首页 > 最新文献

ACS Publications最新文献

英文 中文
IF:
Rational Design of N-Acetylglucosamine-2-epimerase and N-Acetylneuraminic Lyase for Efficient N-Acetylneuraminic Acid Biosynthesis.
IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2025-03-05 Epub Date: 2025-02-19 DOI: 10.1021/acs.jafc.4c10307
Yuxia Mo, Xiaojiang Li, Qingbin Li, Yuanfei Han, Tianyuan Su, Peng Zhao, Liping Qiao, Maogong Xiang, Fan Li, Xueping Guo, Mengmeng Liu, Qingsheng Qi

N-Acetylneuraminic acid (NeuAc) performs a variety of biological activities where it is used as a nutraceutical and pharmaceutical intermediate. N-Acetylglucosamine-2-epimerase (AGE) and N-acetylneuraminic lyase (NAL) are the most widely used key enzymes in the industrial production of NeuAc through whole-cell catalytic synthesis. However, both AGE and NAL catalyze reversible reactions, and the equilibrium of these two reactions lies between substrates and products, resulting in a lower conversion rate of NeuAc. In this study, affinity analysis based on the dynamic docking (ADD) strategy was used to rationally design the AGE and NAL to improve enzymes properties. The variant AGEA172S/C118A showed a 2.19-fold improvement in the catalytic rate. Then, we combinatorially expressed the variant of AGE and NAL in two plasmids for whole cell catalytic synthesis. NeuAc production was 35% higher with the combination of AGEA172S/C118A and NALF252M compared with the wild type. When substrate GlcNAc/Pyruvate was 3:8 and AGEA172S/C118A and NALF252M expressed strains were 1:0.6, the molar conversion rate was 62%. Thus, our modification of AGE and NAL, the key enzymes in producing NeuAc, gave a better AGE variant AGEA172S/C118A, which could produce 128 g/L NeuAc when using low substrate concentration (0.6 M GlcNAc).

{"title":"Rational Design of <i>N</i>-Acetylglucosamine-2-epimerase and <i>N</i>-Acetylneuraminic Lyase for Efficient <i>N</i>-Acetylneuraminic Acid Biosynthesis.","authors":"Yuxia Mo, Xiaojiang Li, Qingbin Li, Yuanfei Han, Tianyuan Su, Peng Zhao, Liping Qiao, Maogong Xiang, Fan Li, Xueping Guo, Mengmeng Liu, Qingsheng Qi","doi":"10.1021/acs.jafc.4c10307","DOIUrl":"10.1021/acs.jafc.4c10307","url":null,"abstract":"<p><p><i>N</i>-Acetylneuraminic acid (NeuAc) performs a variety of biological activities where it is used as a nutraceutical and pharmaceutical intermediate. <i>N</i>-Acetylglucosamine-2-epimerase (AGE) and <i>N</i>-acetylneuraminic lyase (NAL) are the most widely used key enzymes in the industrial production of NeuAc through whole-cell catalytic synthesis. However, both AGE and NAL catalyze reversible reactions, and the equilibrium of these two reactions lies between substrates and products, resulting in a lower conversion rate of NeuAc. In this study, affinity analysis based on the dynamic docking (ADD) strategy was used to rationally design the AGE and NAL to improve enzymes properties. The variant AGE<sup>A172S/C118A</sup> showed a 2.19-fold improvement in the catalytic rate. Then, we combinatorially expressed the variant of AGE and NAL in two plasmids for whole cell catalytic synthesis. NeuAc production was 35% higher with the combination of AGE<sup>A172S/C118A</sup> and NAL<sup>F252M</sup> compared with the wild type. When substrate GlcNAc/Pyruvate was 3:8 and AGE<sup>A172S/C118A</sup> and NAL<sup>F252M</sup> expressed strains were 1:0.6, the molar conversion rate was 62%. Thus, our modification of AGE and NAL, the key enzymes in producing NeuAc, gave a better AGE variant AGE<sup>A172S/C118A</sup>, which could produce 128 g/L NeuAc when using low substrate concentration (0.6 M GlcNAc).</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"5320-5327"},"PeriodicalIF":5.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing Antibiotics with Macromolecular Engineering: Tackling Gram-Negative Superbugs and Mixed Species Bacterial Biofilm Infections In Vivo.
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1021/acs.biomac.4c01520
Sudip Mukherjee, Sayan Chakravarty, Jayanta Haldar

