Pub Date : 2025-04-04Epub Date: 2025-03-20DOI: 10.1021/acs.jproteome.4c01100
Sofia Farkona, Max Kotlyar, Kevin Burns, Greg Knoll, Davor Brinc, Igor Jurisica, Ana Konvalinka
The renin-angiotensin system (RAS) is involved in kidney fibrosis. We previously identified six RAS-regulated proteins (RHOB, BST1, LYPA1, GLNA, TSP1, and LAMB2) that were increased in the urine of patients with kidney allograft fibrosis, compared to patients without fibrosis. We hypothesized that these urinary RAS-regulated proteins predicted primary outcomes in kidney transplant recipients enrolled in the largest RAS inhibitor randomized controlled trial. Urine excretion of 10 peptides corresponding to the six RAS-regulated proteins was quantified using parallel reaction monitoring mass spectrometry assays (normalized by urine creatinine) in a subset of patients in the trial. Machine learning models predicting outcomes based on urine peptide excretion rates were developed and evaluated. Urine samples (n = 111) from 56 patients were collected at 0, 6, 12, and 24 months. Twenty-four primary outcomes (doubling of serum creatinine, graft loss, or death) occurred in 17 patients. Logistic regression utilizing eight peptides of TSP1, BST1, LAMB2, LYPA1, and RHOB, from the last urine sample prior to outcomes, predicted a graft loss with an AUC of 0.78 (p = 0.00001). A random forest classifier utilizing BST1 and LYPA1 peptides predicted death with an AUC of 0.80 (p = 0.0016). Urine measurements of RAS-regulated proteins may predict outcomes in kidney transplant recipients, although further prospective studies are required.
{"title":"Urine Measurements of the Renin-Angiotensin System-Regulated Proteins Predict Death and Graft Loss in Kidney Transplant Recipients Enrolled in a Ramipril versus Placebo Randomized Controlled Trial.","authors":"Sofia Farkona, Max Kotlyar, Kevin Burns, Greg Knoll, Davor Brinc, Igor Jurisica, Ana Konvalinka","doi":"10.1021/acs.jproteome.4c01100","DOIUrl":"10.1021/acs.jproteome.4c01100","url":null,"abstract":"<p><p>The renin-angiotensin system (RAS) is involved in kidney fibrosis. We previously identified six RAS-regulated proteins (RHOB, BST1, LYPA1, GLNA, TSP1, and LAMB2) that were increased in the urine of patients with kidney allograft fibrosis, compared to patients without fibrosis. We hypothesized that these urinary RAS-regulated proteins predicted primary outcomes in kidney transplant recipients enrolled in the largest RAS inhibitor randomized controlled trial. Urine excretion of 10 peptides corresponding to the six RAS-regulated proteins was quantified using parallel reaction monitoring mass spectrometry assays (normalized by urine creatinine) in a subset of patients in the trial. Machine learning models predicting outcomes based on urine peptide excretion rates were developed and evaluated. Urine samples (<i>n</i> = 111) from 56 patients were collected at 0, 6, 12, and 24 months. Twenty-four primary outcomes (doubling of serum creatinine, graft loss, or death) occurred in 17 patients. Logistic regression utilizing eight peptides of TSP1, BST1, LAMB2, LYPA1, and RHOB, from the last urine sample prior to outcomes, predicted a graft loss with an AUC of 0.78 (<i>p</i> = 0.00001). A random forest classifier utilizing BST1 and LYPA1 peptides predicted death with an AUC of 0.80 (<i>p</i> = 0.0016). Urine measurements of RAS-regulated proteins may predict outcomes in kidney transplant recipients, although further prospective studies are required.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"2040-2052"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143661775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04Epub Date: 2025-03-20DOI: 10.1021/acs.jproteome.5c00092
Eric W Deutsch, Luis Mendoza, Robert L Moritz
Proteomics data-dependent acquisition data sets collected with high-resolution mass-spectrometry (MS) can achieve very high-quality results, but nearly every analysis yields results that are thresholded at some accepted false discovery rate, meaning that a substantial number of results are incorrect. For study conclusions that rely on a small number of peptide-spectrum matches being correct, it is thus important to examine at least some crucial spectra to ensure that they are not one of the incorrect identifications. We present Quetzal, a peptide fragment ion spectrum annotation tool to assist researchers in annotating and examining such spectra to ensure that they correctly support study conclusions. We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. We illustrate its functionality with several annotated spectra of varying complexity. Quetzal provides easily accessible functionality that can assist in the effort to ensure and demonstrate that crucial spectra support study conclusions. Quetzal is publicly available at https://proteomecentral.proteomexchange.org/quetzal/.
