Pub Date : 2018-03-09DOI: 10.1186/s13065-018-0394-5
Mohie E M Zayed, Reda M El-Shishtawy, Shaaban A Elroby, Khalid O Al-Footy, Zahra M Al-Amshany
A set of different donor-π-acceptor compounds having dicyanovinyl as the acceptor and aryl moieties as donors were synthesized by Knoevenagel condensation. The UV-visible absorption and fluorescence spectra were investigated in different solvents. The optical band gab energy (Eg) was linearly correlated with the Hammett resonance effect of the donor to reveal that the higher the value of Hammett resonance effect of a donor, the lower the Eg of the molecule. The photophysical data revealed that compounds M4-M6 are typical molecular rotors with fluorescence due to twisted intramolecular charge transfer. Compound M5 revealed the largest Stokes shift (11,089 cm-1) making it a useful fluorescent sensor for the changes of the microenvironment. The effect of substituents on the optical properties of donor-π-acceptor compounds having dicyanovinyl as the acceptor are studied using density functional theory and time-dependent density functional theory (DFT/TD-DFT). The optical transitions are thoroughly examined to reveal the impact of subtituents on both absorption and fluorescence, mainly through the modification of the structure in the excited state. The theoretical results have shown that TD-DFT calculations, with a hybrid exchange-correlation and the long-range corrected density functional PBEPBE with a 6-311++G** basis set, was reasonably capable of predicting the excitation energies, the absorption and the emission spectra of these molecules.
{"title":"Experimental and theoretical study of donor-π-acceptor compounds based on malononitrile.","authors":"Mohie E M Zayed, Reda M El-Shishtawy, Shaaban A Elroby, Khalid O Al-Footy, Zahra M Al-Amshany","doi":"10.1186/s13065-018-0394-5","DOIUrl":"https://doi.org/10.1186/s13065-018-0394-5","url":null,"abstract":"<p><p>A set of different donor-π-acceptor compounds having dicyanovinyl as the acceptor and aryl moieties as donors were synthesized by Knoevenagel condensation. The UV-visible absorption and fluorescence spectra were investigated in different solvents. The optical band gab energy (Eg) was linearly correlated with the Hammett resonance effect of the donor to reveal that the higher the value of Hammett resonance effect of a donor, the lower the Eg of the molecule. The photophysical data revealed that compounds M4-M6 are typical molecular rotors with fluorescence due to twisted intramolecular charge transfer. Compound M5 revealed the largest Stokes shift (11,089 cm<sup>-1</sup>) making it a useful fluorescent sensor for the changes of the microenvironment. The effect of substituents on the optical properties of donor-π-acceptor compounds having dicyanovinyl as the acceptor are studied using density functional theory and time-dependent density functional theory (DFT/TD-DFT). The optical transitions are thoroughly examined to reveal the impact of subtituents on both absorption and fluorescence, mainly through the modification of the structure in the excited state. The theoretical results have shown that TD-DFT calculations, with a hybrid exchange-correlation and the long-range corrected density functional PBEPBE with a 6-311++G** basis set, was reasonably capable of predicting the excitation energies, the absorption and the emission spectra of these molecules.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"26"},"PeriodicalIF":0.0,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0394-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35899625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-08DOI: 10.1186/s13065-018-0396-3
Mushtaq Ahmad, Zahida Perveen, Adailton J Bortoluzzi, Shahid Hameed, Muhammad R Shah, Muhammad Tariq, Ghias Ud Din, Muhammad T Jan, Muhammad Siddique, Muhammad Anwar
Apart from its numerous biological activities like antidiabetic, anti-inflammatory, antimicrobial, pyrazine moiety plays an important role in luminescent materials. Its role in luminescent materials is due to its highly electron deficient nature specially when it is in the centre along the mainstay of extended π-conjugated systems. Similarly, new liquid crystalline compounds are being made constantly where the central benzoaromatic moiety is being replaced with the heterocycles including pyrazine due to their more variable nature. Pyrazine derivatives can also be used in supramolecular assemblies due to their efficient hydrogen bonding, protonation and complexation properties. Keeping in view the enormous applications of pyrazine derivatives we planned to synthesize new extended iminobenzoates with pyrazine moieties at the terminal positions. The planned iminobenzoates with terminal pyrazine moieties were prepared following standard procedures. The pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared by refluxing their methyl esters with hydrazine hydrate in methanol. The esters (3a-3f) were synthesized by reacting 4-hydroxybenzaldehyde with differently substituted acid halides in tetrahydrofuran in the presence of triethyl amine. The target compounds that is, iminobenzoates with the pyrazine moieties at terminal positions (4a-4l), were obtained in good to excellent yields by the reaction of the hydrazides with the esters at reflux. The synthesized compounds were fully characterized using different spectroanalytical techniques including FT-IR, NMR, Mass, elemental analysis and single crystal X-ray diffraction analysis. The paper describes the synthesis of novel iminobenzoates following easy methods while utilizing commercially available starting materials. The synthesized iminobenzoates may possibly be converted to compounds with luminescent and liquid crystalline properties after making suitable changes to the pyrazine moieties. Properly substituted pyrazines on both sides, capable of further suitable extensions, may result in compounds with such properties.
