Sergey Kim, M. Baikenov, D. Aitbekova, K. Ibishev, M. Meiramov, Fengyun Ma
Impact of the nanosized iron powder on the process of thermal degradation of coal tar distillate was determined by the thermogravimetric analysis. Coal tar distillate was obtained by simple distillation up to 350°C of primary coal tar from the Shubarkol deposit. Iron powder was obtained by electrochemical reduction of iron from sulfate electrolytes at simultaneous impact of high-voltage electric discharge on cathodic zone. Scanning electron microscopy showed that iron powder consists of nanosized particles (30-124 nm) forming aggregates. X-ray diffraction analysis revealed the presence of α-Fe and FeO(OH) phases. The average crystallite size determination was made using Scherrer equation and amounted to 31.7 nm. Obtained iron powder was added to the coal tar distillate in amount of 1% of distillate weight and this mixture was subjected to thermal degradation at heating rate 5°C/min in an inert atmosphere. Processing of the data obtained was carried out using the model-fitting Coats-Redfern method. The values of activation energy were calculated from the linear approximation constructed as a result of processing thermoanalytical data. It was found that the addition of iron powder in amount of 1% to the coal tar distillate reduces the activation energy from 153.98 kJ/mol to 84.48 kJ/mol.
{"title":"Thermal degradation of primary coal tar distillate in the presence of iron nanopowder","authors":"Sergey Kim, M. Baikenov, D. Aitbekova, K. Ibishev, M. Meiramov, Fengyun Ma","doi":"10.15328/cb1278","DOIUrl":"https://doi.org/10.15328/cb1278","url":null,"abstract":"Impact of the nanosized iron powder on the process of thermal degradation of coal tar distillate was determined by the thermogravimetric analysis. Coal tar distillate was obtained by simple distillation up to 350°C of primary coal tar from the Shubarkol deposit. Iron powder was obtained by electrochemical reduction of iron from sulfate electrolytes at simultaneous impact of high-voltage electric discharge on cathodic zone. Scanning electron microscopy showed that iron powder consists of nanosized particles (30-124 nm) forming aggregates. X-ray diffraction analysis revealed the presence of α-Fe and FeO(OH) phases. The average crystallite size determination was made using Scherrer equation and amounted to 31.7 nm. Obtained iron powder was added to the coal tar distillate in amount of 1% of distillate weight and this mixture was subjected to thermal degradation at heating rate 5°C/min in an inert atmosphere. Processing of the data obtained was carried out using the model-fitting Coats-Redfern method. The values of activation energy were calculated from the linear approximation constructed as a result of processing thermoanalytical data. It was found that the addition of iron powder in amount of 1% to the coal tar distillate reduces the activation energy from 153.98 kJ/mol to 84.48 kJ/mol.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48068943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water and oil emulsion formation is a natural process that takes place during oil recovery and processing. Heavy oils of Kazakhstan form highly stable oil emulsions mostly stabilized by a high content of asphaltenes, resins, and other surface-active components. Oil-in-water emulsions initiate the corrosion of equipment and cause transportation issues. Dewatering of oil emulsions is economically reasonable and requires universal techniques which could be applied to any sort of oil. In this study, the chemical composition of crude oil from the Sarybulak oilfield was determined, and commercial demulsifiers of Basorol brand were applied to these water-in-oil emulsions. The natural stabilizers content (asphaltenes and resins) was determined and correlated with IR-spectrum data. Finally, the effectiveness of demulsifiers is compared and explained according to their structures. It has been found that the higher the relative solubility number of the demulsifier, the better water-in-oil emulsion separation efficiency and dewatering mechanism was assumed. Results of water separation showed that Basorol PE-10400 and PE-10500 are the most effective, with DE of 96% and 91%, respectively, for 30% (vol.) water-in-oil emulsion at 60°C during 1-hour treatment.
