develop radioresistance (RR) and relapse. The underlying mechanisms remain poorly understood, and miRNAs might be key players in the acquisition and maintenance of RR. Through their encapsulation in small extracellular vesicles (EVs), they can also be relevant biomarkers of radiation response. Using next-generation sequencing, we found that miR-200c-3p was downregulated in PCa RR cells and in their small EVs due to a gain of methylation on its promoter during RR acquisition. We next showed that its exogenous overexpression restores the radiosensitivity of RR cells by delaying DNA repair through the targeting of HP1α. Interestingly, we also observed downregulation of miR-200c-3p expression by DNA methylation in radiation-resistant lung and breast cancer cell lines. In summary, our study demonstrates that the downregulation of miR-200c-3p expression in PCa cells and in their small EVs could help distinguish radioresistant from sensitive tumor cells. This miRNA targets HP1α to delay DNA repair and promote cell death.
{"title":"Loss of miR-200c-3p promotes resistance to radiation therapy via the DNA repair pathway in prostate cancer.","authors":"Maureen Labbé, Manon Chang, Benjamin Saintpierre, Franck Letourneur, Laurence de Beaurepaire, Joëlle Véziers, Sophie Deshayes, Marine Cotinat, Jean-François Fonteneau, Christophe Blanquart, Vincent Potiron, Stéphane Supiot, Delphine Fradin","doi":"10.1038/s41419-024-07133-3","DOIUrl":"10.1038/s41419-024-07133-3","url":null,"abstract":"<p><p>Radiotherapy represents a major curative treatment for prostate cancer (PCa), but some patients will develop radioresistance (RR) and relapse. The underlying mechanisms remain poorly understood, and miRNAs might be key players in the acquisition and maintenance of RR. Through their encapsulation in small extracellular vesicles (EVs), they can also be relevant biomarkers of radiation response. Using next-generation sequencing, we found that miR-200c-3p was downregulated in PCa RR cells and in their small EVs due to a gain of methylation on its promoter during RR acquisition. We next showed that its exogenous overexpression restores the radiosensitivity of RR cells by delaying DNA repair through the targeting of HP1α. Interestingly, we also observed downregulation of miR-200c-3p expression by DNA methylation in radiation-resistant lung and breast cancer cell lines. In summary, our study demonstrates that the downregulation of miR-200c-3p expression in PCa cells and in their small EVs could help distinguish radioresistant from sensitive tumor cells. This miRNA targets HP1α to delay DNA repair and promote cell death.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"751"},"PeriodicalIF":8.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1038/s41419-024-07136-0
Rongfu Tu, Junpeng Ma, Yule Chen, Ye Kang, Doudou Ren, Zeqiong Cai, Ru Zhang, Yiwen Pan, Yijia Liu, Yanyan Da, Yao Xu, Yahuan Yu, Donghai Wang, Jingchao Wang, Yang Dong, Xinlan Lu, Chengsheng Zhang
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel Lindau (VHL) gene loss of function mutation, which leads to the accumulation of hypoxia-inducible factor 2α (HIF2α). HIF2α has been well-established as one of the major oncogenic drivers of ccRCC, however, its therapeutic targeting remains a challenge. Through an analysis of proteomic data from ccRCCs and adjacent non-tumor tissues, we herein revealed that Ubiquitin-Specific Peptidase 7 (USP7) was upregulated in tumor tissues, and its depletion by inhibitors or shRNAs caused significant suppression of tumor progression in vitro and in vivo. Mechanistically, USP7 expression is activated by the transcription factors FUBP1 and FUBP3, and it promotes tumor progression mainly by deubiquitinating and stabilizing HIF2α. Moreover, the combination of USP7 inhibitors and afatinib (an ERBB family inhibitor) coordinately induce cell death and tumor suppression. In mechanism, afatinib indirectly inhibits USP7 transcription and accelerates the degradation of HIF2α protein, and the combination of them caused a more profound suppression of HIF2α abundance. These findings reveal a FUBPs-USP7-HIF2α regulatory axis that underlies the progression of ccRCC and provides a rationale for therapeutic targeting of oncogenic HIF2α via combinational treatment of USP7 inhibitor and afatinib.
{"title":"USP7 depletion potentiates HIF2α degradation and inhibits clear cell renal cell carcinoma progression.","authors":"Rongfu Tu, Junpeng Ma, Yule Chen, Ye Kang, Doudou Ren, Zeqiong Cai, Ru Zhang, Yiwen Pan, Yijia Liu, Yanyan Da, Yao Xu, Yahuan Yu, Donghai Wang, Jingchao Wang, Yang Dong, Xinlan Lu, Chengsheng Zhang","doi":"10.1038/s41419-024-07136-0","DOIUrl":"https://doi.org/10.1038/s41419-024-07136-0","url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel Lindau (VHL) gene loss of function mutation, which leads to the accumulation of hypoxia-inducible factor 2α (HIF2α). HIF2α has been well-established as one of the major oncogenic drivers of ccRCC, however, its therapeutic targeting remains a challenge. Through an analysis of proteomic data from ccRCCs and adjacent non-tumor tissues, we herein revealed that Ubiquitin-Specific Peptidase 7 (USP7) was upregulated in tumor tissues, and its depletion by inhibitors or shRNAs caused significant suppression of tumor progression in vitro and in vivo. Mechanistically, USP7 expression is activated by the transcription factors FUBP1 and FUBP3, and it promotes tumor progression mainly by deubiquitinating and stabilizing HIF2α. Moreover, the combination of USP7 inhibitors and afatinib (an ERBB family inhibitor) coordinately induce cell death and tumor suppression. In mechanism, afatinib indirectly inhibits USP7 transcription and accelerates the degradation of HIF2α protein, and the combination of them caused a more profound suppression of HIF2α abundance. These findings reveal a FUBPs-USP7-HIF2α regulatory axis that underlies the progression of ccRCC and provides a rationale for therapeutic targeting of oncogenic HIF2α via combinational treatment of USP7 inhibitor and afatinib.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 10","pages":"749"},"PeriodicalIF":8.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}