除了具有抗糖尿病、抗炎和抗菌等多种生物活性外,吡嗪分子在发光材料中也发挥着重要作用。吡嗪在发光材料中的作用是由于其高度缺电子的特性,特别是当它处于扩展的 π 共轭体系的中心位置时。同样,新的液晶化合物也在不断问世,其中的苯并芳香族中心分子被包括吡嗪在内的杂环所取代,因为吡嗪的性质更加多变。由于吡嗪衍生物具有高效的氢键、质子化和络合特性,因此也可用于超分子组装。考虑到吡嗪衍生物的广泛应用,我们计划合成新的扩展亚氨基苯甲酸盐,并在其末端位置添加吡嗪分子。我们按照标准程序制备了带有末端吡嗪分子的亚氨基苯甲酸盐。吡嗪-2-甲酰肼(1)和 5-甲基吡嗪-2-甲酰肼(2)是用甲醇中的水合肼回流其甲酯制备的。在三乙胺存在下,4-羟基苯甲醛与不同取代的酸卤化物在四氢呋喃中反应合成了酯类(3a-3f)。在回流条件下,通过酰肼与酯的反应,得到了目标化合物,即末端位置具有吡嗪分子的亚氨基苯甲酸酯(4a-4l),收率从良好到极佳。利用不同的光谱分析技术,包括傅立叶变换红外光谱、核磁共振、质谱、元素分析和单晶 X 射线衍射分析,对合成的化合物进行了全面表征。本文介绍了利用市场上可买到的起始原料,采用简便的方法合成新型亚氨基苯甲酸酯的过程。在对吡嗪分子进行适当改变后,合成的亚氨基苯甲酸盐可能会转化为具有发光和液晶特性的化合物。适当取代吡嗪的两侧,并对其进行进一步的适当扩展,可得到具有上述性质的化合物。
{"title":"Synthesis and characterization of novel iminobenzoates with terminal pyrazine moieties.","authors":"Mushtaq Ahmad, Zahida Perveen, Adailton J Bortoluzzi, Shahid Hameed, Muhammad R Shah, Muhammad Tariq, Ghias Ud Din, Muhammad T Jan, Muhammad Siddique, Muhammad Anwar","doi":"10.1186/s13065-018-0396-3","DOIUrl":"10.1186/s13065-018-0396-3","url":null,"abstract":"<p><p>Apart from its numerous biological activities like antidiabetic, anti-inflammatory, antimicrobial, pyrazine moiety plays an important role in luminescent materials. Its role in luminescent materials is due to its highly electron deficient nature specially when it is in the centre along the mainstay of extended π-conjugated systems. Similarly, new liquid crystalline compounds are being made constantly where the central benzoaromatic moiety is being replaced with the heterocycles including pyrazine due to their more variable nature. Pyrazine derivatives can also be used in supramolecular assemblies due to their efficient hydrogen bonding, protonation and complexation properties. Keeping in view the enormous applications of pyrazine derivatives we planned to synthesize new extended iminobenzoates with pyrazine moieties at the terminal positions. The planned iminobenzoates with terminal pyrazine moieties were prepared following standard procedures. The pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared by refluxing their methyl esters with hydrazine hydrate in methanol. The esters (3a-3f) were synthesized by reacting 4-hydroxybenzaldehyde with differently substituted acid halides in tetrahydrofuran in the presence of triethyl amine. The target compounds that is, iminobenzoates with the pyrazine moieties at terminal positions (4a-4l), were obtained in good to excellent yields by the reaction of the hydrazides with the esters at reflux. The synthesized compounds were fully characterized using different spectroanalytical techniques including FT-IR, NMR, Mass, elemental analysis and single crystal X-ray diffraction analysis. The paper describes the synthesis of novel iminobenzoates following easy methods while utilizing commercially available starting materials. The synthesized iminobenzoates may possibly be converted to compounds with luminescent and liquid crystalline properties after making suitable changes to the pyrazine moieties. Properly substituted pyrazines on both sides, capable of further suitable extensions, may result in compounds with such properties.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"25"},"PeriodicalIF":0.0,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35893588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-01DOI: 10.1186/s13065-018-0381-x
Chenhui Jia, Yuchuan Li, Shujuan Zhang, Teng Fei, Siping Pang
Background: In general, the greater the number of directly linked nitrogen atoms in a molecule, the better its energetic performance, while the stability will be accordingly lower. But 1,1'-azobis-1,2,3-triazole (1) and 4,4'-azobis-1,2,4-triazole (2) show remarkable properties, such as high enthalpies of formation, high melting points, and relatively high stabilities. In order to rationalize this unexpected behavior of the two compounds, it is necessary to study their thermal decompositions and pyrolyses. Although a great deal of research has been focused on the synthesis and characterization of energetic materials with 1 and 2 as the backbone, a complete report on their fundamental thermodynamic parameters and thermal decomposition properties has not been published.