{"title":"Evaluation of the effectiveness of commercial demulsifiers based on polyoxyalkylated compounds in relation to oil and water emulsions of the Sarybulak oilfield","authors":"A. Adilbekova, Saidulla Faizullayev, W. Kujawski","doi":"10.15328/cb1282","DOIUrl":"https://doi.org/10.15328/cb1282","url":null,"abstract":"Water and oil emulsion formation is a natural process that takes place during oil recovery and processing. Heavy oils of Kazakhstan form highly stable oil emulsions mostly stabilized by a high content of asphaltenes, resins, and other surface-active components. Oil-in-water emulsions initiate the corrosion of equipment and cause transportation issues. Dewatering of oil emulsions is economically reasonable and requires universal techniques which could be applied to any sort of oil. In this study, the chemical composition of crude oil from the Sarybulak oilfield was determined, and commercial demulsifiers of Basorol brand were applied to these water-in-oil emulsions. The natural stabilizers content (asphaltenes and resins) was determined and correlated with IR-spectrum data. Finally, the effectiveness of demulsifiers is compared and explained according to their structures. It has been found that the higher the relative solubility number of the demulsifier, the better water-in-oil emulsion separation efficiency and dewatering mechanism was assumed. Results of water separation showed that Basorol PE-10400 and PE-10500 are the most effective, with DE of 96% and 91%, respectively, for 30% (vol.) water-in-oil emulsion at 60°C during 1-hour treatment.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47686346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Mamytbekov, E. Zhakanbaev, Ernat Nurtazin, Victor Glushenko
The synthesis, structure and features of the formation of biphasic hybrid polymer compositions based on natural ionite (bentonite – BT), its intercalated complex (ICC) with a solid solution of copper ferrocyanide K4-хCux[Fe(CN)6] and a synthetic rare cross-linked acrylamide-acrylic acid copolymer were studied. The mechanism of formation of biphasic intercalated and percolated structures was analyzed by means of X-ray diffraction, X-ray fluorescence analysis, IR-Fourier spectroscopy and stress-strain curves. It is shown that the impregnation of the mineral bentonite filler into the polymer matrix, including its intercalated complex {BT:K4-xCux[Fe(CN)6]} is accompanied by an increase of non-uniformity of the structure of the hybrid composite material. It has been established that the main factor characterizing the deformation stability of the composite is the adhesive strength at the interface between the mineral filler and the polymer matrix. Under uniaxial tension of the P[AA-AA]{BT} composition and the percolated complex P[AA-AA]{BT:K4-xCux[Fe(CN)6]} their internal structure is rearranged resulting in stretching of agglomerates of solid fillers along polymer chains, which is determined by the adhesion force between polymer chains and mineral particles at the phase boundary. It is proposed to consider such biphasic hybrid composite materials as a promising class of interpenetrating networks with valuable applied properties.
{"title":"Synthesis, structure and features of formation of biphasic hybrid polymer compositions based on bentonite","authors":"G. Mamytbekov, E. Zhakanbaev, Ernat Nurtazin, Victor Glushenko","doi":"10.15328/cb1280","DOIUrl":"https://doi.org/10.15328/cb1280","url":null,"abstract":"The synthesis, structure and features of the formation of biphasic hybrid polymer compositions based on natural ionite (bentonite – BT), its intercalated complex (ICC) with a solid solution of copper ferrocyanide K4-хCux[Fe(CN)6] and a synthetic rare cross-linked acrylamide-acrylic acid copolymer were studied. The mechanism of formation of biphasic intercalated and percolated structures was analyzed by means of X-ray diffraction, X-ray fluorescence analysis, IR-Fourier spectroscopy and stress-strain curves. It is shown that the impregnation of the mineral bentonite filler into the polymer matrix, including its intercalated complex {BT:K4-xCux[Fe(CN)6]} is accompanied by an increase of non-uniformity of the structure of the hybrid composite material. It has been established that the main factor characterizing the deformation stability of the composite is the adhesive strength at the interface between the mineral filler and the polymer matrix. Under uniaxial tension of the P[AA-AA]{BT} composition and the percolated complex P[AA-AA]{BT:K4-xCux[Fe(CN)6]} their internal structure is rearranged resulting in stretching of agglomerates of solid fillers along polymer chains, which is determined by the adhesion force between polymer chains and mineral particles at the phase boundary. It is proposed to consider such biphasic hybrid composite materials as a promising class of interpenetrating networks with valuable applied properties.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48546362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Makayeva, G. Yergaziyeva, Moldir Anisova, Z. Shaimerden, K. Dossumov
