Ipsita Nandi, Lior Aroeti, Rachana Pattani Ramachandran, Ephrem G. Kassa, Efrat Zlotkin-Rivkin, Benjamin Aroeti
A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria—the energy powerhouse of the cell—are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity. Therefore, it is not surprising that pathogenic bacteria use mitochondrially targeted effectors to control host cell death and immunity pathways. Surprisingly, however, we found that despite their importance, only a limited number of type III secreted effectors have been characterised to target host mitochondria, and the mechanisms underlying their mitochondrial activity have not been sufficiently analysed. These include effectors secreted by the enteric attaching and effacing (A/E), Salmonella and Shigella bacterial pathogens. Here we give an overview of key findings, present gaps in knowledge and hypotheses concerning the mode by which these type III secreted effectors control the host and the bacterial cell life (and death) through targeting mitochondria.
{"title":"Type III secreted effectors that target mitochondria","authors":"Ipsita Nandi, Lior Aroeti, Rachana Pattani Ramachandran, Ephrem G. Kassa, Efrat Zlotkin-Rivkin, Benjamin Aroeti","doi":"10.1111/cmi.13352","DOIUrl":"10.1111/cmi.13352","url":null,"abstract":"<p>A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria—the energy powerhouse of the cell—are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity. Therefore, it is not surprising that pathogenic bacteria use mitochondrially targeted effectors to control host cell death and immunity pathways. Surprisingly, however, we found that despite their importance, only a limited number of type III secreted effectors have been characterised to target host mitochondria, and the mechanisms underlying their mitochondrial activity have not been sufficiently analysed. These include effectors secreted by the enteric attaching and effacing (A/E), <i>Salmonella</i> and <i>Shigella</i> bacterial pathogens. Here we give an overview of key findings, present gaps in knowledge and hypotheses concerning the mode by which these type III secreted effectors control the host and the bacterial cell life (and death) through targeting mitochondria.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 9","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13352","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38968609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lavoisier Akoolo, Vitomir Djokic, Sandra C. Rocha, Nikhat Parveen
Toll-like receptors (TLRs) are a class of membrane-spanning proteins of host cells. TLR2 and TLR4 are displayed on the surface of macrophages, neutrophils and dendritic cells and recognise structurally conserved microbial signatures defined as Pathogen associated molecular patterns (PAMPs). C3H mice are susceptible to tick-borne pathogens; Lyme disease causing Borrelia burgdorferi that manifests arthritis and carditis and Apicomplexan protozoan, Babesia microti (Bm) that causes significant parasitemia associated with erythrocytopenia and haemoglobinuria. B. burgdorferi lacks typical TLR4 ligand lipopolysaccharides (LPS) and Bm TLR ligand(s) remain unknown. Only Borrelia lipoproteins that signal through TLR2 are established as PAMPs of these pathogens for TLR2/TLR4. Infection of C3H mice with each pathogen individually resulted in increase in the percentage of splenic B, T and FcR+ cells while their co-infection significantly diminished levels of these cells and caused increased B. burgdorferi burden in the specific organs. The most pronounced inflammatory arthritis was observed in co-infected C3H/HeJ mice. Parasitemia levels and kinetics of resolution of Bm in both mice strains were not significantly different. Transfected HEK293 cells showed pronounced signalling by B. burgdorferi through TLR2 and to some extent by TLR4 while Bm and infected erythrocytes did not show any response confirming our results in mice.
{"title":"Pathogenesis of Borrelia burgdorferi and Babesia microti in TLR4-Competent and TLR4-dysfunctional C3H mice","authors":"Lavoisier Akoolo, Vitomir Djokic, Sandra C. Rocha, Nikhat Parveen","doi":"10.1111/cmi.13350","DOIUrl":"10.1111/cmi.13350","url":null,"abstract":"<p><i>Toll-like receptors</i> (TLRs) are a class of membrane-spanning <i>proteins of host cells</i>. TLR2 and TLR4 are displayed on the surface of macrophages, neutrophils and dendritic cells and recognise structurally conserved microbial signatures defined as Pathogen associated molecular patterns (PAMPs). C3H mice are susceptible to tick-borne pathogens; Lyme disease causing <i>Borrelia burgdorferi</i> that manifests arthritis and carditis and Apicomplexan protozoan, <i>Babesia microti</i> (<i>Bm</i>) that causes significant parasitemia associated with erythrocytopenia and haemoglobinuria. <i>B. burgdorferi</i> lacks typical TLR4 ligand lipopolysaccharides (LPS) and <i>Bm</i> TLR ligand(s) remain unknown. Only <i>Borrelia</i> lipoproteins that signal through TLR2 are established as PAMPs of these pathogens for TLR2/TLR4. Infection of C3H mice with each pathogen individually resulted in increase in the percentage of splenic B, T and FcR+ cells while their co-infection significantly diminished levels of these cells and caused increased <i>B. burgdorferi</i> burden in the specific organs. The most pronounced inflammatory arthritis was observed in co-infected C3H/HeJ mice. Parasitemia levels and kinetics of resolution of <i>Bm</i> in both mice strains were not significantly different. Transfected HEK293 cells showed pronounced signalling by <i>B. burgdorferi</i> through TLR2 and to some extent by TLR4 while <i>Bm</i> and infected erythrocytes did not show any response confirming our results in mice.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 9","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38941793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Fisch, Robert Evans, Barbara Clough, Sophie K. Byrne, Will M. Channell, Jacob Dockterman, Eva-Maria Frickel
To study the dynamics of infection processes, it is common to manually enumerate imaging-based infection assays. However, manual counting of events from imaging data is biased, error-prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state-of-the-art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans.
{"title":"HRMAn 2.0: Next-generation artificial intelligence–driven analysis for broad host–pathogen interactions","authors":"Daniel Fisch, Robert Evans, Barbara Clough, Sophie K. Byrne, Will M. Channell, Jacob Dockterman, Eva-Maria Frickel","doi":"10.1111/cmi.13349","DOIUrl":"10.1111/cmi.13349","url":null,"abstract":"<p>To study the dynamics of infection processes, it is common to manually enumerate imaging-based infection assays. However, manual counting of events from imaging data is biased, error-prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state-of-the-art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as <i>Toxoplasma gondii</i> and <i>Salmonella</i> in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen interactions using the established pathogen <i>T. gondii</i> and further extend it for use with the bacterial pathogen <i>Chlamydia trachomatis</i> and the fungal pathogen <i>Cryptococcus neoformans</i>.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnes Dahlstrand Rudin, Arsham Khamzeh, Vignesh Venkatakrishnan, Amina Basic, Karin Christenson, Johan Bylund
Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca2+ signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.
{"title":"Short chain fatty acids released by Fusobacterium nucleatum are neutrophil chemoattractants acting via free fatty acid receptor 2 (FFAR2)","authors":"Agnes Dahlstrand Rudin, Arsham Khamzeh, Vignesh Venkatakrishnan, Amina Basic, Karin Christenson, Johan Bylund","doi":"10.1111/cmi.13348","DOIUrl":"10.1111/cmi.13348","url":null,"abstract":"<p><i>Fusobacterium nucleatum</i> is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by <i>F. nucleatum</i> and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of <i>F. nucleatum</i> are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of <i>F. nucleatum</i>, trigger chemotaxis of human neutrophils, as well as cytosolic Ca<sup>2+</sup> signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of <i>F. nucleatum</i>.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 8","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38920014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}