Methods: Thermogravimetric-differential scanning calorimetry were used to obtain the thermal decomposition data of the title compounds. Kissinger and Ozawa-Doyle methods, the two selected non-isothermal methods, are presented for analysis of the solid-state kinetic data. Pyrolysis-gas chromatography/mass spectrometry was used to study the pyrolysis process of the title compounds.
Results: The DSC curves show that the thermal decompositions of 1 and 2 are at different heating rates involved a single exothermic process. The TG curves provide insight into the total weight losses from the compounds associated with this process. At different pyrolysis temperatures, the compositions and types of the pyrolysis products differ greatly and the pyrolysis reaction at 500 °C is more thorough than 400 °C.
Conclusions: Apparent activation energies (E) and pre-exponential factors (lnA/s-1) are 291.4 kJ mol-1 and 75.53 for 1; 396.2 kJ mol-1 and 80.98 for 2 (Kissinger). The values of E are 284.5 kJ mol-1 for 1 and 386.1 kJ mol-1 for 2 (Ozawa-Doyle). The critical temperature of thermal explosion (T b ) is evaluated as 187.01 °C for 1 and 282.78 °C for 2. The title compounds were broken into small fragment ions under the pyrolysis conditions, which then might undergo a multitude of collisions and numerous other reactions, resulting in the formation of C2N2 (m/z 52), etc., before being analyzed by the GC/MS system.
{"title":"Thermogravimetric analysis, kinetic study, and pyrolysis-GC/MS analysis of 1,1'-azobis-1,2,3-triazole and 4,4'-azobis-1,2,4-triazole.","authors":"Chenhui Jia, Yuchuan Li, Shujuan Zhang, Teng Fei, Siping Pang","doi":"10.1186/s13065-018-0381-x","DOIUrl":"https://doi.org/10.1186/s13065-018-0381-x","url":null,"abstract":"<p><strong>Background: </strong>In general, the greater the number of directly linked nitrogen atoms in a molecule, the better its energetic performance, while the stability will be accordingly lower. But 1,1'-azobis-1,2,3-triazole (1) and 4,4'-azobis-1,2,4-triazole (2) show remarkable properties, such as high enthalpies of formation, high melting points, and relatively high stabilities. In order to rationalize this unexpected behavior of the two compounds, it is necessary to study their thermal decompositions and pyrolyses. Although a great deal of research has been focused on the synthesis and characterization of energetic materials with 1 and 2 as the backbone, a complete report on their fundamental thermodynamic parameters and thermal decomposition properties has not been published.</p><p><strong>Methods: </strong>Thermogravimetric-differential scanning calorimetry were used to obtain the thermal decomposition data of the title compounds. Kissinger and Ozawa-Doyle methods, the two selected non-isothermal methods, are presented for analysis of the solid-state kinetic data. Pyrolysis-gas chromatography/mass spectrometry was used to study the pyrolysis process of the title compounds.</p><p><strong>Results: </strong>The DSC curves show that the thermal decompositions of 1 and 2 are at different heating rates involved a single exothermic process. The TG curves provide insight into the total weight losses from the compounds associated with this process. At different pyrolysis temperatures, the compositions and types of the pyrolysis products differ greatly and the pyrolysis reaction at 500 °C is more thorough than 400 °C.</p><p><strong>Conclusions: </strong>Apparent activation energies (E) and pre-exponential factors (lnA/s<sup>-1</sup>) are 291.4 kJ mol<sup>-1</sup> and 75.53 for 1; 396.2 kJ mol<sup>-1</sup> and 80.98 for 2 (Kissinger). The values of E are 284.5 kJ mol<sup>-1</sup> for 1 and 386.1 kJ mol<sup>-1</sup> for 2 (Ozawa-Doyle). The critical temperature of thermal explosion (T <sub>b</sub> ) is evaluated as 187.01 °C for 1 and 282.78 °C for 2. The title compounds were broken into small fragment ions under the pyrolysis conditions, which then might undergo a multitude of collisions and numerous other reactions, resulting in the formation of C<sub>2</sub>N<sub>2</sub> (m/z 52), etc., before being analyzed by the GC/MS system.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0381-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35873182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-01DOI: 10.1186/s13065-018-0391-8