This work is devoted to the study of the activity of monometallic (Fe/Al2O3) and bimetallic (Fe-Mo/Al2O3) catalysts supported to carrier γ- Al2O3. It has been discovered that the bimetallic catalyst is more active than the monometallic catalyst in the methane decomposition reaction. The results of the influence of molybdenum oxide on the activity of Fe/Al2O3 catalyst in the methane decomposition reaction in the temperature range 500-850°C have been obtained. It has been determined that the addition of molybdenum oxide in the amount of 5 wt. % of the iron catalyst composition leads to an increase in the catalytic activity of the sample in the reaction of methanedecomposition to hydrogen at relatively low temperatures. Compared to Fe/Al2O3 on the FeMo/Al2O3 catalyst at a reaction temperature of 750°C, methane conversionincreases from 8% to 98%, hydrogen yield from 5% to 57%. The increased field of activity Fe-Mo/Al2O3catalyst in the decomposition of methane to hydrogen compared to Fe/Al2O3 catalysts is due to an increase in the dispersity of the active phases of the catalyst, as well as the formation of an easily reduced Fe2(MоО4)3 phase, according to XRD, TPR-H2, and BET methods.
{"title":"Effect of the interaction of components in a nickel-molybdenum catalyst on its activity in decomposition of methane to hydrogen","authors":"N. Makayeva, G. Yergaziyeva, Moldir Anisova, Z. Shaimerden, K. Dossumov","doi":"10.15328/cb1281","DOIUrl":"https://doi.org/10.15328/cb1281","url":null,"abstract":"This work is devoted to the study of the activity of monometallic (Fe/Al2O3) and bimetallic (Fe-Mo/Al2O3) catalysts supported to carrier γ- Al2O3. It has been discovered that the bimetallic catalyst is more active than the monometallic catalyst in the methane decomposition reaction. The results of the influence of molybdenum oxide on the activity of Fe/Al2O3 catalyst in the methane decomposition reaction in the temperature range 500-850°C have been obtained. It has been determined that the addition of molybdenum oxide in the amount of 5 wt. % of the iron catalyst composition leads to an increase in the catalytic activity of the sample in the reaction of methanedecomposition to hydrogen at relatively low temperatures. Compared to Fe/Al2O3 on the FeMo/Al2O3 catalyst at a reaction temperature of 750°C, methane conversionincreases from 8% to 98%, hydrogen yield from 5% to 57%.\u0000The increased field of activity Fe-Mo/Al2O3catalyst in the decomposition of methane to hydrogen compared to Fe/Al2O3 catalysts is due to an increase in the dispersity of the active phases of the catalyst, as well as the formation of an easily reduced Fe2(MоО4)3 phase, according to XRD, TPR-H2, and BET methods.\u0000","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45821596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ajani, Ademola Toheeb Adeniji, Samson Shina Ayodabo, A. Alade, T. Afolabi, S. O. Ganiyu
Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.
{"title":"Removal of Diclofenac-Na from aqueous solution onto H3PO4 modified composite clay","authors":"A. Ajani, Ademola Toheeb Adeniji, Samson Shina Ayodabo, A. Alade, T. Afolabi, S. O. Ganiyu","doi":"10.15328/cb1274","DOIUrl":"https://doi.org/10.15328/cb1274","url":null,"abstract":"Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47164844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Tatykhanova, V. Aseyev, M. Vamvakaki, V. Khutoryanskiy, S. Kudaibergenov
Complex formation between a natural polysaccharide – gellan and an antimicrobial drug – ofloxacin was studied in aqueous solution. Conductimetric and potentiometric titration curves revealed that gellan and ofloxacin forms a water-soluble complex of composition 2:1 mol/mol stabilized by ionic and hydrogen bonds. The formation of the gellan-ofloxacin complex was confirmed by FTIR spectroscopy, dynamic light scattering, zeta-potential and thermogravimetric analysis. The average hydrodynamic size of the complex was found 307±5 nm and its zeta-potential was negative and equal to -15 mV. Thin films of the gellan-ofloxacin complex, gelled in 0.3 wt.% of CaCl2, were used to study the release kinetics of ofloxacin in distilled water and phosphate buffer. The drug release kinetics evaluated by UV-Vis spectroscopy at λmax = 289 nm and calculated by the Ritger-Peppas model correspond to non-Fickian diffusion in distilled water and Case II transport (zero-order kinetics) in phosphate buffer. The cumulative release of ofloxacin from the gellan-ofloxacin films was equal to 96±2% and 36±2% in phosphate buffer and distilled water, respectively. It is expected that the gellan-ofloxacin complex is able to form in situ gel on the surface of the eye and to prolong the drug residence time in the tear fluid.
