Pub Date : 2024-12-16DOI: 10.1021/acscentsci.4c0141510.1021/acscentsci.4c01415
Tianying Liu, Pan Wang, Wei Li, David Z. Wang, Damith D. Lekamge, Boqiang Chen, Frances A. Houle, Matthias M. Waegele* and Dunwei Wang*,
As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO2 and Fe2O3. TiO2 exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe2O3 showed increased performance with increasing temperature at high applied potentials (>1.2 V vs RHE) but decreased performance at low applied potentials (<1.2 V vs RHE). This decrease in performance with temperature on Fe2O3 was attributed to an increased level of electron–hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO2 and Fe2O3 was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.
Varying temperature measurements reveal that the photophysical processes and the subsequent chemical steps exhibit mutual influence on each other in photoelectrochemical water oxidation reactions.
{"title":"Temperature-Dependent Water Oxidation Kinetics: Implications and Insights","authors":"Tianying Liu, Pan Wang, Wei Li, David Z. Wang, Damith D. Lekamge, Boqiang Chen, Frances A. Houle, Matthias M. Waegele* and Dunwei Wang*, ","doi":"10.1021/acscentsci.4c0141510.1021/acscentsci.4c01415","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01415https://doi.org/10.1021/acscentsci.4c01415","url":null,"abstract":"<p >As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub>. TiO<sub>2</sub> exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe<sub>2</sub>O<sub>3</sub> showed increased performance with increasing temperature at high applied potentials (>1.2 V vs RHE) but decreased performance at low applied potentials (<1.2 V vs RHE). This decrease in performance with temperature on Fe<sub>2</sub>O<sub>3</sub> was attributed to an increased level of electron–hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.</p><p >Varying temperature measurements reveal that the photophysical processes and the subsequent chemical steps exhibit mutual influence on each other in photoelectrochemical water oxidation reactions.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"91–97 91–97"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143084779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16eCollection Date: 2025-01-22DOI: 10.1021/acscentsci.4c01822
Min Gao, Sun Hyeok Lee, Haw-Young Kwon, Larissa Miasiro Ciaramicoli, Eunsol Jo, Young Hyun Yu, Fengming Li, Beomsue Kim, Kyungtae Hong, Jun-Seok Lee, Namhui Kim, Yoojin Oh, Chun Young Im, Chris Soon Heng Tan, Hyung-Ho Ha, Young-Tae Chang
Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer. Herein, we report two fluorescent probes, cLG and hLR, for the detection of cancer and healthy cells, respectively, enabling the precise diagnosis of liver cancer by providing complementary imaging. These two fluorescent probes could selectively stain the target cells in the liver tissue imaging, which is confirmed by H&E and antibody staining. Moreover, for the first time, the cancerous area and healthy area are clearly identified by the cocktail of these two probes, suggesting its potential to be used in fluorescence-guided surgery. Finally, we identify transporter SLC27A2 as the gating target of cLG through a systematic transporter screen using a CRISPR activation library. SMPD1 was identified as the target of hLR through a thermal proteome profiling. Therefore, the development of these two highly specific probes offers complementary imaging and provides a unique diagnostic tool for cancer disease, even for fluorescence-guided surgery.
