首页 > 最新文献

Chinese Journal of Catalysis最新文献

英文 中文
Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction 表面配位键加速电荷分离,使 S 型异质结实现前所未有的氢演化
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60108-7
Chunxue Li , Hao Lu , Guixiang Ding , Tianyi Ma , Shiyong Liu , Li Zhang , Guangfu Liao
Inspired by natural photosynthesis, fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues. Herein, NH2-MIL-125(Ti)/Zn0.5Cd0.5S/NiS (NMT/ZCS/NiS) S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy. Notably, the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H2 evolution (PHE) rate of about 14876.7 μmol h−1 g−1 with apparent quantum yield of 24.2% at 420 nm, which is significantly higher than that of recently reported MOFs-based photocatalysts. The interfacial coordination bonds (Zn–N, Cd–N, and Ni–N bonds) accelerate the separation and transfer of photogenerated charges, and the NiS as cocatalyst can provide more catalytically active sites, which synergistically improve the photocatalytic performance. Moreover, theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption. Photoassisted Kelvin probe force microscopy, in-situ irradiation X-ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism. This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
受自然光合作用的启发,制造高性能 S 型异质结被认为是解决能源和环境问题的一种成功策略。本文通过原位溶热策略成功合成了具有界面配位键的 NH2-MIL-125(Ti)/Zn0.5Cd0.5S/NiS(NMT/ZCS/NiS)S 型异质结。值得注意的是,最佳的 NMT/ZCS/NiS S 型异质结在 420 纳米波长下的光催化 H2 进化(PHE)率约为 14876.7 μmol h-1 g-1,表观量子产率为 24.2%,明显高于最近报道的基于 MOFs 的光催化剂。界面配位键(Zn-N、Cd-N 和 Ni-N 键)加速了光生电荷的分离和转移,NiS 作为协同催化剂可以提供更多的催化活性位点,从而协同提高光催化性能。此外,理论计算结果表明,NMT/ZCS/NiS S 型异质结的构建还优化了活性位点吸附氢原子的结合能,从而实现了快速吸附和解吸。光助开尔文探针力显微镜、原位辐照 X 射线光电子能谱、飞秒瞬态吸收光谱和理论计算为 S-scheme电荷迁移机制提供了充分的证据。这项工作为同时加速电荷动力学和优化 S 型异质结上活性位点与氢吸附剂之间的结合强度提供了独特的视角。
{"title":"Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction","authors":"Chunxue Li ,&nbsp;Hao Lu ,&nbsp;Guixiang Ding ,&nbsp;Tianyi Ma ,&nbsp;Shiyong Liu ,&nbsp;Li Zhang ,&nbsp;Guangfu Liao","doi":"10.1016/S1872-2067(24)60108-7","DOIUrl":"10.1016/S1872-2067(24)60108-7","url":null,"abstract":"<div><div>Inspired by natural photosynthesis, fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues. Herein, NH<sub>2</sub>-MIL-125(Ti)/Zn<sub>0.5</sub>Cd<sub>0.5</sub>S/NiS (NMT/ZCS/NiS) S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through <em>in-situ</em> solvothermal strategy. Notably, the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H<sub>2</sub> evolution (PHE) rate of about 14876.7 μmol h<sup>−1</sup> g<sup>−1</sup> with apparent quantum yield of 24.2% at 420 nm, which is significantly higher than that of recently reported MOFs-based photocatalysts. The interfacial coordination bonds (Zn–N, Cd–N, and Ni–N bonds) accelerate the separation and transfer of photogenerated charges, and the NiS as cocatalyst can provide more catalytically active sites, which synergistically improve the photocatalytic performance. Moreover, theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption. Photoassisted Kelvin probe force microscopy, <em>in-situ</em> irradiation X-ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism. This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 174-184"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO2 and methanol over ceria catalysts 表面性质对铈催化剂以二氧化碳和甲醇为原料合成碳酸二甲酯的影响机理研究
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60091-4
Lei Dong , Shengjie Zhu , Yangyang Yuan , Xiaomin Zhang , Xiaowei Zhao , Yanping Chen , Lei Xu
The direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes. Herein, a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO2 and methanol, and the structure-performance relationship was investigated in detail. Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies indicated that the adsorption rate of methanol is slower than that of CO2 and the methanol activation state largely influences the formation of key intermediate. Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO2, the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation. Moreover, with the use of 2-cyanopyridine as a dehydration reagent, the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.