Mengjun Shi, Nan He, Wenjing Li, Changqin Li, Wenyi Kang
In this study, the contents of myricetrin, quercitrin and afzelin in Cercis chinensis leaves were determined simultaneously by 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM] BF4/70% ethanol microextraction combined with High Performance Liquid Chromatograph (HPLC) analysis. The mobile phase was eluted with an Agilent ZORBAX SB-C18 column (4.6 mm×5 mm, 5 μm), B was methanol and C was 0.1% glacial acetic acid-water as the mobile phase. The flow rate was 0.8 mL min-1, eluents was detected at 245 nm at column temperature of 30 °C. The orthogonal experiment and variance analysis were used to determine the optimum process of C. chinensis leaves by the comprehensive evaluation of the contents of myricetrin, quercitrin and afzelin. The results showed that the injection rates of myricetrin, quercitrin and afzelin were in the range of 0.4997-18.73 μg (r = 0.9997), 0.1392-5.218 μg (r = 0.9998) and 0.04582-1.718 μg (r = 0.9998), respectively. The optimum conditions were determined as follows: the concentration of extraction, 0.9 mol/L; the ultrasonic time, 50 min; the solid-liquid ratio, 1:30; the centrifugal speed, 5000 r/min, and the crushing ratio, 90 mesh. Under these optimal conditions, the average levels of myricetrin, quercitrin and afzelin were 8.6915, 1.5865 and 1.0920 (mg/g), respectively.
{"title":"Simultaneous determination of myricetrin, quercitrin and afzelin in leaves of Cercis chinensis by a fast and effective method of ionic liquid microextraction coupled with HPLC.","authors":"Mengjun Shi, Nan He, Wenjing Li, Changqin Li, Wenyi Kang","doi":"10.1186/s13065-018-0391-8","DOIUrl":"https://doi.org/10.1186/s13065-018-0391-8","url":null,"abstract":"<p><p>In this study, the contents of myricetrin, quercitrin and afzelin in Cercis chinensis leaves were determined simultaneously by 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM] BF<sub>4</sub>/70% ethanol microextraction combined with High Performance Liquid Chromatograph (HPLC) analysis. The mobile phase was eluted with an Agilent ZORBAX SB-C18 column (4.6 mm×5 mm, 5 μm), B was methanol and C was 0.1% glacial acetic acid-water as the mobile phase. The flow rate was 0.8 mL min<sup>-1</sup>, eluents was detected at 245 nm at column temperature of 30 °C. The orthogonal experiment and variance analysis were used to determine the optimum process of C. chinensis leaves by the comprehensive evaluation of the contents of myricetrin, quercitrin and afzelin. The results showed that the injection rates of myricetrin, quercitrin and afzelin were in the range of 0.4997-18.73 μg (r = 0.9997), 0.1392-5.218 μg (r = 0.9998) and 0.04582-1.718 μg (r = 0.9998), respectively. The optimum conditions were determined as follows: the concentration of extraction, 0.9 mol/L; the ultrasonic time, 50 min; the solid-liquid ratio, 1:30; the centrifugal speed, 5000 r/min, and the crushing ratio, 90 mesh. Under these optimal conditions, the average levels of myricetrin, quercitrin and afzelin were 8.6915, 1.5865 and 1.0920 (mg/g), respectively.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0391-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35876315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-01DOI: 10.1186/s13065-018-0393-6
Assila Maatar Ben Salah, Lilia Belghith Fendri, Thierry Bataille, Raquel P Herrera, Houcine Naïli
Background: Complexes of imidazole derivatives with transition metal ions have attracted much attention because of their biological and pharmacological activities, such as antimicrobial, antifungal, antiallergic, antitumoural and antimetastatic properties. In addition, imidazoles occupy an important place owing to their meaningful catalytic activity in several processes, such as in hydroamination, hydrosilylation, Heck reaction and Henry reaction. In this work, we describe the crystallization of two halogenometallate based on 2-methylimidazole. Their IR, thermal analysis, catalytic properties and antibacterial activities have also been investigated.