{"title":"Ophthalmic drug delivery system based on the complex of gellan and ofloxacin","authors":"G. Tatykhanova, V. Aseyev, M. Vamvakaki, V. Khutoryanskiy, S. Kudaibergenov","doi":"10.15328/cb1239","DOIUrl":"https://doi.org/10.15328/cb1239","url":null,"abstract":"Complex formation between a natural polysaccharide – gellan and an antimicrobial drug – ofloxacin was studied in aqueous solution. Conductimetric and potentiometric titration curves revealed that gellan and ofloxacin forms a water-soluble complex of composition 2:1 mol/mol stabilized by ionic and hydrogen bonds. The formation of the gellan-ofloxacin complex was confirmed by FTIR spectroscopy, dynamic light scattering, zeta-potential and thermogravimetric analysis. The average hydrodynamic size of the complex was found 307±5 nm and its zeta-potential was negative and equal to -15 mV. Thin films of the gellan-ofloxacin complex, gelled in 0.3 wt.% of CaCl2, were used to study the release kinetics of ofloxacin in distilled water and phosphate buffer. The drug release kinetics evaluated by UV-Vis spectroscopy at λmax = 289 nm and calculated by the Ritger-Peppas model correspond to non-Fickian diffusion in distilled water and Case II transport (zero-order kinetics) in phosphate buffer. The cumulative release of ofloxacin from the gellan-ofloxacin films was equal to 96±2% and 36±2% in phosphate buffer and distilled water, respectively. It is expected that the gellan-ofloxacin complex is able to form in situ gel on the surface of the eye and to prolong the drug residence time in the tear fluid.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44048683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Burkeev, A. Bolatbay, D. Havlícek, Y. Tazhbayev, S. Davrenbekov, L. Zhaparova
Thermal decomposition of the copolymer of polyethylene glycol fumarate with acrylic acid (p-EGF:AA) of two different compositions synthesized earlier was studied in the present work. TG and DTG curves prove that decomposition takes place in several stages. According to thermogravimetric curves it has been found out that for the copolymer with higher content of acrylic acid the decomposition of the copolymer’s sample is started at higher temperatures. It has been shown the shift of the temperature of decomposition’s start to the higher area with the increase of heating rate which is necessary for the detorsion of macromolecular coil. Experimental data processed using graphical methods of Kissinger–Akahira–Sunose and Friedman allowed us to calculate the activation energy of the thermal decomposition process. It has been established that the copolymer with the composition of 21.03:78.97 mass.% has lower meaning of activation energy than the one with the composition of 68.96:31.04 mass.%. As a result of calculation one can see that the meanings found out using these methods depend slightly on conversion. Using Achar-Brindley-Sharp method and the method of invariant kinetic parameters the kinetic triplet of the decomposition process has been found which was used to build the calculated curve. The dependences of g(α) on α using these parameters showed a satisfactory agreement of calculated curves with the experimental ones. One can conclude that the decomposition process of the copolymer of polyethylene glycol fumarate with acrylic acid is well described with of D3 (three-dimensional diffusion) model.
