首页 > 最新文献

ChemRxiv最新文献

英文 中文
Hydration Shell Water Surrounding Citrate-Stabilised Gold Nanoparticles 柠檬酸盐稳定金纳米粒子周围的水合壳水
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-1dchd
Martin, Rabe, Taritra, Mukherjee
Presence of gold nanoparticles in an aqueous dispersion perturbs water molecules in their vicinity. Such water molecules form what is known as hydration shell and possess different vibrational attributes than those in the bulk dispersion. Raman spectroscopy was utilised to study these hydration shell water molecules around citrate-stabilised gold nanoparticles. Aqueous dilution series of three sizes of gold nanoparticle samples were prepared. Hydration shell spectral response, recovered by applying multivariate curve resolution technique, were compared against the spectra of the bulk phase. Once correlated with an increasing aqueous content in the respective samples, it could be inferred from the comparison that the hydration shell contains a less extensive hydrogen-bonding network with a smaller number of hydrogen-bonding interactions being possible than that in bulk. The results also suggest the hydrogen-bonding network in the hydration shells to be structurally more rigid and stronger, if compared against the intermolecular hydrogen-bonding prevalent in bulk.
金纳米粒子在水分散体中的存在会扰动其附近的水分子。这些水分子形成了所谓的水合壳,并具有不同于分散体中水分子的振动属性。拉曼光谱被用来研究柠檬酸盐稳定金纳米粒子周围的水合壳水分子。制备了三种尺寸的金纳米粒子水稀释系列样品。应用多元曲线解析技术恢复的水合壳光谱响应与体相的光谱进行了比较。一旦与各样品中水溶液含量的增加相关联,就可以从比较中推断出水合壳包含的氢键网络范围较小,可能发生的氢键相互作用的数量也比体相少。结果还表明,如果与块体中普遍存在的分子间氢键作用相比,水合壳中的氢键网络在结构上更加坚硬和牢固。
{"title":"Hydration Shell Water Surrounding Citrate-Stabilised Gold Nanoparticles","authors":"Martin, Rabe, Taritra, Mukherjee","doi":"10.26434/chemrxiv-2024-1dchd","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-1dchd","url":null,"abstract":"Presence of gold nanoparticles in an aqueous dispersion perturbs water molecules in their vicinity. Such water molecules form what is known as hydration shell and possess different vibrational attributes than those in the bulk dispersion. Raman spectroscopy was utilised to study these hydration shell water molecules around citrate-stabilised gold nanoparticles. Aqueous dilution series of three sizes of gold nanoparticle samples were prepared. Hydration shell spectral response, recovered by applying multivariate curve resolution technique, were compared against the spectra of the bulk phase. Once correlated with an increasing aqueous content in the respective samples, it could be inferred from the comparison that the hydration shell contains a less extensive hydrogen-bonding network with a smaller number of hydrogen-bonding interactions being possible than that in bulk. The results also suggest the hydrogen-bonding network in the hydration shells to be structurally more rigid and stronger, if compared against the intermolecular hydrogen-bonding prevalent in bulk.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclease-resistant photo-responsive synthetic “double-stranded DNAzyme” 抗核酸酶光反应合成 "双链 DNA 酶"
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-0167h
Subinoy, Rana, Alisha, Kamra, Rohit, Kapila, Bhaskar, Sen
DNA nanotechnology has significantly progressed from basic structural designs to advanced practical applications. The inherent ability of DNA to assemble with small molecules has elevated it to the forefront of biological applications such as biosensing, bioimaging, altering cell behaviour, and therapeutic delivery. Deoxyribozymes (DNAzymes) represent catalytically active DNA molecules, which are essential yet uncommon, making the fabrication of synthetic DNAzymes significant. However, a key challenge in employing DNAzyme nanostructures in biological settings is their susceptibility to degradation by nucleases in the biological milieu. Herein, we introduced a hierarchical assembly of DNA and guanidium containing Pt(II)-complex (Pt G) through supramolecular interactions that display significant resistance to nucleases in human serum. The one-dimensional growth of the supramolecular structures leads to metal-metal bonds that impart luminescence properties with long-lived excited states. Light-mediated singlet oxygen generated from the Pt G·DNA system allows the oxidation of substrates similar to oxidase enzymes. Besides a fundamental understanding of the new hierarchical assembly, the study presents important functional aspects, including the nuclease resistance, robustness, specific oxidase-like function and on-demand light stimulus-dependent activity for practical applications.