{"title":"A Pair of Fluorescent Probes Enabling Precise Diagnosis of Liver Cancer by Complementary Imaging.","authors":"Min Gao, Sun Hyeok Lee, Haw-Young Kwon, Larissa Miasiro Ciaramicoli, Eunsol Jo, Young Hyun Yu, Fengming Li, Beomsue Kim, Kyungtae Hong, Jun-Seok Lee, Namhui Kim, Yoojin Oh, Chun Young Im, Chris Soon Heng Tan, Hyung-Ho Ha, Young-Tae Chang","doi":"10.1021/acscentsci.4c01822","DOIUrl":"10.1021/acscentsci.4c01822","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer. Herein, we report two fluorescent probes, <b>cLG</b> and <b>hLR</b>, for the detection of cancer and healthy cells, respectively, enabling the precise diagnosis of liver cancer by providing complementary imaging. These two fluorescent probes could selectively stain the target cells in the liver tissue imaging, which is confirmed by H&E and antibody staining. Moreover, for the first time, the cancerous area and healthy area are clearly identified by the cocktail of these two probes, suggesting its potential to be used in fluorescence-guided surgery. Finally, we identify transporter SLC27A2 as the gating target of <b>cLG</b> through a systematic transporter screen using a CRISPR activation library. SMPD1 was identified as the target of <b>hLR</b> through a thermal proteome profiling. Therefore, the development of these two highly specific probes offers complementary imaging and provides a unique diagnostic tool for cancer disease, even for fluorescence-guided surgery.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"76-83"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16eCollection Date: 2025-01-22DOI: 10.1021/acscentsci.4c01415
Tianying Liu, Pan Wang, Wei Li, David Z Wang, Damith D Lekamge, Boqiang Chen, Frances A Houle, Matthias M Waegele, Dunwei Wang
As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO2 and Fe2O3. TiO2 exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe2O3 showed increased performance with increasing temperature at high applied potentials (>1.2 V vs RHE) but decreased performance at low applied potentials (<1.2 V vs RHE). This decrease in performance with temperature on Fe2O3 was attributed to an increased level of electron-hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO2 and Fe2O3 was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.
{"title":"Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.","authors":"Tianying Liu, Pan Wang, Wei Li, David Z Wang, Damith D Lekamge, Boqiang Chen, Frances A Houle, Matthias M Waegele, Dunwei Wang","doi":"10.1021/acscentsci.4c01415","DOIUrl":"10.1021/acscentsci.4c01415","url":null,"abstract":"<p><p>As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub>. TiO<sub>2</sub> exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe<sub>2</sub>O<sub>3</sub> showed increased performance with increasing temperature at high applied potentials (>1.2 V vs RHE) but decreased performance at low applied potentials (<1.2 V vs RHE). This decrease in performance with temperature on Fe<sub>2</sub>O<sub>3</sub> was attributed to an increased level of electron-hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"91-97"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs. Using this virtual screener, we designed and incorporated several novel Lys and Phe derivatives into proteins for various downstream applications. Among them, the genetic encoding of an electron-rich Phe analog, 3-dimethylamino-phenylalanine, was successfully applied to enhance the cation-π interaction between histone methylation and its reader proteins. Thus, our virtual screener provides a fast and powerful strategy to efficiently incorporate ncAAs with diverse functionalities.
We have developed a virtual noncanonical amino acid (ncAA) screener that allows evaluation of the genetic encodability of designed ncAAs with desired functionalities prior to chemical synthesis.
{"title":"Computationally Assisted Noncanonical Amino Acid Incorporation","authors":"Chengzhu Fang, Wenyuan Xu, Chao Liu, Yulin Chen, Shixian Lin* and Wenlong Ding*, ","doi":"10.1021/acscentsci.4c0154410.1021/acscentsci.4c01544","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01544https://doi.org/10.1021/acscentsci.4c01544","url":null,"abstract":"<p >Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs. Using this virtual screener, we designed and incorporated several novel Lys and Phe derivatives into proteins for various downstream applications. Among them, the genetic encoding of an electron-rich Phe analog, 3-dimethylamino-phenylalanine, was successfully applied to enhance the cation-π interaction between histone methylation and its reader proteins. Thus, our virtual screener provides a fast and powerful strategy to efficiently incorporate ncAAs with diverse functionalities.</p><p >We have developed a virtual noncanonical amino acid (ncAA) screener that allows evaluation of the genetic encodability of designed ncAAs with desired functionalities prior to chemical synthesis.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"84–90 84–90"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01544","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143084777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs. Using this virtual screener, we designed and incorporated several novel Lys and Phe derivatives into proteins for various downstream applications. Among them, the genetic encoding of an electron-rich Phe analog, 3-dimethylamino-phenylalanine, was successfully applied to enhance the cation-π interaction between histone methylation and its reader proteins. Thus, our virtual screener provides a fast and powerful strategy to efficiently incorporate ncAAs with diverse functionalities.