以二氧化碳和甲醇为原料直接合成碳酸二甲酯(DMC)作为一种对环境无害且可替代传统工艺的方法备受关注。本文采用一锅合成法制备了一系列具有不同质构特征和表面性质的氧化铈催化剂,用于以二氧化碳和甲醇为原料直接合成碳酸二甲酯(DMC),并详细研究了其结构-性能关系。表征结果表明,随着煅烧温度的升高,表面酸碱性质和氧空位含量都随着结晶度的升高而降低,同时催化剂上的 DMC 产率出现了意想不到的火山状变化趋势。原位漫反射红外傅立叶变换光谱(DRIFTS)研究表明,甲醇的吸附速率比 CO2 慢,甲醇的活化状态在很大程度上影响了关键中间产物的形成。虽然低温煅烧带来的表面酸碱性和氧空位的增强有利于 CO2 的活化,但低结晶度样品上过量强碱性位点的存在不利于 DMC 的合成,因为这些位点会优先形成无反应的单/多齿碳酸盐,并进一步阻碍甲醇的活化。此外,在使用 2-氰基吡啶作为脱水试剂时,发现 DMC 的合成既受到快速原位脱水的促进作用的影响,也受到水合产物竞争性吸附在同一活性位点上的抑制作用的影响。
{"title":"Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO2 and methanol over ceria catalysts","authors":"Lei Dong ,&nbsp;Shengjie Zhu ,&nbsp;Yangyang Yuan ,&nbsp;Xiaomin Zhang ,&nbsp;Xiaowei Zhao ,&nbsp;Yanping Chen ,&nbsp;Lei Xu","doi":"10.1016/S1872-2067(24)60091-4","DOIUrl":"10.1016/S1872-2067(24)60091-4","url":null,"abstract":"<div><div>The direct synthesis of dimethyl carbonate (DMC) from CO<sub>2</sub> and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes. Herein, a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO<sub>2</sub> and methanol, and the structure-performance relationship was investigated in detail. Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts. <em>In situ</em> diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies indicated that the adsorption rate of methanol is slower than that of CO<sub>2</sub> and the methanol activation state largely influences the formation of key intermediate. Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO<sub>2</sub>, the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation. Moreover, with the use of 2-cyanopyridine as a dehydration reagent, the DMC synthesis was found to be both influenced by the promotion from the rapid <em>in situ</em> removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 138-152"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild polarization electric field in ultra-thin BN-Fe-graphene sandwich structure for efficient nitrogen reduction 超薄 BN-Fe-Graphene 夹层结构中的温和极化电场可实现高效氮还原
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60114-2
Ziyuan Xiu , Wei Mu , Xin Zhou , Xiaojun Han
The electrocatalytic N2 reduction reaction (NRR) is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions. The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst, correct electron transfer direction, and electron tunneling distance between bare electrode and active sites. By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method, an ultrathin sandwich catalyst, i.e., Fe atoms (polarized electric field layer) sandwiched between ultrathin (within electron tunneling distance) BN (catalyst layer) and graphene film (conducting layer), is fabricated for electrocatalytic NRR. The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure. The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9 μg h−1 cm−2 and Faradaic Efficiency of 21.7%. The N2 adsorption, activation, and polarization electric field changes of three sandwich catalysts (BN-Fe-G, BN-Fe-BN, and G-Fe-G) during the electrocatalytic NRR are investigated by experiments and density functional theory simulations. Driven by applied voltage, the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.