从基本结构设计到先进的实际应用,DNA 纳米技术取得了长足的进步。DNA 与小分子组装的固有能力将其提升到生物应用的前沿,如生物传感、生物成像、改变细胞行为和治疗递送。脱氧核糖核酸酶(DNAzymes)是具有催化活性的 DNA 分子,这种分子非常重要,但并不常见,因此制造合成 DNAzymes 意义重大。然而,在生物环境中使用 DNA 酶纳米结构的一个关键挑战是它们容易被生物环境中的核酸酶降解。在这里,我们介绍了一种通过超分子相互作用将DNA和含胍的铂(II)-络合物(铂G)分层组装的方法,这种方法对人血清中的核酸酶具有显著的抗性。超分子结构的一维生长产生了金属-金属键,从而赋予了长寿命激发态的发光特性。由 Pt G-DNA 系统产生的光介导的单线态氧可以使底物氧化,类似于氧化酶。除了从根本上了解新的分层组装外,该研究还介绍了重要的功能方面,包括抗核酸酶性、稳健性、类似于氧化酶的特异性功能,以及在实际应用中随需应变的光刺激活性。
{"title":"Nuclease-resistant photo-responsive synthetic “double-stranded DNAzyme”","authors":"Subinoy, Rana, Alisha, Kamra, Rohit, Kapila, Bhaskar, Sen","doi":"10.26434/chemrxiv-2024-0167h","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-0167h","url":null,"abstract":"DNA nanotechnology has significantly progressed from basic structural designs to advanced practical applications. The inherent ability of DNA to assemble with small molecules has elevated it to the forefront of biological applications such as biosensing, bioimaging, altering cell behaviour, and therapeutic delivery. Deoxyribozymes (DNAzymes) represent catalytically active DNA molecules, which are essential yet uncommon, making the fabrication of synthetic DNAzymes significant. However, a key challenge in employing DNAzyme nanostructures in biological settings is their susceptibility to degradation by nucleases in the biological milieu. Herein, we introduced a hierarchical assembly of DNA and guanidium containing Pt(II)-complex (Pt G) through supramolecular interactions that display significant resistance to nucleases in human serum. The one-dimensional growth of the supramolecular structures leads to metal-metal bonds that impart luminescence properties with long-lived excited states. Light-mediated singlet oxygen generated from the Pt G·DNA system allows the oxidation of substrates similar to oxidase enzymes. Besides a fundamental understanding of the new hierarchical assembly, the study presents important functional aspects, including the nuclease resistance, robustness, specific oxidase-like function and on-demand light stimulus-dependent activity for practical applications.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unprecedented Photoinduced-Electron-Transfer Probe with a Turn-ON Chemiluminescence Mode-of-Action 具有开启化学发光作用模式的前所未有的光诱导电子转移探针
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-vj8f6
Doron, Shabat, Maya, David, Sara, Gutkin, Raj V., Nithun, Muhammad, Jbara
PeT-based fluorescent probes were demonstrated to be powerful tools for detection and imaging, owing to their significant fluorescence enhancement in response to specific targets. While numerous examples of fluorescence-based PeT have been frequently reported, there is not even a single example of a PeT probe that operates via a chemiluminescence mode. Here we report the first PeT-based turn-on probe that acts via a chemiluminescent operation mode. We designed, synthesized, and evaluated a novel chemiluminescent probe, featuring a PeT-based turn-on mechanism. The probe consists of a phenoxy-1,2-dioxetane, linked to an azide unit that acts as a PeT quencher. Upon cycloaddition of a strained cycloalkyne with the azide, a triazole-dioxetane is formed, which undergoes relatively slow chemiexcitation, resulting in a measurement window with an exceptionally high signal-to-noise ratio (over 5000-fold). The PeT-dioxetane probe could effectively detect and image two model proteins labeled with strained cycloalkyne units (Myc-DBCO and Max-DBCO) through either NHS or maleimide conjugations. Comparative analysis shows that our PeT-based chemiluminescent probe significantly outperforms a commercially available fluorescent analog. We anticipate that the insights gained from this study will facilitate the development of additional chemiluminescent probes utilizing various PeT-quenching pathways.