{"title":"Quetzal: Comprehensive Peptide Fragmentation Annotation and Visualization.","authors":"Eric W Deutsch, Luis Mendoza, Robert L Moritz","doi":"10.1021/acs.jproteome.5c00092","DOIUrl":"10.1021/acs.jproteome.5c00092","url":null,"abstract":"<p><p>Proteomics data-dependent acquisition data sets collected with high-resolution mass-spectrometry (MS) can achieve very high-quality results, but nearly every analysis yields results that are thresholded at some accepted false discovery rate, meaning that a substantial number of results are incorrect. For study conclusions that rely on a small number of peptide-spectrum matches being correct, it is thus important to examine at least some crucial spectra to ensure that they are not one of the incorrect identifications. We present Quetzal, a peptide fragment ion spectrum annotation tool to assist researchers in annotating and examining such spectra to ensure that they correctly support study conclusions. We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. We illustrate its functionality with several annotated spectra of varying complexity. Quetzal provides easily accessible functionality that can assist in the effort to ensure and demonstrate that crucial spectra support study conclusions. Quetzal is publicly available at https://proteomecentral.proteomexchange.org/quetzal/.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"2196-2204"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic perturbations of the gut microbiome have been implicated in the pathogenesis of multiple human diseases, including type-2 diabetes (T2D). However, our understanding of the global metabolic alterations of the gut microbiota in T2D and their functional roles remains limited. To address this, we conducted a high-coverage metabolomics profiling analysis of serum samples from 1282 Chinese individuals with and without T2D. Among the 220 detected microbiota-associated compounds detected, 111 were significantly altered, forming a highly interactive regulatory network associated with T2D development. Pathway enrichment and correlation analyses revealed aberrant metabolic pathways, primarily including the activation of pyrimidine metabolism, unsaturated fatty acid biosynthesis, and diverse amino acid metabolisms such as Tryptophan metabolism, Lysine metabolism, and Branched-chain amino acid biosynthesis. A microbiota-dependent biomarker panel, comprising pipecolinic acid, methoxysalicylic acid, N-acetylhistamine, and 3-hydroxybutyrylcarnitine, was defined and validated with satisfactory sensitivity (>78%) for large-scale, population-based T2D screening. The functional role of a gut microbial product, N-acetylhistamine, was further elucidated in T2D progression through its inhibition of adenosine monophosphate-activated protein kinase phosphorylation. Overall, this study expands our understanding of gut microbiota-driven metabolic dysregulation in T2D and suggests that monitoring these metabolic changes could facilitate the diagnosis and treatment of T2D.
{"title":"High-Coverage Metabolomics Reveals Gut Microbiota-Related Metabolic Traits of Type-2 Diabetes in Serum.","authors":"Wangshu Qin, Sijia Zheng, Lina Zhou, Xinyu Liu, Tiantian Chen, Xiaolin Wang, Qi Li, Ying Zhao, Difei Wang, Guowang Xu","doi":"10.1021/acs.jproteome.4c00507","DOIUrl":"10.1021/acs.jproteome.4c00507","url":null,"abstract":"<p><p>Metabolic perturbations of the gut microbiome have been implicated in the pathogenesis of multiple human diseases, including type-2 diabetes (T2D). However, our understanding of the global metabolic alterations of the gut microbiota in T2D and their functional roles remains limited. To address this, we conducted a high-coverage metabolomics profiling analysis of serum samples from 1282 Chinese individuals with and without T2D. Among the 220 detected microbiota-associated compounds detected, 111 were significantly altered, forming a highly interactive regulatory network associated with T2D development. Pathway enrichment and correlation analyses revealed aberrant metabolic pathways, primarily including the activation of pyrimidine metabolism, unsaturated fatty acid biosynthesis, and diverse amino acid metabolisms such as Tryptophan metabolism, Lysine metabolism, and Branched-chain amino acid biosynthesis. A microbiota-dependent biomarker panel, comprising pipecolinic acid, methoxysalicylic acid, <i>N</i>-acetylhistamine, and 3-hydroxybutyrylcarnitine, was defined and validated with satisfactory sensitivity (>78%) for large-scale, population-based T2D screening. The functional role of a gut microbial product, <i>N</i>-acetylhistamine, was further elucidated in T2D progression through its inhibition of adenosine monophosphate-activated protein kinase phosphorylation. Overall, this study expands our understanding of gut microbiota-driven metabolic dysregulation in T2D and suggests that monitoring these metabolic changes could facilitate the diagnosis and treatment of T2D.