The escalating prevalence of multidrug-resistant Gram-negative pathogens, coupled with dwindling antibiotic development, has created a critical void in the clinical pipeline. This alarming issue is exacerbated by the formation of biofilms by these superbugs and their frequent coexistence in mixed-species biofilms, conferring extreme antibiotic tolerance. Herein, we present an amphiphilic cationic macromolecule, ACM-AHex, as an innovative antibiotic adjuvant to rejuvenate and repurpose resistant antibiotics, for instance, rifampicin, fusidic acid, erythromycin, and chloramphenicol. ACM-AHex mildly perturbs the bacterial membrane, enhancing antibiotic permeability, hampers efflux machinery, and produces reactive oxygen species, resulting in a remarkable 64-1024-fold potentiation in antibacterial activity. The macromolecule reduces bacterial virulence and macromolecule-drug cocktail significantly eradicate both mono- and multispecies bacterial biofilms, achieving >99.9% bacterial reduction in the murine biofilm infection model. Demonstrating potent biocompatibility across multiple administration routes, ACM-AHex offers a promising strategy to restore obsolete antibiotics and combat recalcitrant Gram-negative biofilm-associated infections, advocating for further clinical evaluation as a next-generation macromolecular antibiotic adjuvant.

{"title":"Revitalizing Antibiotics with Macromolecular Engineering: Tackling Gram-Negative Superbugs and Mixed Species Bacterial Biofilm Infections In Vivo.","authors":"Sudip Mukherjee, Sayan Chakravarty, Jayanta Haldar","doi":"10.1021/acs.biomac.4c01520","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01520","url":null,"abstract":"<p><p>The escalating prevalence of multidrug-resistant Gram-negative pathogens, coupled with dwindling antibiotic development, has created a critical void in the clinical pipeline. This alarming issue is exacerbated by the formation of biofilms by these superbugs and their frequent coexistence in mixed-species biofilms, conferring extreme antibiotic tolerance. Herein, we present an amphiphilic cationic macromolecule, ACM-A<sub>Hex</sub>, as an innovative antibiotic adjuvant to rejuvenate and repurpose resistant antibiotics, for instance, rifampicin, fusidic acid, erythromycin, and chloramphenicol. ACM-A<sub>Hex</sub> mildly perturbs the bacterial membrane, enhancing antibiotic permeability, hampers efflux machinery, and produces reactive oxygen species, resulting in a remarkable 64-1024-fold potentiation in antibacterial activity. The macromolecule reduces bacterial virulence and macromolecule-drug cocktail significantly eradicate both mono- and multispecies bacterial biofilms, achieving >99.9% bacterial reduction in the murine biofilm infection model. Demonstrating potent biocompatibility across multiple administration routes, ACM-A<sub>Hex</sub> offers a promising strategy to restore obsolete antibiotics and combat recalcitrant Gram-negative biofilm-associated infections, advocating for further clinical evaluation as a next-generation macromolecular antibiotic adjuvant.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pH-Dependent Microspecies Dissociations in the Trade-Off of Solubility and Permeability of Vitamin B2 Eutectic Solids.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-05 DOI: 10.1021/acs.molpharmaceut.4c01518
Archita Goswami, Bipul Sarma

The microspecies-specific physicochemical properties of eutectic solids of sparingly water-soluble micronutrient, Vitamin B2 (Riboflavin), with a few representative BCS drugs, viz., Theophylline, Theobromine, Mesalamine, and Barbituric acid are established. The interplay of solubility and drug permeation behavior is experimentally determined for the eutectic solids, and properties are corroborated with the concomitant relative concentrations of pH-dependent microspecies of Riboflavin and the drugs. Partner drug candidates are selected from different quadrants of BCS classification to apprehend the influence of their solubility on the overall efficacy of the eutectic solids. The coexistence and inseparable ionic, neutral, and/or zwitterionic microspecies are spotted, and the pH-reliant isomer-specific inflection of physicochemical and pharmacokinetic properties in such multicomponent solid formulations is demonstrated.