基于 PeT 的荧光探针已被证明是检测和成像的强大工具,因为它们能显著增强对特定目标的荧光反应。虽然基于荧光的 PeT 的例子屡见报端,但通过化学发光模式工作的 PeT 探针却连一个例子都没有。在此,我们报告了首个通过化学发光工作模式工作的基于 PeT 的开启探针。我们设计、合成并评估了一种新型化学发光探针,其特点是基于 PeT 的开启机制。该探针由一个苯氧基-1,2-二氧杂环丁烷和一个叠氮化物单元组成,叠氮化物单元是一种 PeT 淬灭剂。当受约束环烷烃与叠氮化物发生环加成反应时,就会形成三唑-二氧杂环丁烷,其化学激发速度相对较慢,从而产生一个信噪比极高(超过 5000 倍)的测量窗口。PeT 二氧杂环丁烷探针通过 NHS 或马来酰亚胺共轭,可以有效地检测和成像两种用应变环炔单元(Myc-DBCO 和 Max-DBCO)标记的模型蛋白质。对比分析表明,我们基于 PeT 的化学发光探针明显优于市售的荧光类似物。我们预计,从这项研究中获得的启示将有助于开发更多利用各种 PeT 淬灭途径的化学发光探针。
{"title":"Unprecedented Photoinduced-Electron-Transfer Probe with a Turn-ON Chemiluminescence Mode-of-Action","authors":"Doron, Shabat, Maya, David, Sara, Gutkin, Raj V., Nithun, Muhammad, Jbara","doi":"10.26434/chemrxiv-2024-vj8f6","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-vj8f6","url":null,"abstract":"PeT-based fluorescent probes were demonstrated to be powerful tools for detection and imaging, owing to their significant fluorescence enhancement in response to specific targets. While numerous examples of fluorescence-based PeT have been frequently reported, there is not even a single example of a PeT probe that operates via a chemiluminescence mode. Here we report the first PeT-based turn-on probe that acts via a chemiluminescent operation mode. We designed, synthesized, and evaluated a novel chemiluminescent probe, featuring a PeT-based turn-on mechanism. The probe consists of a phenoxy-1,2-dioxetane, linked to an azide unit that acts as a PeT quencher. Upon cycloaddition of a strained cycloalkyne with the azide, a triazole-dioxetane is formed, which undergoes relatively slow chemiexcitation, resulting in a measurement window with an exceptionally high signal-to-noise ratio (over 5000-fold). The PeT-dioxetane probe could effectively detect and image two model proteins labeled with strained cycloalkyne units (Myc-DBCO and Max-DBCO) through either NHS or maleimide conjugations. Comparative analysis shows that our PeT-based chemiluminescent probe significantly outperforms a commercially available fluorescent analog. We anticipate that the insights gained from this study will facilitate the development of additional chemiluminescent probes utilizing various PeT-quenching pathways.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equilibrium and Non-equilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free Energy Calculations 用平衡和非平衡集合方法进行准确、精确和可重复的绝对结合自由能计算
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-sslzp-v2
Agastya Prakash, Bhati, Shunzhou, Wan, Peter V., Coveney
Free energy calculations for protein-ligand complexes have become widespread in recent years owing to several conceptual, methodological and technological advances. Central among these is the use of ensemble methods which permits accurate, precise and reproducible predictions and are necessary for uncertainty quantification. Absolute binding free energies (ABFEs) are challenging to predict using alchemical methods and their routine application in drug discovery has remained out of reach until now. Here, we apply ensemble alchemical ABFE methods to a large dataset comprising 219 ligand-protein complexes and obtain statistically robust results with high accuracy (< 1 kcal/mol). We compare equilibrium and non-equilibrium methods for ABFE predictions at large scale and provide a systematic critical assessment of each method. The equilibrium method is more accurate, precise, faster, computationally more cost-effective and requires a much simpler protocol, making it preferable for large scale and blind applications. We find that the calculated free energy distributions are non-normal and discuss the consequences. We recommend a definitive protocol to perform ABFE calculations optimally. Using this protocol, it is possible to perform thousands of ABFE calculations within a few hours on modern exascale machines.
近年来,由于在概念、方法和技术上的一些进步,蛋白质配体复合物的自由能计算已变得非常普遍。其中最重要的是集合方法的使用,它允许准确、精确和可重复的预测,是不确定性量化所必需的。使用炼金方法预测绝对结合自由能(ABFEs)具有挑战性,其在药物发现中的常规应用至今仍遥不可及。在这里,我们将集合炼金术 ABFE 方法应用于由 219 个配体-蛋白质复合物组成的大型数据集,并获得了统计稳健且准确度高(< 1 kcal/mol)的结果。我们比较了用于大规模 ABFE 预测的平衡和非平衡方法,并对每种方法进行了系统的批判性评估。平衡法更准确、精确、快速,计算成本效益更高,所需的协议也更简单,因此更适合大规模和盲应用。我们发现计算出的自由能分布是非正态分布,并讨论了其后果。我们建议采用一种明确的协议来优化 ABFE 计算。使用该协议,可以在现代超大规模机器上在几小时内完成数千次 ABFE 计算。
{"title":"Equilibrium and Non-equilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free Energy Calculations","authors":"Agastya Prakash, Bhati, Shunzhou, Wan, Peter V., Coveney","doi":"10.26434/chemrxiv-2024-sslzp-v2","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-sslzp-v2","url":null,"abstract":"Free energy calculations for protein-ligand complexes have become widespread in recent years owing to several conceptual, methodological and technological advances. Central among these is the use of ensemble methods which permits accurate, precise and reproducible predictions and are necessary for uncertainty quantification. Absolute binding free energies (ABFEs) are challenging to predict using alchemical methods and their routine application in drug discovery has remained out of reach until now. Here, we apply ensemble alchemical