Results: Two new isostructural organic-inorganic hybrid materials, based on 2-methyl-1H-imidazole, 1 and 2, were synthesized and fully structurally characterized. The analysis of their crystal packing reveals non-covalent interactions, including C/N-H···Cl hydrogen bonds and π···π stacking interactions, to be the main factor governing the supramolecular assembly of the crystalline complexes. The thermal decomposition of the complexes is a mono-stage process, confirmed by the three-dimensional representation of the powder diffraction patterns (TDXD). The catalytic structure exhibited promising activity using MeOH as solvent and as the unique source of acetalization. Moreover, the antimicrobial results suggested that metal-complexes exhibit significant antimicrobial activity.
Conclusion: This study highlights again the structural and the biological diversities within the field of inorganic-organic hybrids.
{"title":"Synthesis, structural determination and antimicrobial evaluation of two novel Co<sup>II</sup> and Zn<sup>II</sup> halogenometallates as efficient catalysts for the acetalization reaction of aldehydes.","authors":"Assila Maatar Ben Salah, Lilia Belghith Fendri, Thierry Bataille, Raquel P Herrera, Houcine Naïli","doi":"10.1186/s13065-018-0393-6","DOIUrl":"https://doi.org/10.1186/s13065-018-0393-6","url":null,"abstract":"<p><strong>Background: </strong>Complexes of imidazole derivatives with transition metal ions have attracted much attention because of their biological and pharmacological activities, such as antimicrobial, antifungal, antiallergic, antitumoural and antimetastatic properties. In addition, imidazoles occupy an important place owing to their meaningful catalytic activity in several processes, such as in hydroamination, hydrosilylation, Heck reaction and Henry reaction. In this work, we describe the crystallization of two halogenometallate based on 2-methylimidazole. Their IR, thermal analysis, catalytic properties and antibacterial activities have also been investigated.</p><p><strong>Results: </strong>Two new isostructural organic-inorganic hybrid materials, based on 2-methyl-1H-imidazole, 1 and 2, were synthesized and fully structurally characterized. The analysis of their crystal packing reveals non-covalent interactions, including C/N-H···Cl hydrogen bonds and π···π stacking interactions, to be the main factor governing the supramolecular assembly of the crystalline complexes. The thermal decomposition of the complexes is a mono-stage process, confirmed by the three-dimensional representation of the powder diffraction patterns (TDXD). The catalytic structure exhibited promising activity using MeOH as solvent and as the unique source of acetalization. Moreover, the antimicrobial results suggested that metal-complexes exhibit significant antimicrobial activity.</p><p><strong>Conclusion: </strong>This study highlights again the structural and the biological diversities within the field of inorganic-organic hybrids.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0393-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35877219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-23DOI: 10.1186/s13065-018-0389-2
Xiao-Hui Zhao, Xiao-Lei Wang, Yu Li
The molecular docking method was used to calculate the binding free energies between biphenyl dioxygenase and 209 polychlorinated biphenyl (PCB) congeners. The relationships between the calculated binding free energies and migration (octanol-air partition coefficients, KOA), persistence (half-life, t1/2), toxicity (half maximal inhibitory concentration, IC50), and bioaccumulation (bioconcentration factor, BCF) values for the PCBs were used to gain insight into the degradation of PCBs in the presence of biphenyl dioxygenase. The relationships between the calculated binding free energies and the molecular weights, KOA, BCF, and t1/2 values for the PCBs were statistically significant (P < 0.01), whereas the relationship between the calculated binding free energies and the IC50 for the PCBs was not statistically significant (P > 0.05). The electrostatic field, derived from three-dimensional quantitative structure-activity relationship studies, was a primary factor governing the binding free energy, which agreed with literature findings for KOA, t1/2, and BCF. Comparative molecular field analysis and comparative molecular similarity indices analysis contour maps showed that the binding free energies, KOA, t1/2, and BCF values for the PCBs decreased simultaneously when substituents with electropositive groups at the 3-position or electronegative groups at the 3'-position were introduced. This indicated the binding free energy was correlated with the persistent organic pollutant characteristics of PCBs. Furthermore, low binding free energies improved the degradation of the PCBs and simultaneously decreased the KOA, t1/2, and BCF values, thereby reducing the persistent organic pollutant characteristics of PCBs in the environment. These results are expected to be beneficial in providing a theoretical foundation for further elucidation of the degradation and molecular modification of PCBs.