电催化 N2 还原反应(NRR)有望取代传统的 Haber-Bosch 技术,在环境条件下生产 NH3。电化学 NRR 的活性和选择性受限于催化剂诱导的强极化电场、正确的电子转移方向以及裸电极和活性位点之间的电子隧道距离。通过将化学气相沉积法与聚甲基丙烯酸甲酯转移法相耦合,制备出了一种用于电催化 NRR 的超薄夹层催化剂,即夹在超薄(电子隧道距离内)BN(催化剂层)和石墨烯薄膜(导电层)之间的铁原子(极化电场层)。夹层催化剂不仅能在外加电压下控制电子按正确方向转移到 BN 表面,还能在不暴露金属的情况下构建中性极化电场,从而抑制氢演化反应。夹层电催化剂 NRR 系统的 NH3 产率达到 8.9 μg h-1 cm-2,法拉第效率达到 21.7%。实验和密度泛函理论模拟研究了三种夹层催化剂(BN-Fe-G、BN-Fe-BN 和 G-Fe-G)在电催化 NRR 过程中对 N2 的吸附、活化和极化电场变化。在外加电压的驱动下,BN-Fe-G 诱导的中性极化电场导致了电催化 NRR 的高活性。
{"title":"Mild polarization electric field in ultra-thin BN-Fe-graphene sandwich structure for efficient nitrogen reduction","authors":"Ziyuan Xiu ,&nbsp;Wei Mu ,&nbsp;Xin Zhou ,&nbsp;Xiaojun Han","doi":"10.1016/S1872-2067(24)60114-2","DOIUrl":"10.1016/S1872-2067(24)60114-2","url":null,"abstract":"<div><div>The electrocatalytic N<sub>2</sub> reduction reaction (NRR) is expected to supersede the traditional Haber-Bosch technology for NH<sub>3</sub> production under ambient conditions. The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst, correct electron transfer direction, and electron tunneling distance between bare electrode and active sites. By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method, an ultrathin sandwich catalyst, i.e., Fe atoms (polarized electric field layer) sandwiched between ultrathin (within electron tunneling distance) BN (catalyst layer) and graphene film (conducting layer), is fabricated for electrocatalytic NRR. The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure. The sandwich electrocatalyst NRR system achieve NH<sub>3</sub> yield of 8.9 μg h<sup>−1</sup> cm<sup>−2</sup> and Faradaic Efficiency of 21.7%. The N<sub>2</sub> adsorption, activation, and polarization electric field changes of three sandwich catalysts (BN-Fe-G, BN-Fe-BN, and G-Fe-G) during the electrocatalytic NRR are investigated by experiments and density functional theory simulations. Driven by applied voltage, the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 126-137"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon 在规模化生产的铁镍合金装饰纳米多孔碳上高效电催化二氧化碳和硝酸盐合成尿素
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/S1872-2067(24)60111-7
Zuo-Shu Sun , Xue-Yan Xiang , Qiu-Ping Zhao , Zhao Tang , Shi-Yi Jiang , Tong-Bu Lu , Zhi-Ming Zhang , Baifan Wang , Hua-Qing Yin
Electrocatalytic urea synthesis provides a favorable strategy for conventional energy-consuming urea synthesis, but achieving large-scale catalyst synthesis with high catalytic efficiency remains challenging. Herein, we developed a simple method for the preparation of a series of FeNi-alloy-based catalysts, named FeNi@nC-T (n represents the content of nanoporous carbon as 1, 3, 5, 7 or 9 g and T = 900, 950, 1000 or 1100 °C), for highly performed urea synthesis via NO3 and CO2 co-reduction. The FeNi@7C-1000 achieved a high urea yield of 1041.33 mmol h−1 gFeNi−1 with a Faradaic efficiency of 15.56% at –1.2 V vs. RHE. Moreover, the scale-up synthesized FeNi@7C-950-S (over 140 g per batch) was achieved with its high catalytic performance and high stability maintained. Mechanism investigation illuminated that the Ni and Fe sites catalyze and stabilize the key *CO and *N intermediates and minimize the C–N coupling reaction barriers for highly efficient urea synthesis.