ABFE methods to a large dataset comprising 219 ligand-protein complexes and obtain statistically robust results with high accuracy (< 1 kcal/mol). We compare equilibrium and non-equilibrium methods for ABFE predictions at large scale and provide a systematic critical assessment of each method. The equilibrium method is more accurate, precise, faster, computationally more cost-effective and requires a much simpler protocol, making it preferable for large scale and blind applications. We find that the calculated free energy distributions are non-normal and discuss the consequences. We recommend a definitive protocol to perform ABFE calculations optimally. Using this protocol, it is possible to perform thousands of ABFE calculations within a few hours on modern exascale machines.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-selective antagonists acting at a stable cell-cell interface have the potential to induce signaling 在稳定的细胞-细胞界面上发挥作用的非选择性拮抗剂有可能诱导信号传导
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-9kfl4
John, Proudfoot
A model, based on receptor occupancy theory, for signaling due to receptor A and co-receptor B colocalization in the presence of a stable cell-cell interface reveals that a non-selective antagonist of receptor A with affinity for a receptor C on the trans-cell can induce as well as inhibit the signal due to A. As a result, assertion of selectivity for agents acting in such a system should be supported by measurement of signal when the co-receptor B is absent. For conditions where the co-receptor B is non-functional, the model reveals the potential to rescue function through bifunctional ligands, such as bispecific antibodies, antibody conjugates or even bifunctional tethered small molecules.
根据受体占位理论建立的受体 A 和共受体 B 共定位在稳定的细胞-细胞界面上产生信号的模型显示,对跨细胞上的受体 C 具有亲和力的受体 A 非选择性拮抗剂既能诱导也能抑制 A 产生的信号。对于共受体 B 无功能的情况,该模型揭示了通过双功能配体(如双特异性抗体、抗体共轭物或甚至双功能系链小分子)挽救功能的潜力。
{"title":"Non-selective antagonists acting at a stable cell-cell interface have the potential to induce signaling","authors":"John, Proudfoot","doi":"10.26434/chemrxiv-2024-9kfl4","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-9kfl4","url":null,"abstract":"A model, based on receptor occupancy theory, for signaling due to receptor A and co-receptor B colocalization in the presence of a stable cell-cell interface reveals that a non-selective antagonist of receptor A with affinity for a receptor C on the trans-cell can induce as well as inhibit the signal due to A. As a result, assertion of selectivity for agents acting in such a system should be supported by measurement of signal when the co-receptor B is absent. For conditions where the co-receptor B is non-functional, the model reveals the potential to rescue function through bifunctional ligands, such as bispecific antibodies, antibody conjugates or even bifunctional tethered small molecules.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemiluminescence signature arrays coupling with machine learning for Alzheimer’s disease serum diagnosis 化学发光特征阵列与机器学习相结合用于阿尔茨海默病血清诊断
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-vs1m9
Chongzhao, Ran, Biyue, Zhu, Yanbo, Li, Jing, Zhang, Jun, Yang, Shi, Kuang, Johnson, Wang, Shiqian, Shen, Xuan, Zhai, Jiajun, Xie, Astra, Yu
Tremendous efforts have been made to directly identify serum components using traditional omics approaches. However, several unmet medical needs persist, particularly for chronic diseases that lack reliable biomarkers. The subtle physicochemical abnormality of serum has been widely overlooked and currently lacks detection methods. Inspired by the bat echolocation mechanism, we proposed a chemiluminescence “echoes” approach to depict the disease-specific signatures in biofluids. Specifically, Alzheimer’s disease (AD) serums were used for proof-of-concept study. We first demonstrated the discrepancy in physicochemical properties between AD and healthy control (HC) serums. On this basis, we developed a simple, fast and versatile UNICODE (UNiversal Interaction of Chemiluminescence echOes for Disease Evaluation) array for AD diagnosis. By employing a "bat" probe (ADLumin-1), which generates chemiluminescence autonomously, and combined with a panel of “flag” molecules that enable “echo” formation, we were able to create distinct signatures for various serum components and subtle physicochemical environments. To develop an AD-specific UNICODE diagnosis, we screened a library of over 1000 small molecules, and identified 12 “flag” molecules (top-12) that optimally depict the differences between AD and HC serums. Finally, we used the top-12 array for AD diagnosis. By modeling the UNICODE signatures with seven machine learning methods, we successfully differentiated AD (n = 31) and HC (n = 37) serums, and our best model of random forest provided accuracy = 85.48%, precision = 85.00%, recall = 88.60%, f1 = 85.63%, and AUC = 90.24%. Our strategy could provide new insights into biofluid abnormality and prototype tools for developing liquid biopsy diagnoses for AD and other diseases.