{"title":"The pH-Dependent Microspecies Dissociations in the Trade-Off of Solubility and Permeability of Vitamin B2 Eutectic Solids.","authors":"Archita Goswami, Bipul Sarma","doi":"10.1021/acs.molpharmaceut.4c01518","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01518","url":null,"abstract":"<p><p>The microspecies-specific physicochemical properties of eutectic solids of sparingly water-soluble micronutrient, Vitamin B<sub>2</sub> (Riboflavin), with a few representative BCS drugs, viz., Theophylline, Theobromine, Mesalamine, and Barbituric acid are established. The interplay of solubility and drug permeation behavior is experimentally determined for the eutectic solids, and properties are corroborated with the concomitant relative concentrations of pH-dependent microspecies of Riboflavin and the drugs. Partner drug candidates are selected from different quadrants of BCS classification to apprehend the influence of their solubility on the overall efficacy of the eutectic solids. The coexistence and inseparable ionic, neutral, and/or zwitterionic microspecies are spotted, and the pH-reliant isomer-specific inflection of physicochemical and pharmacokinetic properties in such multicomponent solid formulations is demonstrated.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective Effect of Withaferin Derivatives toward MPP+ and 6-OHDA Toxicity to Dopaminergic Neurons.
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 Epub Date: 2025-02-13 DOI: 10.1021/acschemneuro.4c00655
Valeria Parrales, Guillaume Arcile, Louise Laserre, Sébastien Normant, Géraldine Le Goff, Christian Da Costa Noble, Jamal Ouazzani, Noelle Callizot, Stéphane Haïk, Chérif Rabhi, Nicolas Bizat

Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. Withania somnifera (L.) Dunal, commonly known as ashwagandha, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound Withaferin-A (WFA), a steroid lactone from the withanolide group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of WFA and two of its molecular derivatives, cr-591 and cr-777, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that WFA and its two derivatives, cr-591 and cr-777, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP+ and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode Caenorhabditis elegans.

{"title":"Neuroprotective Effect of <i>Withaferin</i> Derivatives toward MPP<sup>+</sup> and 6-OHDA Toxicity to Dopaminergic Neurons.","authors":"Valeria Parrales, Guillaume Arcile, Louise Laserre, Sébastien Normant, Géraldine Le Goff, Christian Da Costa Noble, Jamal Ouazzani, Noelle Callizot, Stéphane Haïk, Chérif Rabhi, Nicolas Bizat","doi":"10.1021/acschemneuro.4c00655","DOIUrl":"10.1021/acschemneuro.4c00655","url":null,"abstract":"<p><p>Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP<sup>+</sup>) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. <i>Withania somnifera</i> (L.) <i>Dunal</i>, commonly known as <i>ashwagandha</i>, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound <i>Withaferin-A</i> (<i>WFA</i>), a steroid lactone from the <i>withanolide</i> group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of <i>WFA</i> and two of its molecular derivatives, <i>cr-591</i> and <i>cr-777</i>, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that <i>WFA</i> and its two derivatives, <i>cr-591</i> and <i>cr-777</i>, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP<sup>+</sup> and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode <i>Caenorhabditis elegans</i>.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"802-817"},"PeriodicalIF":4.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorogenic Platform for Real-Time Imaging of Subcellular Payload Release in Antibody-Drug Conjugates.
IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 Epub Date: 2025-02-18 DOI: 10.1021/jacs.4c16842
Ferran Nadal-Bufi, Paulin L Salomon, Fabio de Moliner, Kathy A Sarris, Zhi Wang, Rachel D Wills, Violeta L Marin, Xiaona Shi, Kuo Zhou, Zhongyuan Wang, Zhou Xu, Michael J McPherson, Christopher C Marvin, Adrian D Hobson, Marc Vendrell

Antibody-drug conjugates (ADCs) represent promising therapeutic constructs to enhance the selective delivery of drugs to target cells; however, attaining precise control over the timing and location of payload release remains challenging due to the complex intracellular processes that define ADC internalization, trafficking, and linker cleavage. In this study, we present novel real-time fluorogenic probes to monitor both subcellular dynamics of ADC trafficking and payload release. We optimized a tandem molecular design of sequential pH- and enzyme-activatable naphthalimide fluorophores to (1) track their subcellular localization along the endolysosomal pathway and (2) monitor linker cleavage with OFF-to-ON fluorescence switches. Live-cell imaging microscopy revealed that fluorogenic ADCs can traffic to the lysosomes and yet require residence time in these subcellular compartments for efficient linker cleavage. Notably, the compact size of fluorogenic naphthalimides did not impair the recognition of target cell surface reporters or the kinetics of payload release. This modular platform is applicable to many ADCs and holds promise to inform their rational design for optimal release profiles and therapeutic efficacy.