电催化尿素合成为传统耗能的尿素合成提供了一种有利的策略,但实现大规模、高催化效率的催化剂合成仍具有挑战性。在此,我们开发了一种简单的方法来制备一系列基于铁镍合金的催化剂,命名为 FeNi@nC-T(n 表示纳米多孔碳的含量为 1、3、5、7 或 9 克,T = 900、950、1000 或 1100 °C),用于通过 NO3- 和 CO2 协同还原来高效合成尿素。FeNi@7C-1000 的尿素产量高达 1041.33 mmol h-1 gFeNi-1,在 -1.2 V 对 RHE 条件下的法拉第效率为 15.56%。此外,放大合成的 FeNi@7C-950-S(每批超过 140 克)保持了高催化性能和高稳定性。机理研究表明,Ni 和 Fe 位点催化并稳定了关键的 *CO 和 *N 中间体,并最大程度地降低了 C-N 偶联反应障碍,从而实现了高效尿素合成。
{"title":"Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon","authors":"Zuo-Shu Sun ,&nbsp;Xue-Yan Xiang ,&nbsp;Qiu-Ping Zhao ,&nbsp;Zhao Tang ,&nbsp;Shi-Yi Jiang ,&nbsp;Tong-Bu Lu ,&nbsp;Zhi-Ming Zhang ,&nbsp;Baifan Wang ,&nbsp;Hua-Qing Yin","doi":"10.1016/S1872-2067(24)60111-7","DOIUrl":"10.1016/S1872-2067(24)60111-7","url":null,"abstract":"<div><div>Electrocatalytic urea synthesis provides a favorable strategy for conventional energy-consuming urea synthesis, but achieving large-scale catalyst synthesis with high catalytic efficiency remains challenging. Herein, we developed a simple method for the preparation of a series of FeNi-alloy-based catalysts, named FeNi@<em>n</em>C-<em>T</em> (<em>n</em> represents the content of nanoporous carbon as 1, 3, 5, 7 or 9 g and <em>T</em> = 900, 950, 1000 or 1100 °C), for highly performed urea synthesis <em>via</em> NO<sub>3</sub><sup>−</sup> and CO<sub>2</sub> co-reduction. The FeNi@7C-1000 achieved a high urea yield of 1041.33 mmol h<sup>−1</sup> g<sub>FeNi</sub><sup>−1</sup> with a Faradaic efficiency of 15.56% at –1.2 V <em>vs</em>. RHE. Moreover, the scale-up synthesized FeNi@7C-950-S (over 140 g per batch) was achieved with its high catalytic performance and high stability maintained. Mechanism investigation illuminated that the Ni and Fe sites catalyze and stabilize the key *CO and *N intermediates and minimize the C–N coupling reaction barriers for highly efficient urea synthesis.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 153-162"},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction 掺杂查耳根杂原子的镍-氮-碳单原子不对称配位催化剂用于高效的二氧化碳电化学还原反应
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60103-8
Jialin Wang , Kaini Zhang , Ta Thi Thuy Nga , Yiqing Wang , Yuchuan Shi , Daixing Wei , Chung-Li Dong , Shaohua Shen

The electronic configuration of central metal atoms in single-atom catalysts (SACs) is pivotal in electrochemical CO2 reduction reaction (eCO2RR). Herein, chalcogen heteroatoms (e.g., S, Se, and Te) were incorporated into the symmetric nickel-nitrogen-carbon (Ni-N4-C) configuration to obtain Ni-X-N3-C (X: S, Se, and Te) SACs with asymmetric coordination presented for central Ni atoms. Among these obtained Ni-X-N3-C (X: S, Se, and Te) SACs, Ni-Se-N3-C exhibited superior eCO2RR activity, with CO selectivity reaching ~98% at −0.70 V versus reversible hydrogen electrode (RHE). The Zn-CO2 battery integrated with Ni-Se-N3-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm–2 and maintained remarkable rechargeable stability over 20 h. In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N4-C configuration would break coordination symmetry and trigger charge redistribution, and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO2RR. Especially, for Ni-Se-N3-C, the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of *COOH formation, contributing to the promising eCO2RR performance for high selectivity CO production by competing with hydrogen evolution reaction.

单原子催化剂(SAC)中中心金属原子的电子构型在电化学二氧化碳还原反应(eCO2RR)中至关重要。在此,我们在对称的镍-氮-碳(Ni-N4-C)构型中加入了查耳根杂原子(如 S、Se 和 Te),从而获得了镍中心原子配位不对称的 Ni-X-N3-C (X: S、Se 和 Te) SACs。在这些获得的 Ni-X-N3-C (X:S、Se 和 Te)SAC 中,Ni-Se-N3-C 表现出卓越的 eCO2RR 活性,与可逆氢电极(RHE)相比,在 -0.70 V 电压下,CO 选择性达到约 98%。原位光谱研究和理论计算表明,掺杂到 Ni-N4-C 构型中的缩醛杂原子会打破配位对称性并引发电荷再分布,进而调节 eCO2RR 的中间行为和热力学反应途径。特别是对于 Ni-Se-N3-C 而言,引入的 Se 原子可显著提高中心 Ni 原子的 d 带中心,从而显著降低 *COOH 形成的速率决定步骤的能垒,这有助于 eCO2RR 通过与氢进化反应竞争而实现高选择性 CO 生产的良好性能。
