Correction for ‘Stapled histone H3 tails are super-substrates for lysine methyltransferase SETD7’ by Nurgül Bilgin et al., Chem. Sci., 2026, https://doi.org/10.1039/d5sc08094k.
Despite the surge of AI in energy materials research, fully autonomous workflows that connect high-precision experimental knowledge to the discovery of credible new energy-related materials remain at an early stage. Here, we develop the Descriptive Interpretation of Visual Expression (DIVE) multi-agent workflow, which systematically reads and organizes experimental data from graphical elements in scientific literature. Applied to solid-state hydrogen storage materials—a class of materials central to future clean-energy technologies—DIVE markedly improves the accuracy and coverage of data extraction compared to the direct extraction method, with gains of 10–15% over commercial models and over 30% relative to open-source models. Building on a curated database of over 30 000 entries from >4000 publications, we establish a rapid inverse-design AI workflow capable of proposing new materials within minutes. This transferable, end-to-end paradigm illustrates how multimodal AI agents can convert literature-embedded scientific knowledge into actionable innovation, offering a scalable pathway for accelerated discovery across chemistry and materials science.
Nickel foam treated via chemical vapor deposition (CVD) with H2S has demonstrated potential in applications such as supercapacitors and catalysis for alkaline water electrolysis. However, the formation mechanism of the nickel sulfide surface layer remains poorly understood. In this study, in situ powder X-ray diffraction (PXRD) was employed to identify the crystalline phase transformations and the reaction mechanism and assess its kinetics. Ni3S2 formation was investigated under industrially relevant conditions by passing 3% H2S/Ar through Ni foam and tracking the growth of the sulfided layer in relation to thickness and time. The reduced sulfidation rate observed at low flow, extended time, and greater depths indicated strong mass transfer limitations, whereas the pronounced increase between 90 and 170 °C revealed the high activation energy of the sulfidation process. A diffusion-reaction model is proposed to describe the spatial and time evolution of the Ni3S2 layer growth, assuming that H2S diffuses through the newly formed Ni3S2 layer before reacting at the Ni interface. The modelling results indicate that both the reaction and diffusion occur at fast rates and compete in the temperature range of 130-170 °C. Post-synthesis SEM and tomography analysis confirmed improved uniformity in nickel-sulfide layer thickness and extrusion coverage when the process is reaction limited rather than diffusion limited: either at synthesis temperatures below 130 °C or a higher flow rate at 130 °C. On the other hand, higher temperatures promote the formation of large NiS x extrusions. These results provide insight into the effect of the synthesis parameters on the microstructure and the formation of Ni3S2 and NiS x , providing fundamental physico-chemical and transport properties for process optimization and upscaling.