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1649-1661"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell division in bacteria is initiated by constriction of the Z-ring comprising two essential proteins, FtsZ and FtsA. Though the essential function of the Z-ring in bacterial division has been established, the precise roles of FtsZ and FtsA in the constriction process remain elusive. Due to the minimal number of components, FtsZ/FtsA in cell wall-less bacteria is an ideal model system for obtaining mechanistic insights into Z-ring constriction in the absence of a cell wall synthesis machinery. In this study, we undertook a comparative analysis of FtsZ and FtsA protein sequences from 113 mycoplasma species and the corresponding sequences in cell-walled bacteria. We report a phylogenetically distinct group of 12 species that possess a putative membrane binding amphipathic helix at either the N- or C-terminal extensions of the globular FtsZ domain. Importantly, these FtsZs lack conservation of the conserved C-terminal peptide sequence. We experimentally prove that the proposed C-terminal amphipathic helix in Mycoplasma genitalium (M. genitalium) FtsZ exhibits membrane binding. Additionally, we identify a potential cholesterol recognition motif within the C-terminal amphipathic helix region of M. genitalium FtsZ. Our study catalogues the functional variations of membrane attachment by the FtsZ and FtsA system in cell wall-less mycoplasmas and provides a new perspective to dissect the role of FtsZ and FtsA in cell division.
{"title":"Membrane Binding and Cholesterol Sensing Motif in <i>Mycoplasma genitalium</i> FtsZ: A Novel Mode of Membrane Recruitment for Bacterial FtsZ.","authors":"Soumyajit Dutta, Sakshi Poddar, Joyeeta Chakraborty, Ramanujam Srinivasan, Pananghat Gayathri","doi":"10.1021/acs.biochem.4c00543","DOIUrl":"https://doi.org/10.1021/acs.biochem.4c00543","url":null,"abstract":"<p><p>Cell division in bacteria is initiated by constriction of the Z-ring comprising two essential proteins, FtsZ and FtsA. Though the essential function of the Z-ring in bacterial division has been established, the precise roles of FtsZ and FtsA in the constriction process remain elusive. Due to the minimal number of components, FtsZ/FtsA in cell wall-less bacteria is an ideal model system for obtaining mechanistic insights into Z-ring constriction in the absence of a cell wall synthesis machinery. In this study, we undertook a comparative analysis of FtsZ and FtsA protein sequences from 113 mycoplasma species and the corresponding sequences in cell-walled bacteria. We report a phylogenetically distinct group of 12 species that possess a putative membrane binding amphipathic helix at either the N- or C-terminal extensions of the globular FtsZ domain. Importantly, these FtsZs lack conservation of the conserved C-terminal peptide sequence. We experimentally prove that the proposed C-terminal amphipathic helix in <i>Mycoplasma genitalium</i> (<i>M. genitalium</i>) FtsZ exhibits membrane binding. Additionally, we identify a potential cholesterol recognition motif within the C-terminal amphipathic helix region of <i>M. genitalium</i> FtsZ. Our study catalogues the functional variations of membrane attachment by the FtsZ and FtsA system in cell wall-less mycoplasmas and provides a new perspective to dissect the role of FtsZ and FtsA in cell division.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04Epub Date: 2025-01-10DOI: 10.1021/acs.jproteome.4c00832
Sara E Bell, Yuxuan Richard Xie, Meghan F Maciejewski, Stanislav S Rubakhin, Elena V Romanova, Alison M Bell, Jonathan V Sweedler
Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish (Gasterosteus aculeatus) that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs. As the pituitary is a key regulator in the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis between the brain and body, its peptides may influence parenting behaviors. Here, we utilized matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for high-throughput peptide analysis in single cells of pituitaries from both three-spined stickleback ecotypes. Peptide mass fingerprinting was performed using an in silico generated peptide library to identify detected prohormones. Differential analysis revealed POMC-derived peptides, MCH-derived peptides, and oxytocin as significantly different between the two ecotypes, with higher oxytocin levels in the common ecotype. Interestingly, these subtle chemical differences were not captured by Leiden clustering of the cellular phenotypes. These results call for further investigation of the neurochemical basis for parenting in sticklebacks.