{"title":"Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction","authors":"Jialin Wang ,&nbsp;Kaini Zhang ,&nbsp;Ta Thi Thuy Nga ,&nbsp;Yiqing Wang ,&nbsp;Yuchuan Shi ,&nbsp;Daixing Wei ,&nbsp;Chung-Li Dong ,&nbsp;Shaohua Shen","doi":"10.1016/S1872-2067(24)60103-8","DOIUrl":"10.1016/S1872-2067(24)60103-8","url":null,"abstract":"<div><p>The electronic configuration of central metal atoms in single-atom catalysts (SACs) is pivotal in electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR). Herein, chalcogen heteroatoms (e.g., S, Se, and Te) were incorporated into the symmetric nickel-nitrogen-carbon (Ni-N<sub>4</sub>-C) configuration to obtain Ni-<em>X</em>-N<sub>3</sub>-C (<em>X</em>: S, Se, and Te) SACs with asymmetric coordination presented for central Ni atoms. Among these obtained Ni-X-N<sub>3</sub>-C (X: S, Se, and Te) SACs, Ni-Se-N<sub>3</sub>-C exhibited superior eCO<sub>2</sub>RR activity, with CO selectivity reaching ~98% at −0.70 V versus reversible hydrogen electrode (RHE). The Zn-CO<sub>2</sub> battery integrated with Ni-Se-N<sub>3</sub>-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm<sup>–2</sup> and maintained remarkable rechargeable stability over 20 h. <em>In-situ</em> spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N<sub>4</sub>-C configuration would break coordination symmetry and trigger charge redistribution, and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO<sub>2</sub>RR. Especially, for Ni-Se-N<sub>3</sub>-C, the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of *COOH formation, contributing to the promising eCO<sub>2</sub>RR performance for high selectivity CO production by competing with hydrogen evolution reaction.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 54-65"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction 聚(乙烯亚胺)辅助合成包含多尺寸镍物种的空心碳球,用于二氧化碳电还原
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60087-2
Kaining Li , Yasutaka Kuwahara , Hiromi Yamashita

Electrochemical CO2 reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion. The development of efficient catalysts with high conductivity and readily accessible active sites for CO2 electroreduction remains challenging yet indispensable. In this work, a reliable poly(ethyleneimine) (PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles (NPs) (denoted as Ni@NHCS), where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres, but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites. Benefiting from the unique structural properties of Ni@NHCS, the aggregation and exposure of Ni NPs can be effectively prevented, while the accessibility of abundant catalytically active Ni-Nx sites can be ensured. As a result, Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm–2 and a Faradaic efficiency of 93.0% at −1.0 V vs. RHE, outperforming those of its PEI-free analog. Apart from the excellent activity and selectivity, the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability. The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO2 reduction. Furthermore, the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.

电化学还原二氧化碳以生产增值化学品和燃料是能源转换领域的研究热点之一。为二氧化碳电还原开发具有高电导率和易获取活性位点的高效催化剂仍然是一项挑战,但也是不可或缺的。在这项工作中,开发了一种可靠的聚乙烯亚胺(PEI)辅助策略,用于制备由单位点镍改性碳壳和致密镍纳米颗粒(NPs)组成的中空碳纳米复合材料(称为 Ni@NHCS),其中 PEI 不仅是诱导镍 NPs 在中空碳球内高度分散生长的介质,还是构建高活性原子分散 Ni-Nx 位点的氮前驱体。得益于 Ni@NHCS 的独特结构特性,可以有效防止 Ni NPs 的聚集和暴露,同时确保获得丰富的催化活性 Ni-Nx 位点。因此,Ni@NHCS 的一氧化碳部分电流密度高达 26.9 mA cm-2,在-1.0 V 对 RHE 时的法拉第效率为 93.0%,优于其不含 PEI 的类似物。除了出色的活性和选择性之外,空心碳球的壳封闭效应还赋予了这种催化剂长期的稳定性。本文的研究结果有望帮助人们理解用于电催化二氧化碳还原的镍基碳催化剂体系的结构-活性关系。此外,PEI 辅助合成概念还可用于制备高性能的金属基纳米封闭材料,以满足各种能源转换应用及其他应用的需要。
{"title":"Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction","authors":"Kaining Li ,&nbsp;Yasutaka Kuwahara ,&nbsp;Hiromi Yamashita","doi":"10.1016/S1872-2067(24)60087-2","DOIUrl":"10.1016/S1872-2067(24)60087-2","url":null,"abstract":"<div><p>Electrochemical CO<sub>2</sub> reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion. The development of efficient catalysts with high conductivity and readily accessible active sites for CO<sub>2</sub> electroreduction remains challenging yet indispensable. In this work, a reliable poly(ethyleneimine) (PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles (NPs) (denoted as Ni@NHCS), where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres, but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-N<em>x</em> sites. Benefiting from the unique structural properties of Ni@NHCS, the aggregation and exposure of Ni NPs can be effectively prevented, while the accessibility of abundant catalytically active Ni-N<em>x</em> sites can be ensured. As a result, Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm<sup>–2</sup> and a Faradaic efficiency of 93.0% at −1.0 V <em>vs.