{"title":"Fluorogenic Platform for Real-Time Imaging of Subcellular Payload Release in Antibody-Drug Conjugates.","authors":"Ferran Nadal-Bufi, Paulin L Salomon, Fabio de Moliner, Kathy A Sarris, Zhi Wang, Rachel D Wills, Violeta L Marin, Xiaona Shi, Kuo Zhou, Zhongyuan Wang, Zhou Xu, Michael J McPherson, Christopher C Marvin, Adrian D Hobson, Marc Vendrell","doi":"10.1021/jacs.4c16842","DOIUrl":"10.1021/jacs.4c16842","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) represent promising therapeutic constructs to enhance the selective delivery of drugs to target cells; however, attaining precise control over the timing and location of payload release remains challenging due to the complex intracellular processes that define ADC internalization, trafficking, and linker cleavage. In this study, we present novel real-time fluorogenic probes to monitor both subcellular dynamics of ADC trafficking and payload release. We optimized a tandem molecular design of sequential pH- and enzyme-activatable naphthalimide fluorophores to (1) track their subcellular localization along the endolysosomal pathway and (2) monitor linker cleavage with OFF-to-ON fluorescence switches. Live-cell imaging microscopy revealed that fluorogenic ADCs can traffic to the lysosomes and yet require residence time in these subcellular compartments for efficient linker cleavage. Notably, the compact size of fluorogenic naphthalimides did not impair the recognition of target cell surface reporters or the kinetics of payload release. This modular platform is applicable to many ADCs and holds promise to inform their rational design for optimal release profiles and therapeutic efficacy.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"7578-7587"},"PeriodicalIF":14.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreversible Deactivation Pathways in Ni(II)-Catalyzed Nonalternating Ethylene-Carbon Monoxide Copolymerization.
IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 Epub Date: 2025-02-19 DOI: 10.1021/jacs.4c16468
Lukas Odenwald, Lukas Wursthorn, Stefan Mecking

Endowing polyethylenes with photodegradability via incorporation of low densities of in-chain keto units could reduce the problematic environmental persistency of littered polymer waste. A breakthrough enabling such materials is the recent finding of nickel catalyzed nonalternating copolymerization of ethylene-carbon monoxide. We reveal irreversible catalyst deactivation pathways operative in this reaction. Reductive elimination of the common phosphinephenolate Ni(II) motif occurs with the acyl intermediates formed upon incorporation of carbon monoxide into the growing chain, as observed by low temperature NMR spectroscopy and single crystal X-ray crystallography of the isolated product. Further, we show that such decomposition pathways are generally relevant during ethylene-carbon monoxide copolymerizations under pressure reactor conditions. These findings guide the development of more stable and productive polymerization catalysts to enable the production of environmentally benign polyethylenes.

{"title":"Irreversible Deactivation Pathways in Ni(II)-Catalyzed Nonalternating Ethylene-Carbon Monoxide Copolymerization.","authors":"Lukas Odenwald, Lukas Wursthorn, Stefan Mecking","doi":"10.1021/jacs.4c16468","DOIUrl":"10.1021/jacs.4c16468","url":null,"abstract":"<p><p>Endowing polyethylenes with photodegradability via incorporation of low densities of in-chain keto units could reduce the problematic environmental persistency of littered polymer waste. A breakthrough enabling such materials is the recent finding of nickel catalyzed nonalternating copolymerization of ethylene-carbon monoxide. We reveal irreversible catalyst deactivation pathways operative in this reaction. Reductive elimination of the common phosphinephenolate Ni(II) motif occurs with the acyl intermediates formed upon incorporation of carbon monoxide into the growing chain, as observed by low temperature NMR spectroscopy and single crystal X-ray crystallography of the isolated product. Further, we show that such decomposition pathways are generally relevant during ethylene-carbon monoxide copolymerizations under pressure reactor conditions. These findings guide the development of more stable and productive polymerization catalysts to enable the production of environmentally benign polyethylenes.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"7182-7186"},"PeriodicalIF":14.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amplifying Magnetic Field Effects on Upconversion Emission via Molecular Qubit-Driven Triplet-Triplet Annihilation.
IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 Epub Date: 2025-02-20 DOI: 10.1021/jacs.4c16922
Neo Lin, Tomoyasu Mani