{"title":"Relationship between the binding free energy and PCBs' migration, persistence, toxicity and bioaccumulation using a combination of the molecular docking method and 3D-QSAR.","authors":"Xiao-Hui Zhao, Xiao-Lei Wang, Yu Li","doi":"10.1186/s13065-018-0389-2","DOIUrl":"10.1186/s13065-018-0389-2","url":null,"abstract":"<p><p>The molecular docking method was used to calculate the binding free energies between biphenyl dioxygenase and 209 polychlorinated biphenyl (PCB) congeners. The relationships between the calculated binding free energies and migration (octanol-air partition coefficients, K<sub>OA</sub>), persistence (half-life, t<sub>1/2</sub>), toxicity (half maximal inhibitory concentration, IC<sub>50</sub>), and bioaccumulation (bioconcentration factor, BCF) values for the PCBs were used to gain insight into the degradation of PCBs in the presence of biphenyl dioxygenase. The relationships between the calculated binding free energies and the molecular weights, K<sub>OA</sub>, BCF, and t<sub>1/2</sub> values for the PCBs were statistically significant (P < 0.01), whereas the relationship between the calculated binding free energies and the IC<sub>50</sub> for the PCBs was not statistically significant (P > 0.05). The electrostatic field, derived from three-dimensional quantitative structure-activity relationship studies, was a primary factor governing the binding free energy, which agreed with literature findings for K<sub>OA</sub>, t<sub>1/2</sub>, and BCF. Comparative molecular field analysis and comparative molecular similarity indices analysis contour maps showed that the binding free energies, K<sub>OA</sub>, t<sub>1/2</sub>, and BCF values for the PCBs decreased simultaneously when substituents with electropositive groups at the 3-position or electronegative groups at the 3'-position were introduced. This indicated the binding free energy was correlated with the persistent organic pollutant characteristics of PCBs. Furthermore, low binding free energies improved the degradation of the PCBs and simultaneously decreased the K<sub>OA</sub>, t<sub>1/2</sub>, and BCF values, thereby reducing the persistent organic pollutant characteristics of PCBs in the environment. These results are expected to be beneficial in providing a theoretical foundation for further elucidation of the degradation and molecular modification of PCBs.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2018-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35859844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-23DOI: 10.1186/s13065-018-0388-3
Nilüfer Bayrak
This article presents a complete and detailed study of synthesis, structural characterization, and possible applications of a new family of azanaphthoquinones as antimicrobial agents. A series of (alkoxy)phenylamino-chloro-2-methylquinoline-5,8-dione derivatives (3a-j, 3a', 3e') was prepared by regioselective nucleophilic substitution of 6,7-dichloro-2-methylquinoline-5,8-dione (1) with (alkoxy)arylamines (2) in the presence of CeCl3·7H2O. In vitro antimicrobial study of the newly synthesized compounds was evaluated in a panel of three fungi and seven bacterial strains (three Gram-positive and four Gram-negative bacteria). As a result, the compounds (3a, 3b, and 3h) were identified as the hits with the strong antibacterial efficiency against the human originated pathogens S. epidermidis and E. faecalis with some minimal inhibitory concentration values. The antibacterial activity of the compound (3h) was two times more active against S. epidermidis than the reference antimicrobial compound (Cefuroxime). Two compounds (3a and 3b) exhibited excellent antibacterial activity (four times more active than Cefuroxime) against S. epidermidis. In addition to S. epidermidis, these three compounds (3a, 3b, and 3h) were more active against E. faecalis than the reference antimicrobial compound (Amikacin). The antibacterial activity of the compounds (3a and 3h) was three times more active against E. faecalis. The compound (3b) was long dozen times more active against E. faecalis. For that reason, these three compounds (3a, 3b, and 3h) were thought to be considered as the promising antibacterial agents.
{"title":"A new family of azanaphthoquinones for antimicrobial evaluation.","authors":"Nilüfer Bayrak","doi":"10.1186/s13065-018-0388-3","DOIUrl":"10.1186/s13065-018-0388-3","url":null,"abstract":"<p><p>This article presents a complete and detailed study of synthesis, structural characterization, and possible applications of a new family of azanaphthoquinones as antimicrobial agents. A series of (alkoxy)phenylamino-chloro-2-methylquinoline-5,8-dione derivatives (3a-j, 3a', 3e') was prepared by regioselective nucleophilic substitution of 6,7-dichloro-2-methylquinoline-5,8-dione (1) with (alkoxy)arylamines (2) in the presence of CeCl<sub>3</sub>·7H<sub>2</sub>O. In vitro antimicrobial study of the newly synthesized compounds was evaluated in a panel of three fungi and seven bacterial strains (three Gram-positive and four Gram-negative bacteria). As a result, the compounds (3a, 3b, and 3h) were identified as the hits with the strong antibacterial efficiency against the human originated pathogens S. epidermidis and E. faecalis with some minimal inhibitory concentration values. The antibacterial activity of the compound (3h) was two times more active against S. epidermidis than the reference antimicrobial compound (Cefuroxime). Two compounds (3a and 3b) exhibited excellent antibacterial activity (four times more active than Cefuroxime) against S. epidermidis. In addition to S. epidermidis, these three compounds (3a, 3b, and 3h) were more active against E. faecalis than the reference antimicrobial compound (Amikacin). The antibacterial activity of the compounds (3a and 3h) was three times more active against E. faecalis. The compound (3b) was long dozen times more active against E. faecalis. For that reason, these three compounds (3a, 3b, and 3h) were thought to be considered as the promising antibacterial agents.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2018-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35859957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-21DOI: 10.1186/s13065-018-0392-7
Showkat Ahmad Bhawani, Tham Soon Sen, Mohammad Nasir Mohammad Ibrahim
The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.