{"title":"Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior.","authors":"Sara E Bell, Yuxuan Richard Xie, Meghan F Maciejewski, Stanislav S Rubakhin, Elena V Romanova, Alison M Bell, Jonathan V Sweedler","doi":"10.1021/acs.jproteome.4c00832","DOIUrl":"10.1021/acs.jproteome.4c00832","url":null,"abstract":"<p><p>Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish (<i>Gasterosteus aculeatus</i>) that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs. As the pituitary is a key regulator in the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis between the brain and body, its peptides may influence parenting behaviors. Here, we utilized matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for high-throughput peptide analysis in single cells of pituitaries from both three-spined stickleback ecotypes. Peptide mass fingerprinting was performed using an <i>in silico</i> generated peptide library to identify detected prohormones. Differential analysis revealed POMC-derived peptides, MCH-derived peptides, and oxytocin as significantly different between the two ecotypes, with higher oxytocin levels in the common ecotype. Interestingly, these subtle chemical differences were not captured by Leiden clustering of the cellular phenotypes. These results call for further investigation of the neurochemical basis for parenting in sticklebacks.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1596-1605"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04DOI: 10.1021/acs.jpca.5c00943
Roman Korol, Xinxian Chen, Ignacio Franco
Recent advances in numerically exact quantum dynamics methods have brought the dream of accurately modeling the dynamics of chemically complex open systems within reach. Path-integral-based methods, hierarchical equations of motion, and quantum analog simulators all require the spectral density (SD) of the environment to describe its effect on the system. Here, we focus on the decoherence dynamics of electronically excited species in solution in the common case where nonradiative electronic relaxation dominates and is much slower than electronic dephasing. We show that the computed relaxation rate is highly sensitive to the choice of SD representation─such as the Drude-Lorentz or Brownian modes─or strategy used to capture the main SD features, even when early-time dephasing dynamics remains robust. The key reason is that electronic relaxation is dominated by the resonant contribution from the high-frequency tails of the SD, which are orders of magnitude weaker than the main features of the SD and can vary significantly between strategies. This finding highlights an important, yet overlooked, numerical challenge: obtaining an accurate SD requires capturing its structure over several orders of magnitude to ensure correct decoherence dynamics at both early and late times. To address this, we provide a simple transformation that recovers the correct relaxation rates in quantum simulations constrained by algorithmic or physical limitations on the shape of the SD. Our findings enable a comparison of different numerically exact simulation methods and expand the capabilities of analog simulations of open quantum dynamics.
{"title":"High-Frequency Tails in Spectral Densities.","authors":"Roman Korol, Xinxian Chen, Ignacio Franco","doi":"10.1021/acs.jpca.5c00943","DOIUrl":"https://doi.org/10.1021/acs.jpca.5c00943","url":null,"abstract":"<p><p>Recent advances in numerically exact quantum dynamics methods have brought the dream of accurately modeling the dynamics of chemically complex open systems within reach. Path-integral-based methods, hierarchical equations of motion, and quantum analog simulators all require the spectral density (SD) of the environment to describe its effect on the system. Here, we focus on the decoherence dynamics of electronically excited species in solution in the common case where nonradiative electronic relaxation dominates and is much slower than electronic dephasing. We show that the computed relaxation rate is highly sensitive to the choice of SD representation─such as the Drude-Lorentz or Brownian modes─or strategy used to capture the main SD features, even when early-time dephasing dynamics remains robust. The key reason is that electronic relaxation is dominated by the resonant contribution from the high-frequency tails of the SD, which are orders of magnitude weaker than the main features of the SD and can vary significantly between strategies. This finding highlights an important, yet overlooked, numerical challenge: obtaining an accurate SD requires capturing its structure over several orders of magnitude to ensure correct decoherence dynamics at both early and late times. To address this, we provide a simple transformation that recovers the correct relaxation rates in quantum simulations constrained by algorithmic or physical limitations on the shape of the SD. Our findings enable a comparison of different numerically exact simulation methods and expand the capabilities of analog simulations of open quantum dynamics.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04DOI: 10.1021/acschembio.5c00103
Solbee Choi, Shin Hyeon Lee, Jung-Min Kee
Histidine phosphorylation is a historically underexplored post-translational modification (PTM). Once deemed "elusive" due to its chemical lability, phosphohistidine (pHis) has recently come to light thanks to emerging chemical tools─including stable pHis analogs, pHis-specific antibodies, and tailored proteomics workflows─that enable its detection and functional analysis. Together, these innovations have led to a surge in the identification of pHis sites and raised awareness of their roles in both bacterial and mammalian systems. New assay systems have also facilitated the characterization of histidine kinases and phosphatases. This Review summarizes recent breakthroughs in pHis research tools, examines the limitations of current approaches, and outlines future tools needed to fully unravel the potential of histidine phosphorylation.