Triplet-triplet annihilation (TTA) enables photon upconversion by combining two lower-energy triplet excitons to produce a higher-energy singlet exciton. This mechanism enhances light-harvesting efficiency for solar energy conversion and enables the use of lower-energy photons in bioimaging and photoredox catalysis applications. The magnetic modulation of such high-energy excitons presents an exciting opportunity to develop molecular quantum information technologies. While the spin dynamics of triplet exciton pairs are sensitive to external magnetic fields, the magnetic field effects (MFEs) associated with these pairs are generally limited by spin statistics to at most 10% at low fields (<1 T), making them challenging to apply in technological advancements. In contrast, MFEs on spin-correlated radical pairs (SCRPs) can be significantly greater, surpassing those on triplet pairs. By using SCRPs-based molecular qubits as triplet sensitizers in the sensitized TTA scheme, we can magnetically modulate TTA and consequently, the delayed fluorescence of annihilators. In our current system, we have achieved more than 70% magnetic modulation of delayed fluorescence, effectively harnessing and even amplifying magnetic modulation within SCRPs to influence high-energy excitons. This work opens new opportunities for advancing spin-controlled chemical reactions and molecular quantum information technologies.

{"title":"Amplifying Magnetic Field Effects on Upconversion Emission via Molecular Qubit-Driven Triplet-Triplet Annihilation.","authors":"Neo Lin, Tomoyasu Mani","doi":"10.1021/jacs.4c16922","DOIUrl":"10.1021/jacs.4c16922","url":null,"abstract":"<p><p>Triplet-triplet annihilation (TTA) enables photon upconversion by combining two lower-energy triplet excitons to produce a higher-energy singlet exciton. This mechanism enhances light-harvesting efficiency for solar energy conversion and enables the use of lower-energy photons in bioimaging and photoredox catalysis applications. The magnetic modulation of such high-energy excitons presents an exciting opportunity to develop molecular quantum information technologies. While the spin dynamics of triplet exciton pairs are sensitive to external magnetic fields, the magnetic field effects (MFEs) associated with these pairs are generally limited by spin statistics to at most 10% at low fields (<1 T), making them challenging to apply in technological advancements. In contrast, MFEs on spin-correlated radical pairs (SCRPs) can be significantly greater, surpassing those on triplet pairs. By using SCRPs-based molecular qubits as triplet sensitizers in the sensitized TTA scheme, we can magnetically modulate TTA and consequently, the delayed fluorescence of annihilators. In our current system, we have achieved more than 70% magnetic modulation of delayed fluorescence, effectively harnessing and even amplifying magnetic modulation within SCRPs to influence high-energy excitons. This work opens new opportunities for advancing spin-controlled chemical reactions and molecular quantum information technologies.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"7187-7190"},"PeriodicalIF":14.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Mechanistic Advances in the Chemistry of Methyl-Coenzyme M Reductase (MCR).
IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 DOI: 10.1021/acs.accounts.4c00730
Bojana Ginovska, Simone Raugei, Stephen W Ragsdale, Christopher Ohmer, Ritimukta Sarangi
<p><p>ConspectusMethane represents 34% of U.S. energy consumption and is a major greenhouse gas related to the global carbon cycle and energy production. However, current industrial practices significantly increase atmospheric methane levels, necessitating a deeper understanding of its biosynthesis and oxidation. Methyl-coenzyme M reductase (MCR) is central to biological methane metabolism, catalyzing the final step of methanogenesis and the first step in anaerobic methane oxidation. It is also a key target for strategies to capture and transform methane into value-added chemicals.The active site of MCR is a buried Ni-based cofactor only accessible by the substrates via a 50 Å long tunnel. Although the Ni(I) state is required to initiate catalysis, capturing this state remains a challenge for the current structural techniques. Recent advances in structural biology using X-ray Free-Electron Laser serial crystallography have provided insights into MCR's inactive Ni(II) state at room temperature and show promise for capturing its active Ni(I) form.Our team has established several critical aspects of the MCR mechanism using a combination of experimental and computational studies. MCR uses CH<sub>3</sub>-SCoM and CoBSH as substrates, producing methane and a disulfide product CoMSSCoB. Kinetic analysis showed that productive substrate binding requires CH<sub>3</sub>-SCoM to bind first, inducing conformational changes that optimize the active site for subsequent CoBSH binding. Following substrate binding, four proposed methane production/oxidation mechanisms were examined, establishing whether the