在利用传统的全息方法直接鉴定血清成分方面,人们已经做出了巨大的努力。然而,一些尚未满足的医疗需求依然存在,尤其是缺乏可靠生物标志物的慢性疾病。血清中微妙的物理化学异常一直被广泛忽视,目前也缺乏检测方法。受蝙蝠回声定位机制的启发,我们提出了一种化学发光 "回声 "方法来描述生物液体中的疾病特异性特征。具体来说,我们使用阿尔茨海默病(AD)血清进行概念验证研究。我们首先证明了阿尔茨海默病(AD)血清与健康对照(HC)血清在理化性质上的差异。在此基础上,我们开发了一种用于诊断 AD 的简单、快速和多功能的 UNICODE(用于疾病评估的化学发光回声通用相互作用)阵列。通过使用能自主产生化学发光的 "蝙蝠 "探针(ADLumin-1),并结合能形成 "回声 "的 "标志 "分子,我们能够为各种血清成分和微妙的理化环境创建独特的特征。为了开发出针对 AD 的 UNICODE 诊断方法,我们筛选了一个包含 1000 多种小分子的库,并确定了 12 个 "标志 "分子(top-12),它们能最佳地描述 AD 血清和 HC 血清之间的差异。最后,我们将前 12 个分子阵列用于 AD 诊断。通过使用七种机器学习方法对UNICODE特征建模,我们成功地区分了AD(n = 31)和HC(n = 37)血清,最佳随机森林模型的准确率为85.48%,精确率为85.00%,召回率为88.60%,f1 = 85.63%,AUC = 90.24%。我们的策略可以为生物流体异常提供新的见解,并为开发针对AD和其他疾病的液体活检诊断原型工具提供新的思路。
{"title":"Chemiluminescence signature arrays coupling with machine learning for Alzheimer’s disease serum diagnosis","authors":"Chongzhao, Ran, Biyue, Zhu, Yanbo, Li, Jing, Zhang, Jun, Yang, Shi, Kuang, Johnson, Wang, Shiqian, Shen, Xuan, Zhai, Jiajun, Xie, Astra, Yu","doi":"10.26434/chemrxiv-2024-vs1m9","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-vs1m9","url":null,"abstract":"Tremendous efforts have been made to directly identify serum components using traditional omics approaches. However, several unmet medical needs persist, particularly for chronic diseases that lack reliable biomarkers. The subtle physicochemical abnormality of serum has been widely overlooked and currently lacks detection methods. Inspired by the bat echolocation mechanism, we proposed a chemiluminescence “echoes” approach to depict the disease-specific signatures in biofluids. Specifically, Alzheimer’s disease (AD) serums were used for proof-of-concept study. We first demonstrated the discrepancy in physicochemical properties between AD and healthy control (HC) serums. On this basis, we developed a simple, fast and versatile UNICODE (UNiversal Interaction of Chemiluminescence echOes for Disease Evaluation) array for AD diagnosis. By employing a \"bat\" probe (ADLumin-1), which generates chemiluminescence autonomously, and combined with a panel of “flag” molecules that enable “echo” formation, we were able to create distinct signatures for various serum components and subtle physicochemical environments. To develop an AD-specific UNICODE diagnosis, we screened a library of over 1000 small molecules, and identified 12 “flag” molecules (top-12) that optimally depict the differences between AD and HC serums. Finally, we used the top-12 array for AD diagnosis. By modeling the UNICODE signatures with seven machine learning methods, we successfully differentiated AD (n = 31) and HC (n = 37) serums, and our best model of random forest provided accuracy = 85.48%, precision = 85.00%, recall = 88.60%, f1 = 85.63%, and AUC = 90.24%. Our strategy could provide new insights into biofluid abnormality and prototype tools for developing liquid biopsy diagnoses for AD and other diseases.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Path Sampling with Enhanced Sampling for Rare-event Kinetics 针对罕见事件动力学的路径采样与增强采样相结合
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-qr6kv
Dhiman, Ray
Studying the kinetics of long-timescale rare events is a fundamental challenge in molecular simulation. To address this problem, we propose an integration of two different rare-event sampling philosophies: biased enhanced sampling and unbiased path sampling. Enhanced sampling methods e.g. metadynamics can facilitate enthalpic barrier crossing by applying an external bias potential. On the contrary, path sampling methods like weighted ensemble (WE) lack explicit mechanisms to overcome energetic barriers. However, they can accelerate the exploration of rugged free energy surfaces through trajectory resampling. We show that a judicious combination of the weighted ensemble with a metadynamics-like algorithm, can synergize the strengths and mitigate the deficiencies of path sampling and enhanced sampling approaches. The resulting integrated sampling (IS) algorithm improves the computational efficiency of calculating the kinetics of peptide conformational transitions, protein unfolding, and the dissociation of a ligand-receptor complex. Furthermore, the IS approach can direct sampling along the minimum free energy pathway even when the collective variable used for biasing is suboptimal. These advantages make the integrated sampling algorithm suitable for studying the kinetics of complex molecular systems of biological and pharmaceutical relevance.