{"title":"Bringing Histidine Phosphorylation into Light: Role of Chemical Tools.","authors":"Solbee Choi, Shin Hyeon Lee, Jung-Min Kee","doi":"10.1021/acschembio.5c00103","DOIUrl":"https://doi.org/10.1021/acschembio.5c00103","url":null,"abstract":"<p><p>Histidine phosphorylation is a historically underexplored post-translational modification (PTM). Once deemed \"elusive\" due to its chemical lability, phosphohistidine (pHis) has recently come to light thanks to emerging chemical tools─including stable pHis analogs, pHis-specific antibodies, and tailored proteomics workflows─that enable its detection and functional analysis. Together, these innovations have led to a surge in the identification of pHis sites and raised awareness of their roles in both bacterial and mammalian systems. New assay systems have also facilitated the characterization of histidine kinases and phosphatases. This Review summarizes recent breakthroughs in pHis research tools, examines the limitations of current approaches, and outlines future tools needed to fully unravel the potential of histidine phosphorylation.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luminescence thermometry is a remote temperature sensing technique that utilizes temperature-dependent luminescence properties. Lanthanide-doped materials with two thermally coupled emitting levels displaying a variation in luminescence intensity ratio (LIR) with temperature have been successfully explored to design sensitive luminescent thermometers. However, the low absorption strength of lanthanide parity-forbidden 4fn → 4fn transitions reduces the brightness. Also, this Boltzmann-type thermometer is only sensitive within a limited temperature range. To address these issues, we report here YV1-xPxO4:Eu3+, Er3+ as a luminescent thermometer. This material utilizes the sensitized emission of Ln3+ by strong and broad vanadate charge transfer absorption and has a wide and tunable optimum temperature range by controlling the thermal quenching of Eu3+ emission through a variation of x. The new temperature probe offers a single material with multiple temperature-dependent luminescence properties, viz. the LIR of 2H11/2/4S3/2 emission of Er3+, the LIR of the integrated Er3+ and Eu3+ emission intensities, and the Eu3+ emission lifetime. Both micro- and nanocrystalline temperature probes are reported to achieve relative sensitivities (Sr) from ∼0.5%/K to over 5%/K in a wide temperature range of 300-873 K. To demonstrate practical applicability, the luminescent thermometer was applied to in situ chip temperature detection revealing temperature accuracies better than 1 K.