{"title":"Kinetic parameters of thermal destruction of the copolymer of polyethylene glycol fumarate with acrylic acid in inert medium","authors":"M. Burkeev, A. Bolatbay, D. Havlícek, Y. Tazhbayev, S. Davrenbekov, L. Zhaparova","doi":"10.15328/cb1260","DOIUrl":"https://doi.org/10.15328/cb1260","url":null,"abstract":"Thermal decomposition of the copolymer of polyethylene glycol fumarate with acrylic acid (p-EGF:AA) of two different compositions synthesized earlier was studied in the present work. TG and DTG curves prove that decomposition takes place in several stages. According to thermogravimetric curves it has been found out that for the copolymer with higher content of acrylic acid the decomposition of the copolymer’s sample is started at higher temperatures. It has been shown the shift of the temperature of decomposition’s start to the higher area with the increase of heating rate which is necessary for the detorsion of macromolecular coil. Experimental data processed using graphical methods of Kissinger–Akahira–Sunose and Friedman allowed us to calculate the activation energy of the thermal decomposition process. It has been established that the copolymer with the composition of 21.03:78.97 mass.% has lower meaning of activation energy than the one with the composition of 68.96:31.04 mass.%. As a result of calculation one can see that the meanings found out using these methods depend slightly on conversion. Using Achar-Brindley-Sharp method and the method of invariant kinetic parameters the kinetic triplet of the decomposition process has been found which was used to build the calculated curve. The dependences of g(α) on α using these parameters showed a satisfactory agreement of calculated curves with the experimental ones. One can conclude that the decomposition process of the copolymer of polyethylene glycol fumarate with acrylic acid is well described with of D3 (three-dimensional diffusion) model.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44995824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Belyankova, A. Dauletbakov, B. Anapiyayev, A. Ten, M. Aydemir, A. Zazybin
The aim of this study was to synthesize novel ionic compound – 1-propargyl-1-(2-methyl-3-oxo-3-(p-tolyl)propyl)-piperidin-1-ium bromide – via the N-alkylation (in conventional conditions and using ultrasound activation), and investigate its influence on the plant growth-stimulating activity using of sweet sorghum seeds. The synthesized compound was fully characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. Regardless of the type of synthesis’ methods, the isolated yield of the produced ionic compound is showed 79-81%, however, the reaction rate was significantly increased by using ultrasonic activation. For the assessment of the growth-stimulating activity of the synthesized ionic compound, parameters such as root length, shoot length, seed energy germination rate, and germination capacity were determined on 10 genotypes of sweet sorghum seeds. The results of samples with low concentration (0.001% vol. solution) were demonstrated the higher intensity for tested genotypes than control samples, especially for process of gemmogenesis and intensity of rhizogenesis. The results of this study can be used as basis for the further development of plant growth stimulants based on ionic compounds.
{"title":"Synthesis of 1-propargyl-1-(2-methyl-3-oxo-3-(p-tolyl)propyl)-piperidin-1-ium bromide and its plant growth-stimulating activity assessment","authors":"Y. Belyankova, A. Dauletbakov, B. Anapiyayev, A. Ten, M. Aydemir, A. Zazybin","doi":"10.15328/cb1259","DOIUrl":"https://doi.org/10.15328/cb1259","url":null,"abstract":"The aim of this study was to synthesize novel ionic compound – 1-propargyl-1-(2-methyl-3-oxo-3-(p-tolyl)propyl)-piperidin-1-ium bromide – via the N-alkylation (in conventional conditions and using ultrasound activation), and investigate its influence on the plant growth-stimulating activity using of sweet sorghum seeds. The synthesized compound was fully characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. Regardless of the type of synthesis’ methods, the isolated yield of the produced ionic compound is showed 79-81%, however, the reaction rate was significantly increased by using ultrasonic activation. For the assessment of the growth-stimulating activity of the synthesized ionic compound, parameters such as root length, shoot length, seed energy germination rate, and germination capacity were determined on 10 genotypes of sweet sorghum seeds. The results of samples with low concentration (0.001% vol. solution) were demonstrated the higher intensity for tested genotypes than control samples, especially for process of gemmogenesis and intensity of rhizogenesis. The results of this study can be used as basis for the further development of plant growth stimulants based on ionic compounds.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48777067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan Diyarov, N. Nursapina, I. Matveyeva, O. Ponomarenko
The problem of high content of heavy metals in food has spread broadly over the world. The presented study suggests the minimization of heavy metal content in processed food due to different applied techniques such as the frying, boiling, steaming and sous-vide. Three main food products were chosen for investigation – Daucus carota subsp. Sativus (carrot), Solanum tuberosum (potato) and Allium cepa (onion). The concentration of heavy metals (Zn, Pb, Mn, Cd, Cu) was determined in samples investigated by atomic-absorption spectrometer. The health risk index (HRI) was calculated based on obtained data. In all investigated samples, high concentration of lead was identified among the heavy metals. The highest concentration of zinc, lead and manganese was determined in boiled Daucus carota subsp. Sativus, cadmium – in sous - vide Daucus carota subsp. Sativus, copper – in steamed Daucus carota subsp. Sativus. HRI values of cadmium for Solanum tuberosum samples were ranged from 6.8 to 7.1 and for lead are ranged between 3.4 and 4.9.