研究长时间尺度罕见事件的动力学是分子模拟的一项基本挑战。为解决这一问题,我们提出了两种不同稀有事件采样理念的整合方案:有偏增强采样和无偏路径采样。增强采样方法(如元动力学)可通过应用外部偏置电势促进焓障穿越。相反,加权集合(WE)等路径采样方法缺乏克服能量障碍的明确机制。不过,它们可以通过轨迹重采样加速探索崎岖的自由能表面。我们的研究表明,将加权集合与类似于元动力学的算法明智地结合起来,可以协同路径采样和增强采样方法的优势并减轻它们的不足。由此产生的集成采样(IS)算法提高了计算肽构象转变、蛋白质解折和配体-受体复合物解离动力学的计算效率。此外,即使用于偏置的集合变量不理想,IS 方法也能引导采样沿着最小自由能路径进行。这些优势使集成采样算法适用于研究与生物和制药相关的复杂分子系统的动力学。
{"title":"Integrating Path Sampling with Enhanced Sampling for Rare-event Kinetics","authors":"Dhiman, Ray","doi":"10.26434/chemrxiv-2024-qr6kv","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-qr6kv","url":null,"abstract":"Studying the kinetics of long-timescale rare events is a fundamental challenge in molecular simulation. To address this problem, we propose an integration of two different rare-event sampling philosophies: biased enhanced sampling and unbiased path sampling. Enhanced sampling methods e.g. metadynamics can facilitate enthalpic barrier crossing by applying an external bias potential. On the contrary, path sampling methods like weighted ensemble (WE) lack explicit mechanisms to overcome energetic barriers. However, they can accelerate the exploration of rugged free energy surfaces through trajectory resampling. We show that a judicious combination of the weighted ensemble with a metadynamics-like algorithm, can synergize the strengths and mitigate the deficiencies of path sampling and enhanced sampling approaches. The resulting integrated sampling (IS) algorithm improves the computational efficiency of calculating the kinetics of peptide conformational transitions, protein unfolding, and the dissociation of a ligand-receptor complex. Furthermore, the IS approach can direct sampling along the minimum free energy pathway even when the collective variable used for biasing is suboptimal. These advantages make the integrated sampling algorithm suitable for studying the kinetics of complex molecular systems of biological and pharmaceutical relevance.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integral activity-based protein profiling (IABPP) method for higher throughput determination of protein target sensitivity to small molecules 基于整体活性的蛋白质剖析 (IABPP) 方法,用于高通量测定蛋白质靶点对小分子的敏感性
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-jg6bn
Vivian S., Lin, Aaron T., Wright, Stephen J., Callister, Leo J., Gorham, Gerard X., Lomas, Agne, Sveistyte, John T., Melchior, Priscila M., Lalli, Chathuri J., Kombala, Tong, Zhang, Vanessa L., Paurus
Activity-based protein profiling (ABPP) is a chemoproteomic technique that uses chemical probes to label active enzymes selectively and covalently in complex proteomes. Competitive ABPP, which involves treatment of the active proteome with an analyte of interest, is especially powerful for profiling how small molecules impact specific protein activities. Advances in higher throughput workflows have made it possible to generate extensive competitive ABPP data across various biological systems and treatments, making this approach highly appealing for characterizing shared and unique proteins affected by perturbations such as drug or chemical exposures. To use the competitive ABPP approach effectively to understand potential adverse effects of chemicals of concern, a wide range of concentrations may be needed, particularly for chemicals that may lack toxicity data. In this work, we present an integral competitive ABPP method that enables target sensitivity differentiation across a wide range of concentrations for the model organophosphate (OP), paraoxon. Using previously developed OP-ABPs, we optimized conditions for tandem mass tag (TMT) multiplexing of ABPP samples and compared conventional competitive ABPP involving discrete samples at various paraoxon concentrations with pooling of samples across that same concentration range. The results show that small vs. large differences in integral intensities for the competitive sample can be used to distinguish low vs. high sensitivity proteins, respectively, without increasing the overall number of samples. We envision the integral ABPP method will provides a means to screen diverse chemicals more rapidly to identify both highly sensitive and less sensitive protein targets.