{"title":"Luminescence Thermometry via Multiparameter Sensing in YV<sub>1-<i>x</i></sub>P<i><sub><i>x</i></sub></i>O<sub>4</sub>:Eu<sup>3+</sup>, Er<sup>3</sup>.","authors":"Yixuan Ma, Xiaopeng Zhou, Jiapeng Wu, Zhijie Dong, Lizhi Cui, Yuhua Wang, Andries Meijerink","doi":"10.1021/jacs.5c02306","DOIUrl":"https://doi.org/10.1021/jacs.5c02306","url":null,"abstract":"<p><p>Luminescence thermometry is a remote temperature sensing technique that utilizes temperature-dependent luminescence properties. Lanthanide-doped materials with two thermally coupled emitting levels displaying a variation in luminescence intensity ratio (LIR) with temperature have been successfully explored to design sensitive luminescent thermometers. However, the low absorption strength of lanthanide parity-forbidden 4f<sup><i>n</i></sup> → 4f<sup><i>n</i></sup> transitions reduces the brightness. Also, this Boltzmann-type thermometer is only sensitive within a limited temperature range. To address these issues, we report here YV<sub>1-<i>x</i></sub>P<i><sub><i>x</i></sub></i>O<sub>4</sub>:Eu<sup>3+</sup>, Er<sup>3+</sup> as a luminescent thermometer. This material utilizes the sensitized emission of Ln<sup>3+</sup> by strong and broad vanadate charge transfer absorption and has a wide and tunable optimum temperature range by controlling the thermal quenching of Eu<sup>3+</sup> emission through a variation of <i>x</i>. The new temperature probe offers a single material with multiple temperature-dependent luminescence properties, viz. the LIR of <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> emission of Er<sup>3+</sup>, the LIR of the integrated Er<sup>3+</sup> and Eu<sup>3+</sup> emission intensities, and the Eu<sup>3+</sup> emission lifetime. Both micro- and nanocrystalline temperature probes are reported to achieve relative sensitivities (<i>S</i><sub>r</sub>) from ∼0.5%/K to over 5%/K in a wide temperature range of 300-873 K. To demonstrate practical applicability, the luminescent thermometer was applied to in situ chip temperature detection revealing temperature accuracies better than 1 K.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04DOI: 10.1021/acs.molpharmaceut.4c01482
Xue Han, Kohsaku Kawakami
The stabilization mechanism of mesoporous silica (MS) of two different pore sizes (21 and 2.5 nm) on overloaded celecoxib (CEL) glass was investigated. Differential scanning calorimetry (DSC) measurements revealed the presence of three fractions with different molecular mobilities: free, intermediate, and rigid ones. The free fraction exhibited cold crystallization during DSC heating and was assumed to have almost the same properties as those of the bulk molecules. The rigid fraction did not exhibit either glass transition or cold crystallization behavior, which should be stabilized by interactions with the MS surface. The remaining molecules exhibited glass transition behavior without any tendency toward cold crystallization during heating, which is called the intermediate fraction. The molecular dynamics of each fraction was investigated by using broadband dielectric spectroscopy (BDS). While the intermediate and free fractions exhibited comparable mobility, the rigid fraction demonstrated pore-size-dependent behavior: enhanced and suppressed molecular mobility was observed for the rigid fraction confined in 21 and 2.5 nm-pores, respectively. Isothermal crystallization of CEL glass was investigated using DSC and BDS at 95 °C. The results revealed that the CEL glass mixed with MS with large pores exhibited slower crystallization compared to the CEL glass without MS, whereas accelerated crystallization was observed for the CEL mixed with a small amount of MS of small pores. The pore size of 21 nm was much larger than the cooperatively rearranging region (CRR) of the CEL glass, whereas the pore size of 2.5 nm was comparable to that. When the pore size was larger than that of the CRR, most of the loaded CEL molecules behaved as an intermediate fraction, presumably because the molecules could exchange inside and outside the pore. In contrast, the exchange was not likely to proceed when the pore size was comparable to or smaller than that of the CRR, leaving a large free fraction. This finding provides a deep understanding of the stabilization mechanism of overloaded pharmaceutical glass by using mesoporous materials.