{"title":"Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.","authors":"Showkat Ahmad Bhawani, Tham Soon Sen, Mohammad Nasir Mohammad Ibrahim","doi":"10.1186/s13065-018-0392-7","DOIUrl":"https://doi.org/10.1186/s13065-018-0392-7","url":null,"abstract":"<p><p>The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0392-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35852701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-21DOI: 10.1186/s13065-018-0384-7
H D A Chathumal Jayaweera, Induni Siriwardane, K M Nalin de Silva, Rohini M de Silva
Clean water, which is free from pathogens and toxic chemicals, is vital to human health. The blue planet is encountering remarkable challenges in meeting the ever-increasing demands of clean water. The intention of this research study was to develop a water filter material that is capable of removing bacterial contaminants and heavy metals from fresh water using cost effective and easily fabricated biocompatible filter material. For this purpose, granular activated carbon (GAC) was coated with both hydroxyapatite (HAP) nanoflakes and turmeric extract (TE) (HAP/TE/GAC) which had been extracted from natural turmeric powder. In addition, GAC was coated only with HAP nanoflakes to synthesize HAP coated GAC (HAP/GAC) composite. Prepared HAP/GAC and HAP/TE/GAC were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy and UV-visible spectrophotometry. Antibacterial effect of the prepared nanocomposites, HAP/GAC and HAP/TE/GAC was compared with neat GAC using Gram-negative bacteria Escherichia coli. Results showed that antibacterial studies of the synthesized nanocomposites exhibit effective antibacterial activity against E. coli compared with neat GAC alone. However, the composite HAP/TE/GAC revealed better activity than HAP/GAC. Heavy metal adsorption ability of the synthesized composites was carried out using Pb2+ ions at room temperature at different time intervals and different pH levels. The equilibrium adsorption data were assessed via Langmuir and Freundlich adsorption isotherm models for neat GAC, HAP/GAC and HAP/TE/GAC at pH 6. The equilibrium adsorption data for GAC, HAP/GAC and HAP/TE/GAC were well fitted with both Freundlich and Langmuir isotherm models in the given Pb2+ concentrations. The HAP/TE/GAC composite is capable of maintaining the natural function of GAC in addition to removal of bacterial contaminants and heavy metals, which can be used as a point-of-use water filter material.
{"title":"Synthesis of multifunctional activated carbon nanocomposite comprising biocompatible flake nano hydroxyapatite and natural turmeric extract for the removal of bacteria and lead ions from aqueous solution.","authors":"H D A Chathumal Jayaweera, Induni Siriwardane, K M Nalin de Silva, Rohini M de Silva","doi":"10.1186/s13065-018-0384-7","DOIUrl":"https://doi.org/10.1186/s13065-018-0384-7","url":null,"abstract":"<p><p>Clean water, which is free from pathogens and toxic chemicals, is vital to human health. The blue planet is encountering remarkable challenges in meeting the ever-increasing demands of clean water. The intention of this research study was to develop a water filter material that is capable of removing bacterial contaminants and heavy metals from fresh water using cost effective and easily fabricated biocompatible filter material. For this purpose, granular activated carbon (GAC) was coated with both hydroxyapatite (HAP) nanoflakes and turmeric extract (TE) (HAP/TE/GAC) which had been extracted from natural turmeric powder. In addition, GAC was coated only with HAP nanoflakes to synthesize HAP coated GAC (HAP/GAC) composite. Prepared HAP/GAC and HAP/TE/GAC were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy and UV-visible spectrophotometry. Antibacterial effect of the prepared nanocomposites, HAP/GAC and HAP/TE/GAC was compared with neat GAC using Gram-negative bacteria Escherichia coli. Results showed that antibacterial studies of the synthesized nanocomposites exhibit effective antibacterial activity against E. coli compared with neat GAC alone. However, the composite HAP/TE/GAC revealed better activity than HAP/GAC. Heavy metal adsorption ability of the synthesized composites was carried out using Pb<sup>2+</sup> ions at room temperature at different time intervals and different pH levels. The equilibrium adsorption data were assessed via Langmuir and Freundlich adsorption isotherm models for neat GAC, HAP/GAC and HAP/TE/GAC at pH 6. The equilibrium adsorption data for GAC, HAP/GAC and HAP/TE/GAC were well fitted with both Freundlich and Langmuir isotherm models in the given Pb<sup>2+</sup> concentrations. The HAP/TE/GAC composite is capable of maintaining the natural function of GAC in addition to removal of bacterial contaminants and heavy metals, which can be used as a point-of-use water filter material.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0384-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35852856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-17DOI: 10.1186/s13065-018-0382-9