reaction proceeds through an organometallic methyl-nickel(III), methyl anion ion, or methyl radical intermediate. Experimental measurements using CoBSH analogs successfully slowed the reaction, allowing for mechanistic insight that demonstrated the methyl radical pathway, where the initial interactions involve homolytic cleavage of the methyl-sulfur bond, generating a methyl radical that quickly abstracts the thiol hydrogen atom of CoBSH to form methane. Computational studies further confirmed that, compared to other mechanisms, the methyl radical mechanism is thermodynamically more favorable and accessible under physiological conditions.Spectroscopic and computational studies challenged the conventional understanding of substrate binding in MCR by proposing an alternative positioning of CH<sub>3</sub>-SCoM and CoMSSCoB in the active site pocket. The research suggested that CH<sub>3</sub>-SCoM (substrate) and CoMSSCoB (product) bind via their sulfonate groups to the Ni(I) center of cofactor F<sub>430</sub>. This binding allows for the reaction without substrate reorganization in the pocket but would require a long-range electron transfer.Overall, the work summarized in this review reflects our current understanding of the enzyme's catalytic mechanism and structural dynamics. This is essential for developing efficient methane conversion technologies that could
{"title":"Structural and Mechanistic Advances in the Chemistry of Methyl-Coenzyme M Reductase (MCR).","authors":"Bojana Ginovska, Simone Raugei, Stephen W Ragsdale, Christopher Ohmer, Ritimukta Sarangi","doi":"10.1021/acs.accounts.4c00730","DOIUrl":"https://doi.org/10.1021/acs.accounts.4c00730","url":null,"abstract":"&lt;p&gt;&lt;p&gt;ConspectusMethane represents 34% of U.S. energy consumption and is a major greenhouse gas related to the global carbon cycle and energy production. However, current industrial practices significantly increase atmospheric methane levels, necessitating a deeper understanding of its biosynthesis and oxidation. Methyl-coenzyme M reductase (MCR) is central to biological methane metabolism, catalyzing the final step of methanogenesis and the first step in anaerobic methane oxidation. It is also a key target for strategies to capture and transform methane into value-added chemicals.The active site of MCR is a buried Ni-based cofactor only accessible by the substrates via a 50 Å long tunnel. Although the Ni(I) state is required to initiate catalysis, capturing this state remains a challenge for the current structural techniques. Recent advances in structural biology using X-ray Free-Electron Laser serial crystallography have provided insights into MCR's inactive Ni(II) state at room temperature and show promise for capturing its active Ni(I) form.Our team has established several critical aspects of the MCR mechanism using a combination of experimental and computational studies. MCR uses CH&lt;sub&gt;3&lt;/sub&gt;-SCoM and CoBSH as substrates, producing methane and a disulfide product CoMSSCoB. Kinetic analysis showed that productive substrate binding requires CH&lt;sub&gt;3&lt;/sub&gt;-SCoM to bind first, inducing conformational changes that optimize the active site for subsequent CoBSH binding. Following substrate binding, four proposed methane production/oxidation mechanisms were examined, establishing whether the reaction proceeds through an organometallic methyl-nickel(III), methyl anion ion, or methyl radical intermediate. Experimental measurements using CoBSH analogs successfully slowed the reaction, allowing for mechanistic insight that demonstrated the methyl radical pathway, where the initial interactions involve homolytic cleavage of the methyl-sulfur bond, generating a methyl radical that quickly abstracts the thiol hydrogen atom of CoBSH to form methane. Computational studies further confirmed that, compared to other mechanisms, the methyl radical mechanism is thermodynamically more favorable and accessible under physiological conditions.Spectroscopic and computational studies challenged the conventional understanding of substrate binding in MCR by proposing an alternative positioning of CH&lt;sub&gt;3&lt;/sub&gt;-SCoM and CoMSSCoB in the active site pocket. The research suggested that CH&lt;sub&gt;3&lt;/sub&gt;-SCoM (substrate) and CoMSSCoB (product) bind via their sulfonate groups to the Ni(I) center of cofactor F&lt;sub&gt;430&lt;/sub&gt;. This binding allows for the reaction without substrate reorganization in the pocket but would require a long-range electron transfer.Overall, the work summarized in this review reflects our current understanding of the enzyme's catalytic mechanism and structural dynamics. This is essential for developing efficient methane conversion technologies that could ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism and Origins of Regio- and Stereoselectivities of NHC-Catalyzed Dearomative Annulation of Benzoazoles and Cinnamaldehydes from DFT.
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-03-05 DOI: 10.1021/acs.jpca.4c08373
Yan Li, Yanlong Kang, Junjie Xiao, Zhiqiang Zhang

