The chemical reduction of a pyracylene-hexa-peri-hexabenzocoronene-(HBC)-fused nanographene TPP was investigated with K and Rb metals to reveal its multi-electron acceptor abilities. The in situ reaction of TPP with the above alkali metals, monitored by UV-vis-NIR and 1H NMR spectroscopy, evidenced the stepwise reduction process. The use of different solvents and secondary ligands enabled isolation of single crystals of three different reduced states of TPP with 1, 2, and 3 electrons added to its π-system. This provided a unique set of carbanions with gradually increasing negative charge for in-depth structural analysis of the outcomes of controlled electron addition to a non-planar and asymmetric nanographene, using X-ray crystallographic, spectroscopic, and theoretical tools. EPR spectroscopy measurements of the mono- and triply-reduced TPP products revealed distinct EPR splitting patterns. DFT calculations demonstrated a notable difference in the spin density distribution of these two open-shell products and provided insights into experimental EPR data. Moreover, the influence of the counterions on the "naked" TPP anions was illustrated computationally.
We investigated the reactivity of a gem-dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity. The latter was found to be related to the dehydrogenation of the amine groups, which did not occur on Au(111), thus promoting the different reactivity observed. At higher annealing temperature, selective C-H activation led to the formation of well-defined organometallic chains. In addition, we found that the amine complexation with metal adatom on Cu(111) was an inhibiting factor for the dimerization reaction, a challenge that could be overcome through proper control of the deposition conditions.