基于活性的蛋白质分析(ABPP)是一种化学蛋白质组学技术,它利用化学探针在复杂的蛋白质组中选择性地共价标记活性酶。竞争性 ABPP 涉及用感兴趣的分析物处理活性蛋白质组,特别适用于分析小分子如何影响特定蛋白质的活性。高通量工作流程的进步使得在各种生物系统和处理过程中生成大量竞争性 ABPP 数据成为可能,从而使这种方法在表征受药物或化学暴露等扰动影响的共有和独特蛋白质方面极具吸引力。要有效利用竞争性 ABPP 方法了解相关化学品的潜在不良影响,可能需要广泛的浓度范围,尤其是对于可能缺乏毒性数据的化学品。在这项研究中,我们提出了一种整体竞争性 ABPP 方法,它能在广泛的浓度范围内区分有机磷(OP)模型--对氧磷(paraoxon)的目标敏感性。利用之前开发的 OP-ABP,我们优化了 ABPP 样品串联质量标签 (TMT) 多路复用的条件,并比较了在不同的对羟基苯甲酸酯浓度下采用离散样品的传统竞争性 ABPP 与在相同浓度范围内采用集合样品的 ABPP。结果表明,竞争样本积分强度的微小差异与较大差异可分别用于区分低灵敏度与高灵敏度蛋白质,而无需增加样本总数。我们设想 ABPP 积分法将为更快速地筛选各种化学物质提供一种手段,以识别高灵敏度和低灵敏度的蛋白质靶标。
{"title":"An integral activity-based protein profiling (IABPP) method for higher throughput determination of protein target sensitivity to small molecules","authors":"Vivian S., Lin, Aaron T., Wright, Stephen J., Callister, Leo J., Gorham, Gerard X., Lomas, Agne, Sveistyte, John T., Melchior, Priscila M., Lalli, Chathuri J., Kombala, Tong, Zhang, Vanessa L., Paurus","doi":"10.26434/chemrxiv-2024-jg6bn","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-jg6bn","url":null,"abstract":"Activity-based protein profiling (ABPP) is a chemoproteomic technique that uses chemical probes to label active enzymes selectively and covalently in complex proteomes. Competitive ABPP, which involves treatment of the active proteome with an analyte of interest, is especially powerful for profiling how small molecules impact specific protein activities. Advances in higher throughput workflows have made it possible to generate extensive competitive ABPP data across various biological systems and treatments, making this approach highly appealing for characterizing shared and unique proteins affected by perturbations such as drug or chemical exposures. To use the competitive ABPP approach effectively to understand potential adverse effects of chemicals of concern, a wide range of concentrations may be needed, particularly for chemicals that may lack toxicity data. In this work, we present an integral competitive ABPP method that enables target sensitivity differentiation across a wide range of concentrations for the model organophosphate (OP), paraoxon. Using previously developed OP-ABPs, we optimized conditions for tandem mass tag (TMT) multiplexing of ABPP samples and compared conventional competitive ABPP involving discrete samples at various paraoxon concentrations with pooling of samples across that same concentration range. The results show that small vs. large differences in integral intensities for the competitive sample can be used to distinguish low vs. high sensitivity proteins, respectively, without increasing the overall number of samples. We envision the integral ABPP method will provides a means to screen diverse chemicals more rapidly to identify both highly sensitive and less sensitive protein targets.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Determinants of Optical Modulation in ssDNA-Carbon Nanotube Biosensors: Insights from Experimental and Computational Approaches ssDNA-碳纳米管生物传感器中光学调制的分子决定因素:实验和计算方法的启示
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-8k2q2
Abraham, Beyene, Andrew, Krasley, Sayantani, Chakraborty, Lela, Vukovic
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-strand DNA functionalized single-walled carbon nanotubes (ssDNA-SWCNT) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we used a combination of experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA-SWCNT catecholamine sensors, the optical response correlates positively with electron density on the aryl motif, even when ligand binding affinities are similar. These findings could serve as a foundation for tuning the performance of existing sensors and guiding the development of new biosensors of this class.