</em> RHE, outperforming those of its PEI-free analog. Apart from the excellent activity and selectivity, the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability. The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO<sub>2</sub> reduction. Furthermore, the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 66-76"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite 单原子修饰石墨烯协同催化剂用于增强卤化物过氧化物上的二氧化碳光催化还原能力
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60081-1
Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang

Metal halide perovskite (MHP) has become one of the most promising materials for photocatalytic CO2 reduction owing to the wide light absorption range, negative conduction band position and high reduction ability. However, photoreduction of CO2 by MHP remains a challenge because of the slow charge separation and transfer. Herein, a cobalt single-atom modified nitrogen-doped graphene (Co-NG) cocatalyst is prepared for enhanced photocatalytic CO2 reduction of bismuth-based MHP Cs3Bi2Br9. The optimal Cs3Bi2Br9/Co-NG composite exhibits the CO production rate of 123.16 μmol g–1 h–1, which is 17.3 times higher than that of Cs3Bi2Br9. Moreover, the Cs3Bi2Br9/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability. Charge carrier dynamic characterizations such as Kelvin probe force microscopy (KPFM), single-particle PL microscope and transient absorption (TA) spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance. The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement. In addition, in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers, demonstrating that the introduction of Co-NG promotes the formation of *COOH intermediate, providing sufficient evidence for the highly selective generation of CO. This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO2 reduction and is expected to shed light on other photocatalytic applications.

金属卤化物透辉石(MHP)具有宽广的光吸收范围、负电导带位置和高还原能力,已成为最有前景的光催化二氧化碳还原材料之一。然而,由于电荷分离和转移速度较慢,MHP 对 CO2 的光催化还原仍是一项挑战。本文制备了一种钴单原子修饰的掺氮石墨烯(Co-NG)协同催化剂,用于增强铋基 MHP Cs3Bi2Br9 的光催化 CO2 还原能力。最佳的 Cs3Bi2Br9/Co-NG 复合材料的 CO 生成率为 123.16 μmol g-1 h-1,是 Cs3Bi2Br9 的 17.3 倍。此外,Cs3Bi2Br9/Co-NG 复合光催化剂还具有近 100% 的 CO 选择性和令人印象深刻的长期稳定性。开尔文探针力显微镜(KPFM)、单颗粒聚光显微镜和瞬态吸收光谱(TA)等电荷载流子动态特性分析表明,Co-NG 助催化剂在加速光生电荷的转移和分离以及提高光催化性能方面发挥了重要作用。原位漫反射红外傅立叶变换光谱测量证明了反应机理。此外,原位 X 射线光电子能谱测试和理论计算揭示了反应活性位点和反应能垒,证明了 Co-NG 的引入促进了 *COOH 中间体的形成,为 CO 的高选择性生成提供了充分证据。这项工作为光催化还原二氧化碳提供了一种有效的基于单原子的茧催化剂改性策略,并有望为其他光催化应用带来启示。
{"title":"Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite","authors":"Hui Fu,&nbsp;Jin Tian,&nbsp;Qianqian Zhang,&nbsp;Zhaoke Zheng,&nbsp;Hefeng Cheng,&nbsp;Yuanyuan Liu,&nbsp;Baibiao Huang,&nbsp;Peng Wang","doi":"10.1016/S1872-2067(24)60081-1","DOIUrl":"10.1016/S1872-2067(24)60081-1","url":null,"abstract":"<div><p>Metal halide perovskite (MHP) has become one of the most promising materials for photocatalytic CO<sub>2</sub> reduction owing to the wide light absorption range, negative conduction band position and high reduction ability. However, photoreduction of CO<sub>2</sub> by MHP remains a challenge because of the slow charge separation and transfer. Herein, a cobalt single-atom modified nitrogen-doped graphene (Co-NG) cocatalyst is prepared for enhanced photocatalytic CO<sub>2</sub> reduction of bismuth-based MHP Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. The optimal Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite exhibits the CO production rate of 123.16 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 17.3 times higher than that