{"title":"Effect of food processing method on heavy metals","authors":"Alan Diyarov, N. Nursapina, I. Matveyeva, O. Ponomarenko","doi":"10.15328/cb1247","DOIUrl":"https://doi.org/10.15328/cb1247","url":null,"abstract":"The problem of high content of heavy metals in food has spread broadly over the world. The presented study suggests the minimization of heavy metal content in processed food due to different applied techniques such as the frying, boiling, steaming and sous-vide. Three main food products were chosen for investigation – Daucus carota subsp. Sativus (carrot), Solanum tuberosum (potato) and Allium cepa (onion). The concentration of heavy metals (Zn, Pb, Mn, Cd, Cu) was determined in samples investigated by atomic-absorption spectrometer. The health risk index (HRI) was calculated based on obtained data. In all investigated samples, high concentration of lead was identified among the heavy metals. The highest concentration of zinc, lead and manganese was determined in boiled Daucus carota subsp. Sativus, cadmium – in sous - vide Daucus carota subsp. Sativus, copper – in steamed Daucus carota subsp. Sativus. HRI values of cadmium for Solanum tuberosum samples were ranged from 6.8 to 7.1 and for lead are ranged between 3.4 and 4.9.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47879053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Seilkhanova, A. Rakhym, Anastasiya Kan, A. Kenessova, Y. Mastai
In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).
本研究以天然沸石(Z)和色粘土(ChC)为吸附剂,分别经NaCl和HNO3溶液处理,获得了从盐水中提取Na+和K+离子的吸附剂。采用扫描电镜(SEM)、电子能谱(EDAX)和BET等方法对所得吸附剂的物理化学特性进行了研究。结果表明,NaCl和HNO3溶液连续处理对材料的吸附性能有积极的影响。经酸处理的Z的比表面积从4.5 m2/g增加到39.3 m2/g, ChC的比表面积也从8.4 m2/g增加到15.3 m2/g,几乎增加了2倍。由于离子与Z和ChC阳离子交换,Na+和K+离子从水中被提取出来。通过测定所研究的吸附剂的阳离子交换容量(CEC),发现NaCl溶液处理提高了吸附剂的离子交换性能,并导致“同离子”形式的铝硅酸盐的形成。因此吸附剂更容易进入离子交换反应。作者建立了基于天然Z和ChC的材料对Na+和K+阳离子的吸附活性。ChC-Na- h吸附剂对Na+离子的最大回收率为28.45%,对K+离子的最大回收率为76.28%。在z基吸附剂中,Z-Na- h (Na+回收率15.44%)和Z-Na (K+回收率60.47%)是最有效的形式。
{"title":"The use of natural zeolite and chamotte clay-based sorbents for the extraction of sodium and potassium ions from saline water: \u0000a preliminary study","authors":"G. Seilkhanova, A. Rakhym, Anastasiya Kan, A. Kenessova, Y. Mastai","doi":"10.15328/cb1276","DOIUrl":"https://doi.org/10.15328/cb1276","url":null,"abstract":"In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47358706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}