A theoretical study on the mechanism, regioselectivity, and enantioselectivity of NHC-catalyzed dearomatizing annulation of benzoxazoles with enals has been conducted using density functional theory calculations. Our calculated results indicate that the favored mechanism occurs through eight reaction steps: initial binding of the NHC to enals, followed by formation of the Breslow intermediate via proton transfer. Subsequent oxidation generates the α,β-unsaturated acylazolium intermediate, which can undergo Michael addition with benzoxazoles. Sequential protonation/deprotonation/cyclization produces the six-membered cyclic intermediate that undergoes catalyst elimination, leading to the final product. DABCO·H+ was found to play important roles in proton transfer and cyclization. Without DABCO·H+, the energy barrier up to 44.2 kcal/mol for step 2 is too high to be accessible. With DABCO·H+, the corresponding value is lowered to 18.6 kcal/mol. The energy barrier for cyclization can be lowered by 7.4 kcal/mol by using DABCO·H+. The Michael addition step determines both the enantioselectivity and the regioselectivity. According to NCI analysis, the enantioselectivity is controlled by the strong interactions (such as C-H···O, C-H···N, and π···π) between the α,β-unsaturated acylazolium intermediate and benzoxazoles. We also discuss the solvent and substituent effects on the enantioselectivity and the role of the NHC. The mechanistic insights obtained in the present study would help improving current reaction systems or designing new synthetic routes.