of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. Moreover, the Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability. Charge carrier dynamic characterizations such as Kelvin probe force microscopy (KPFM), single-particle PL microscope and transient absorption (TA) spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance. The reaction mechanism has been demonstrated by <em>in situ</em> diffuse reflectance infrared Fourier-transform spectroscopy measurement. In addition, <em>in situ</em> X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers, demonstrating that the introduction of Co-NG promotes the formation of *COOH intermediate, providing sufficient evidence for the highly selective generation of CO. This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO<sub>2</sub> reduction and is expected to shed light on other photocatalytic applications.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 143-151"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-scheme heterojunction with ultrafast interfacial electron transfer for artificial photosynthesis 用于人工光合作用的具有超快界面电子传递功能的 S 型异质结
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60102-6
Sihang Mao, Rongan He, Shaoqing Song
{"title":"S-scheme heterojunction with ultrafast interfacial electron transfer for artificial photosynthesis","authors":"Sihang Mao,&nbsp;Rongan He,&nbsp;Shaoqing Song","doi":"10.1016/S1872-2067(24)60102-6","DOIUrl":"10.1016/S1872-2067(24)60102-6","url":null,"abstract":"","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 1-3"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C–H bond activation of propane on Ga2O22+ in Ga/H-ZSM-5 and its mechanistic implications Ga/H-ZSM-5 中 Ga2O22+ 上丙烷的 C-H 键活化及其机理影响
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60065-3
Zhaoqi Zhao, Yunzhu Zhong, Xiaoxia Chang, Bingjun Xu

Propane dehydrogenation (PDH) on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production, while the detail mechanism remains debatable. Ga2O22+ stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work. Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga2O22+ species corresponding to the infrared GaH band of higher wavenumber (GaHHW) in reduced Ga/H-ZSM-5, instead of the overall Ga2O22+ species, by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio. This disparity in Ga2O22+ species stems from their differing capacity in completing the catalytic cycle. Spectroscopic results suggest that PDH proceeds via a two-step mechanism: (1) C–H bond activation of propane on H-Ga2O22+ species (rate determining step); (2) β-hydride elimination of adsorbed propyl group, which only occurs on active Ga2O22+ species corresponding to GaHHW.

在 Ga/H-ZSM-5 催化剂上进行丙烷脱氢 (PDH) 是一种很有前景的丙烯生产反应,但其详细机理仍有待商榷。在我们最近的研究中,Ga/H-ZSM-5 中被框架 Al 对稳定的 Ga2O22+ 被确定为 PDH 反应中最活跃的物种。在这里,我们通过采用五种硅/铝比例不同的 H-ZSM-5 支持物,证明了 PDH 活性与还原 Ga/H-ZSM-5 中对应于红外高波长 GaHHW 波段(GaHHW)的 Ga2O22+ 物种部分(而不是整个 Ga2O22+ 物种)之间存在着很强的相关性。Ga2O22+ 物种的这种差异源于它们完成催化循环的能力不同。光谱结果表明,PDH 通过两步机制进行:(1)H-Ga2O22+ 物种上丙烷的 C-H 键活化(速率决定步骤);(2)吸附丙基的 β-酸酐消除,这只发生在与 GaHHW 相对应的活性 Ga2O22+ 物种上。
{"title":"C–H bond activation of propane on Ga2O22+ in Ga/H-ZSM-5 and its mechanistic implications","authors":"Zhaoqi Zhao,&nbsp;Yunzhu Zhong,&nbsp;Xiaoxia Chang,&nbsp;Bingjun Xu","doi":"10.1016/S1872-2067(24)60065-3","DOIUrl":"10.1016/S1872-2067(24)60065-3","url":null,"abstract":"<div><p>Propane dehydrogenation (PDH) on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production, while the detail mechanism remains debatable. Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work. Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> species corresponding to the infrared GaH band of higher wavenumber (GaHHW) in reduced Ga/H-ZSM-5, instead of the overall Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> species, by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio. This disparity in Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> species stems from their differing capacity in completing the catalytic cycle. Spectroscopic results suggest that PDH proceeds <em>via</em> a two-step mechanism: (1) C–H bond activation of propane on H-Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> species (rate determining step); (2) β-hydride elimination of adsorbed propyl group, which only occurs on active Ga<sub>2</sub>O<sub>2</sub><sup>2+</sup> species corresponding to GaHHW.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 32-43"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single atom doping induced charge-specific distribution of Cu1-TiO2 for selective aniline oxidation via a new mechanism 单原子掺杂诱导 Cu1-TiO2 的电荷特异性分布,通过新机制实现选择性苯胺氧化
IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-09-01 DOI: 10.1016/S1872-2067(24)60104-X
Jiaheng Qin , Wantong Zhao , Jie Song , Nan Luo , Zheng-Lan Ma , Baojun Wang , Jiantai Ma , Riguang Zhang , Yu Long

Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites, achieving precise selectivity control in complex organic reactions, is a highly desirable yet challenging endeavor. Meanwhile, identifying the active site also represents a significant obstacle, primarily due to the intricate electronic environment of single atom site doped metal oxide. Herein, a single atom Cu doped TiO2 catalyst (Cu1-TiO2) is prepared via a simple “colloid-acid treatment” strategy, which switches aniline oxidation selectivity of TiO2 from azoxybenzene to nitrosobenzene, without using additives or changing solvent, while other metal or nonmetal doped TiO2 did not possess. Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate, two PhNOH condense to azoxybenzene over TiO2 catalyst. As for Cu1-TiO2, the charge-specific distribution between the isolated Cu and TiO2 generates unique Cu1-O-Ti hybridization structure with nine catalytic active sites, eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene. This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.

利用掺入金属氧化物的单原子位点来调节其固有的活性位点,从而在复杂的有机反应中实现精确的选择性控制,是一项非常理想但又极具挑战性的工作。同时,确定活性位点也是一个重大障碍,这主要是由于单原子位点掺杂的金属氧化物具有错综复杂的电子环境。本文通过一种简单的 "胶体-酸处理 "策略制备了一种单原子掺杂 Cu 的 TiO2 催化剂(Cu1-TiO2),该催化剂能在不使用添加剂或不改变溶剂的情况下将 TiO2 的苯胺氧化选择性从偶氮苯转换到亚硝基苯,而其他金属或非金属掺杂的 TiO2 则不具备这种能力。综合机理研究和 DFT 计算表明,Ti-O 活性位点负责引发苯胺形成新的 PhNOH 中间体,两个 PhNOH 在 TiO2 催化剂上缩合成氮氧苯。至于 Cu1-TiO2,孤立的 Cu 和 TiO2 之间的电荷特异性分布产生了独特的 Cu1-O-Ti 杂化结构,其中有九个催化活性位点,其中八个使 PhNOH 自发解离生成亚硝基苯。这项工作不仅首次揭示了以苯胺氧化过程中的 PhNOH 中间体为特征的新机理途径,还提出了一种构建单原子掺杂金属氧化物并探索其复杂活性位点的新方法。
{"title":"Single atom doping induced charge-specific distribution of Cu1-TiO2 for selective aniline oxidation via a new mechanism","authors":"Jiaheng Qin ,&nbsp;Wantong Zhao ,&nbsp;Jie Song ,&nbsp;Nan Luo ,&nbsp;Zheng-Lan Ma ,&nbsp;Baojun Wang ,&nbsp;Jiantai Ma ,&nbsp;Riguang Zhang ,&nbsp;Yu Long","doi":"10.1016/S1872-2067(24)60104-X","DOIUrl":"10.1016/S1872-2067(24)60104-X","url":null,"abstract":"<div><p>Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites, achieving precise selectivity control in complex organic reactions, is a highly desirable yet challenging endeavor. Meanwhile, identifying the active site also represents a significant obstacle, primarily due to the intricate electronic environment of single atom site doped metal oxide. Herein, a single atom Cu doped TiO<sub>2</sub> catalyst (Cu<sub>1</sub>-TiO<sub>2</sub>) is prepared <em>via</em> a simple “colloid-acid treatment” strategy, which switches aniline oxidation selectivity of TiO<sub>2</sub> from azoxybenzene to nitrosobenzene, without using additives or changing solvent, while other metal or nonmetal doped TiO<sub>2</sub> did not possess. Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate, two PhNOH condense to azoxybenzene over TiO<sub>2</sub> catalyst. As for Cu<sub>1</sub>-TiO<sub>2</sub>, the charge-specific distribution between the isolated Cu and TiO<sub>2</sub> generates unique Cu<sub>1</sub>-O-Ti hybridization structure with nine catalytic active sites, eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene. This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 98-111"},"PeriodicalIF":15.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Journal of Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1