研究了两种不同孔径(21 nm 和 2.5 nm)的介孔二氧化硅(MS)在超载塞来昔布(CEL)玻璃上的稳定机制。差示扫描量热法(DSC)测量显示,存在三种分子流动性不同的馏分:自由馏分、中间馏分和刚性馏分。自由馏分在 DSC 加热过程中表现出冷结晶,因此被认为具有与大分子几乎相同的特性。刚性部分既不表现出玻璃化转变行为,也不表现出冷结晶行为,应该是通过与质谱表面的相互作用而稳定下来的。其余的分子在加热过程中表现出玻璃化转变行为,没有任何冷结晶趋势,这部分分子被称为中间部分。我们使用宽带介电光谱(BDS)研究了各馏分的分子动力学。中间馏分和自由馏分表现出相当的流动性,而刚性馏分则表现出与孔径大小相关的行为:分别在 21 nm 和 2.5 nm 孔径的刚性馏分中观察到增强和抑制的分子流动性。使用 DSC 和 BDS 在 95 °C 温度下研究了 CEL 玻璃的等温结晶。结果表明,与不含 MS 的 CEL 玻璃相比,混有大孔 MS 的 CEL 玻璃的结晶速度较慢,而混有少量小孔 MS 的 CEL 玻璃的结晶速度加快。21 nm 的孔径远大于 CEL 玻璃的合作重排区 (CRR),而 2.5 nm 的孔径与之相当。当孔径大于 CRR 时,大部分负载的 CEL 分子表现为中间部分,这可能是因为分子可以在孔内外进行交换。相反,当孔径与 CRR 相当或小于 CRR 时,交换就不可能进行,从而留下了大量的游离部分。这一发现有助于深入了解利用介孔材料稳定超载药用玻璃的机制。
{"title":"Influence of Pore Size of Mesoporous Silica on Physical Stability of Overloaded Celecoxib Glass.","authors":"Xue Han, Kohsaku Kawakami","doi":"10.1021/acs.molpharmaceut.4c01482","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01482","url":null,"abstract":"<p><p>The stabilization mechanism of mesoporous silica (MS) of two different pore sizes (21 and 2.5 nm) on overloaded celecoxib (CEL) glass was investigated. Differential scanning calorimetry (DSC) measurements revealed the presence of three fractions with different molecular mobilities: free, intermediate, and rigid ones. The free fraction exhibited cold crystallization during DSC heating and was assumed to have almost the same properties as those of the bulk molecules. The rigid fraction did not exhibit either glass transition or cold crystallization behavior, which should be stabilized by interactions with the MS surface. The remaining molecules exhibited glass transition behavior without any tendency toward cold crystallization during heating, which is called the intermediate fraction. The molecular dynamics of each fraction was investigated by using broadband dielectric spectroscopy (BDS). While the intermediate and free fractions exhibited comparable mobility, the rigid fraction demonstrated pore-size-dependent behavior: enhanced and suppressed molecular mobility was observed for the rigid fraction confined in 21 and 2.5 nm-pores, respectively. Isothermal crystallization of CEL glass was investigated using DSC and BDS at 95 °C. The results revealed that the CEL glass mixed with MS with large pores exhibited slower crystallization compared to the CEL glass without MS, whereas accelerated crystallization was observed for the CEL mixed with a small amount of MS of small pores. The pore size of 21 nm was much larger than the cooperatively rearranging region (CRR) of the CEL glass, whereas the pore size of 2.5 nm was comparable to that. When the pore size was larger than that of the CRR, most of the loaded CEL molecules behaved as an intermediate fraction, presumably because the molecules could exchange inside and outside the pore. In contrast, the exchange was not likely to proceed when the pore size was comparable to or smaller than that of the CRR, leaving a large free fraction. This finding provides a deep understanding of the stabilization mechanism of overloaded pharmaceutical glass by using mesoporous materials.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04Epub Date: 2024-10-23DOI: 10.1021/acs.jproteome.4c00554
Xing Zhou, Zhaokai Zhou, Xiaohan Qin, Jian Cheng, Yongcheng Fu, Yuanyuan Wang, Jingyue Wang, Pan Qin, Da Zhang
Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.
尽管氨基酸(AA)代谢与肿瘤进展有关,可作为有吸引力的干预靶点,但其与神经母细胞瘤(NB)的关系尚不清楚。根据氨基酸代谢相关基因,我们建立了三种与不同预后和特定功能相关的神经母细胞瘤亚型,其中C1和C2的预后较好。C1亚型的代谢活性增强,并招募代谢相关细胞。C2表现出活化的免疫微环境,更容易受到免疫疗法的影响。C3的特点是细胞周期特殊,预后不良,基因突变频率高,易受化疗影响。此外,单细胞RNA测序分析表明,C3相关的剪刀+细胞亚群以臭名昭著的功能状态为特征,并协调免疫抑制微环境。此外,我们还发现,ALK 和 BIRC5 是导致 C3 寿命缩短的原因之一,而它们的相应抑制剂则是潜在的干预措施。总之,我们发现了 NB 的三种不同亚型,这有助于我们制定个体化治疗策略,改善 NB 的预后。
{"title":"Amino Acid Metabolism Subtypes in Neuroblastoma Identifying Distinct Prognosis and Therapeutic Vulnerabilities.","authors":"Xing Zhou, Zhaokai Zhou, Xiaohan Qin, Jian Cheng, Yongcheng Fu, Yuanyuan Wang, Jingyue Wang, Pan Qin, Da Zhang","doi":"10.1021/acs.jproteome.4c00554","DOIUrl":"10.1021/acs.jproteome.4c00554","url":null,"abstract":"<p><p>Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1560-1578"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}