{"title":"Mechanism and Origins of Regio- and Stereoselectivities of NHC-Catalyzed Dearomative Annulation of Benzoazoles and Cinnamaldehydes from DFT.","authors":"Yan Li, Yanlong Kang, Junjie Xiao, Zhiqiang Zhang","doi":"10.1021/acs.jpca.4c08373","DOIUrl":"https://doi.org/10.1021/acs.jpca.4c08373","url":null,"abstract":"<p><p>A theoretical study on the mechanism, regioselectivity, and enantioselectivity of NHC-catalyzed dearomatizing annulation of benzoxazoles with enals has been conducted using density functional theory calculations. Our calculated results indicate that the favored mechanism occurs through eight reaction steps: initial binding of the NHC to enals, followed by formation of the Breslow intermediate via proton transfer. Subsequent oxidation generates the α,β-unsaturated acylazolium intermediate, which can undergo Michael addition with benzoxazoles. Sequential protonation/deprotonation/cyclization produces the six-membered cyclic intermediate that undergoes catalyst elimination, leading to the final product. DABCO·H<sup>+</sup> was found to play important roles in proton transfer and cyclization. Without DABCO·H<sup>+</sup>, the energy barrier up to 44.2 kcal/mol for step 2 is too high to be accessible. With DABCO·H<sup>+</sup>, the corresponding value is lowered to 18.6 kcal/mol. The energy barrier for cyclization can be lowered by 7.4 kcal/mol by using DABCO·H<sup>+</sup>. The Michael addition step determines both the enantioselectivity and the regioselectivity. According to NCI analysis, the enantioselectivity is controlled by the strong interactions (such as C-H···O, C-H···N, and π···π) between the α,β-unsaturated acylazolium intermediate and benzoxazoles. We also discuss the solvent and substituent effects on the enantioselectivity and the role of the NHC. The mechanistic insights obtained in the present study would help improving current reaction systems or designing new synthetic routes.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Electron-Transfer-Mediated Carbonylation Reactions.
IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 DOI: 10.1021/acs.accounts.5c00039
Le-Cheng Wang, Xiao-Feng Wu
<p><p>ConspectusTransition-metal-catalyzed carbonylation coupling methods have been accepted as an essential tool for producing carbonylated products over the past few decades. Despite its long-standing history and widespread industrial applications, several challenges remain in carbonylation chemistry. These include reliance on precious metal catalysts, the need of high-energy radiation, difficulties in carbonylation of unactivated chemical bonds, etc. As an alternative to classic two-electron transfer process, single-electron-transfer (SET)-mediated carbonylation has emerged as a powerful tool to achieve elusive carbonylation transformations. Over the past few years, carbonylation of commonly available functional handles, such as alkenes and alkyl halides, via the single-electron pathway has emerged as a valuable area of research.Our team has been dedicated to developing new carbonylation reactions using bulk chemicals to construct high-value carbonylated products. These reactions have broad synthetic and industrial applications, motivating us to explore SET-mediated carbonylation transformations for two key classes of bulk chemicals: alkanes and alkyl halides. Specifically, our work has centered on two main approaches: (1) Single-electron reduction of C(sp<sup>3</sup>)-X bonds: this strategy leverages single-electron reduction to activate C(sp<sup>3</sup>)-X bonds, promoting the formation of carbon radicals, which in turn promotes subsequent addition to metals or CO. However, a significant challenge lies in the highly negative reduction potential of certain substrates [E<sub>red</sub> < -2 V compared to the saturated calomel electrode (SCE) for unactivated alkyl iodides]. Despite these challenges, the intrinsic reducibility of CO and the reactivity of various carbonyl-metal intermediates facilitate smooth reaction progress. (2) Single-electron oxidative of C(sp<sup>3</sup>)-H bonds: this strategy emphasizes efficiency, high atomic utilization, and minimal waste by bypassing traditional preactivation methods. Using 3d metal catalysts, we have successfully performed aminocarbonylation and alkoxycarbonylation on a wide range of C(sp<sup>3</sup>)-H bonds (such as those in aliphatic alkanes, ethers, amines, etc.). The above two approaches also enabled radical relay carbonylation of alkenes, allowing precise control over reaction intermediates and pathways. Such control improves both reaction efficiency and selectivity. These advancements have enabled transition metal or photoredox catalysis to facilitate radical relay carbonylation of unactivated alkenes, resulting in transformations such as oxyalkylative carbonylation, aminoalkylative carbonylation, fluoroalkylative carbonylation, double carbonylation, and rearrangement carbonylation.SET-mediated carbonylation significantly enhances the sustainability and scalability of the carbonylation process by reducing reliance on precious metal catalysts and enabling milder reaction conditions. Additionally,
{"title":"Single-Electron-Transfer-Mediated Carbonylation Reactions.","authors":"Le-Cheng Wang, Xiao-Feng Wu","doi":"10.1021/acs.accounts.5c00039","DOIUrl":"https://doi.org/10.1021/acs.accounts.5c00039","url":null,"abstract":"&lt;p&gt;&lt;p&gt;ConspectusTransition-metal-catalyzed carbonylation coupling methods have been accepted as an essential tool for producing carbonylated products over the past few decades. Despite its long-standing history and widespread industrial applications, several challenges remain in carbonylation chemistry. These include reliance on precious metal catalysts, the need of high-energy radiation, difficulties in carbonylation of unactivated chemical bonds, etc. As an alternative to classic two-electron transfer process, single-electron-transfer (SET)-mediated carbonylation has emerged as a powerful tool to achieve elusive carbonylation transformations. Over the past few years, carbonylation of commonly available functional handles, such as alkenes and alkyl halides, via the single-electron pathway has emerged as a valuable area of research.Our team has been dedicated to developing new carbonylation reactions using bulk chemicals to construct high-value carbonylated products. These reactions have broad synthetic and industrial applications, motivating us to explore SET-mediated carbonylation transformations for two key classes of bulk chemicals: alkanes and alkyl halides. Specifically, our work has centered on two main approaches: (1) Single-electron reduction of C(sp&lt;sup&gt;3&lt;/sup&gt;)-X bonds: this strategy leverages single-electron reduction to activate C(sp&lt;sup&gt;3&lt;/sup&gt;)-X bonds, promoting the formation of carbon radicals, which in turn promotes subsequent addition to metals or CO. However, a significant challenge lies in the highly negative reduction potential of certain substrates [E&lt;sub&gt;red&lt;/sub&gt; &lt; -2 V compared to the saturated calomel electrode (SCE) for unactivated alkyl iodides]. Despite these challenges, the intrinsic reducibility of CO and the reactivity of various carbonyl-metal intermediates facilitate smooth reaction progress. (2) Single-electron oxidative of C(sp&lt;sup&gt;3&lt;/sup&gt;)-H bonds: this strategy emphasizes efficiency, high atomic utilization, and minimal waste by bypassing traditional preactivation methods. Using 3d metal catalysts, we have successfully performed aminocarbonylation and alkoxycarbonylation on a wide range of C(sp&lt;sup&gt;3&lt;/sup&gt;)-H bonds (such as those in aliphatic alkanes, ethers, amines, etc.). The above two approaches also enabled radical relay carbonylation of alkenes, allowing precise control over reaction intermediates and pathways. Such control improves both reaction efficiency and selectivity. These advancements have enabled transition metal or photoredox catalysis to facilitate radical relay carbonylation of unactivated alkenes, resulting in transformations such as oxyalkylative carbonylation, aminoalkylative carbonylation, fluoroalkylative carbonylation, double carbonylation, and rearrangement carbonylation.SET-mediated carbonylation significantly enhances the sustainability and scalability of the carbonylation process by reducing reliance on precious metal catalysts and enabling milder reaction conditions. Additionally,","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1