大多数传统的光学生物传感器都是通过分子识别来工作的,配体结合会引起构象变化,从而导致发射图案的光学扰动。由单链 DNA 功能化单壁碳纳米管(ssDNA-SWCNT)开发的光学传感器已开始为生物研究做出有益的贡献。然而,人们对其功能的基本机制仍然知之甚少。在这项研究中,我们结合使用了实验和计算方法,结果表明在这类合成生物传感器中,仅靠配体结合不足以实现光学调制。相反,配体结合后产生的光学响应高度依赖于配体的化学特性,这与基于活性的生物传感器的机制相似。具体来说,我们发现在 ssDNA-SWCNT 儿茶酚胺传感器中,即使配体的结合亲和力相似,光学响应也与芳基基团上的电子密度呈正相关。这些发现可作为调整现有传感器性能的基础,并指导开发此类新型生物传感器。
{"title":"Molecular Determinants of Optical Modulation in ssDNA-Carbon Nanotube Biosensors: Insights from Experimental and Computational Approaches","authors":"Abraham, Beyene, Andrew, Krasley, Sayantani, Chakraborty, Lela, Vukovic","doi":"10.26434/chemrxiv-2024-8k2q2","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-8k2q2","url":null,"abstract":"Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-strand DNA functionalized single-walled carbon nanotubes (ssDNA-SWCNT) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we used a combination of experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA-SWCNT catecholamine sensors, the optical response correlates positively with electron density on the aryl motif, even when ligand binding affinities are similar. These findings could serve as a foundation for tuning the performance of existing sensors and guiding the development of new biosensors of this class.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergetic hydrogen-bond network of functionalized graphene and cations for enhanced atmospheric water capture 功能化石墨烯与阳离子的协同氢键网络,用于增强大气水捕获能力
Pub Date : 2024-09-18 DOI: 10.26434/chemrxiv-2024-m9f3h-v2
Rakesh, Joshi, Xiaojun, Ren, Xiao, Sui, Llewellyn, Owens, Dali, Ji, Xinyue, Wen, Yuta, Nishina, Kamal , Pant, Vanesa, Quintano, Daria , Andreeva, Kostya, Novoselov, Amir, Karton, Tobias, Foller, Daisuke, Asanoma
Water molecules at the solid-liquid interface display intricate behaviours sensitive to small changes. The presence of different interfacial components, such as cations or functional groups, shape the physical and chemical properties of the hydrogen bond network. Understanding such interfacial hydrogen-bond networks is essential for a large range of applications and scientific questions. To probe the interfacial hydrogen-bond network, atmospheric water capture is a powerful tool. Here, we experimentally observe that a calcium ion on a calcium-intercalated graphene oxide aerogel (Ca-GOA) surface captures 3.2 times more water molecules than in its freestanding state. From experimental Van’t Hoff estimation and density functional theory (DFT) calculations, we uncover the synergistically enhanced hydrogen-bond network of the calcium ion-epoxide complex due to significantly larger polarizations and hydrogen bond enthalpies. This study reveals valuable insights into the interfacial water hydrogen-bond network on functionalized carbon-cation complexed surfaces and potential pathways for future atmospheric water generation technologies.
固液界面上的水分子对微小变化非常敏感,表现出错综复杂的行为。不同界面成分(如阳离子或官能团)的存在会影响氢键网络的物理和化学性质。了解这种界面氢键网络对于解决大量应用和科学问题至关重要。要探究界面氢键网络,大气水捕获是一个强有力的工具。在这里,我们通过实验观察到,钙离子在钙离子互结氧化石墨烯气凝胶(Ca-GOA)表面捕获的水分子是其独立状态下的 3.2 倍。通过 Van't Hoff 实验估算和密度泛函理论 (DFT) 计算,我们发现钙离子-环氧化物复合物的氢键网络因极化和氢键焓显著增大而协同增强。这项研究揭示了功能化碳阳离子络合物表面的界面水氢键网络以及未来大气制水技术的潜在途径。
{"title":"Synergetic hydrogen-bond network of functionalized graphene and cations for enhanced atmospheric water capture","authors":"Rakesh, Joshi, Xiaojun, Ren, Xiao, Sui, Llewellyn, Owens, Dali, Ji, Xinyue, Wen, Yuta, Nishina, Kamal , Pant, Vanesa, Quintano, Daria , Andreeva, Kostya, Novoselov, Amir, Karton, Tobias, Foller, Daisuke, Asanoma","doi":"10.26434/chemrxiv-2024-m9f3h-v2","DOIUrl":"https://doi.org/10.26434/chemrxiv-2024-m9f3h-v2","url":null,"abstract":"Water molecules at the solid-liquid interface display intricate behaviours sensitive to small changes. The presence of different interfacial components, such as cations or functional groups, shape the physical and chemical properties of the hydrogen bond network. Understanding such interfacial hydrogen-bond networks is essential for a large range of applications and scientific questions. To probe the interfacial hydrogen-bond network, atmospheric water capture is a powerful tool. Here, we experimentally observe that a calcium ion on a calcium-intercalated graphene oxide aerogel (Ca-GOA) surface captures 3.2 times more water molecules than in its freestanding state. From experimental Van’t Hoff estimation and density functional theory (DFT) calculations, we uncover the synergistically enhanced hydrogen-bond network of the calcium ion-epoxide complex due to significantly larger polarizations and hydrogen bond enthalpies. This study reveals valuable insights into the interfacial water hydrogen-bond network on functionalized carbon-cation complexed surfaces and potential pathways for future atmospheric water generation technologies.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemRxiv
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1