Ali Ghasemzadeh, Mohamad Taghi Karbalaii, Hawa Z E Jaafar, Asmah Rahmat
Background: In the recent years, the health benefits of the pigmented rice varieties have reported due to the presence of bioactive compounds. In this study, the phytochemical constituents (total phenolic, flavonoid and anthocyanin content) and individual phenolics and flavonoids of the extracts of sixteen genotypes of pigmented rice bran were evaluated using spectrophotometric and ultra-high performance liquid chromatography method. Antioxidative properties of the free and bound fractions were evaluated using nitric oxide and 1,1-diphenyl-2-picrylhydrazyl scavenging assays. Extracts were evaluated for antiproliferative activity against breast cancer cell lines (MCF-7 and MDA-MB-231) using the MTT assay.
Results: Signifficant diferences were observed in the concentrations of phytochemicals and biological activities among different pigmented rice brans. The highest phytochemical content was observed in black rice bran followed by red and brown rice bran. The concentration of free individual flavonoids and phenolic compounds were significantly higher than those of bound compounds except those of ferulic acid and p-coumaric acid. Highest antioxidant activities were observed in black rice bran, followed by red and brown rice bran extracts. Extracts of black rice bran exhibited potent antiproliferative activity, with half maximal inhibitory concentrations (IC50) of 148.6 and 119.2 mg/mL against MCF-7 and MDA-MB-231 cell lines, respectively, compared to the activity of the extracts of red rice bran (175.0 and 151.0 mg/mL, respectively) and brown rice bran (382.3 and 346.1 mg/mL, respectively).
Conclusions: Black rice bran contains high levels of phytochemicals, and thus has potent pharmaceutical activity. This highlights opportunities for researcher to breed new genotypes of rice with higher nutritional values, which the food industry can use to develop new products that will compete in expanding functional food markets.
{"title":"Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran.","authors":"Ali Ghasemzadeh, Mohamad Taghi Karbalaii, Hawa Z E Jaafar, Asmah Rahmat","doi":"10.1186/s13065-018-0382-9","DOIUrl":"https://doi.org/10.1186/s13065-018-0382-9","url":null,"abstract":"<p><strong>Background: </strong>In the recent years, the health benefits of the pigmented rice varieties have reported due to the presence of bioactive compounds. In this study, the phytochemical constituents (total phenolic, flavonoid and anthocyanin content) and individual phenolics and flavonoids of the extracts of sixteen genotypes of pigmented rice bran were evaluated using spectrophotometric and ultra-high performance liquid chromatography method. Antioxidative properties of the free and bound fractions were evaluated using nitric oxide and 1,1-diphenyl-2-picrylhydrazyl scavenging assays. Extracts were evaluated for antiproliferative activity against breast cancer cell lines (MCF-7 and MDA-MB-231) using the MTT assay.</p><p><strong>Results: </strong>Signifficant diferences were observed in the concentrations of phytochemicals and biological activities among different pigmented rice brans. The highest phytochemical content was observed in black rice bran followed by red and brown rice bran. The concentration of free individual flavonoids and phenolic compounds were significantly higher than those of bound compounds except those of ferulic acid and p-coumaric acid. Highest antioxidant activities were observed in black rice bran, followed by red and brown rice bran extracts. Extracts of black rice bran exhibited potent antiproliferative activity, with half maximal inhibitory concentrations (IC<sub>50</sub>) of 148.6 and 119.2 mg/mL against MCF-7 and MDA-MB-231 cell lines, respectively, compared to the activity of the extracts of red rice bran (175.0 and 151.0 mg/mL, respectively) and brown rice bran (382.3 and 346.1 mg/mL, respectively).</p><p><strong>Conclusions: </strong>Black rice bran contains high levels of phytochemicals, and thus has potent pharmaceutical activity. This highlights opportunities for researcher to breed new genotypes of rice with higher nutritional values, which the food industry can use to develop new products that will compete in expanding functional food markets.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2018-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0382-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35841603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}