{"title":"Computationally Assisted Noncanonical Amino Acid Incorporation.","authors":"Chengzhu Fang, Wenyuan Xu, Chao Liu, Yulin Chen, Shixian Lin, Wenlong Ding","doi":"10.1021/acscentsci.4c01544","DOIUrl":"10.1021/acscentsci.4c01544","url":null,"abstract":"<p><p>Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs. Using this virtual screener, we designed and incorporated several novel Lys and Phe derivatives into proteins for various downstream applications. Among them, the genetic encoding of an electron-rich Phe analog, 3-dimethylamino-phenylalanine, was successfully applied to enhance the cation-π interaction between histone methylation and its reader proteins. Thus, our virtual screener provides a fast and powerful strategy to efficiently incorporate ncAAs with diverse functionalities.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"84-90"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1021/acscentsci.4c0182210.1021/acscentsci.4c01822
Min Gao*, Sun Hyeok Lee, Haw-Young Kwon, Larissa Miasiro Ciaramicoli, Eunsol Jo, Young Hyun Yu, Fengming Li, Beomsue Kim, Kyungtae Hong, Jun-Seok Lee, Namhui Kim, Yoojin Oh, Chun Young Im, Chris Soon Heng Tan*, Hyung-Ho Ha* and Young-Tae Chang*,
Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer. Herein, we report two fluorescent probes, cLG and hLR, for the detection of cancer and healthy cells, respectively, enabling the precise diagnosis of liver cancer by providing complementary imaging. These two fluorescent probes could selectively stain the target cells in the liver tissue imaging, which is confirmed by H&E and antibody staining. Moreover, for the first time, the cancerous area and healthy area are clearly identified by the cocktail of these two probes, suggesting its potential to be used in fluorescence-guided surgery. Finally, we identify transporter SLC27A2 as the gating target of cLG through a systematic transporter screen using a CRISPR activation library. SMPD1 was identified as the target of hLR through a thermal proteome profiling. Therefore, the development of these two highly specific probes offers complementary imaging and provides a unique diagnostic tool for cancer disease, even for fluorescence-guided surgery.
cLG and hLR are presented to detect cancerous and healthy cells, respectively. This pair of fluorescent probes can accurately imaging liver cancer by providing dual-color imaging.
{"title":"A Pair of Fluorescent Probes Enabling Precise Diagnosis of Liver Cancer by Complementary Imaging","authors":"Min Gao*, Sun Hyeok Lee, Haw-Young Kwon, Larissa Miasiro Ciaramicoli, Eunsol Jo, Young Hyun Yu, Fengming Li, Beomsue Kim, Kyungtae Hong, Jun-Seok Lee, Namhui Kim, Yoojin Oh, Chun Young Im, Chris Soon Heng Tan*, Hyung-Ho Ha* and Young-Tae Chang*, ","doi":"10.1021/acscentsci.4c0182210.1021/acscentsci.4c01822","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01822https://doi.org/10.1021/acscentsci.4c01822","url":null,"abstract":"<p >Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer. Herein, we report two fluorescent probes, <b>cLG</b> and <b>hLR</b>, for the detection of cancer and healthy cells, respectively, enabling the precise diagnosis of liver cancer by providing complementary imaging. These two fluorescent probes could selectively stain the target cells in the liver tissue imaging, which is confirmed by H&E and antibody staining. Moreover, for the first time, the cancerous area and healthy area are clearly identified by the cocktail of these two probes, suggesting its potential to be used in fluorescence-guided surgery. Finally, we identify transporter SLC27A2 as the gating target of <b>cLG</b> through a systematic transporter screen using a CRISPR activation library. SMPD1 was identified as the target of <b>hLR</b> through a thermal proteome profiling. Therefore, the development of these two highly specific probes offers complementary imaging and provides a unique diagnostic tool for cancer disease, even for fluorescence-guided surgery.</p><p >cLG and hLR are presented to detect cancerous and healthy cells, respectively. This pair of fluorescent probes can accurately imaging liver cancer by providing dual-color imaging.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"76–83 76–83"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01822","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143084866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1021/acscentsci.4c0204110.1021/acscentsci.4c02041
Svetlana B. Tsogoeva, and , Kirk S. Schanze*,
{"title":"Organic Synthesis and Catalysis Enable Facile Access to Bioactive Compounds and Drugs","authors":"Svetlana B. Tsogoeva, and , Kirk S. Schanze*, ","doi":"10.1021/acscentsci.4c0204110.1021/acscentsci.4c02041","DOIUrl":"https://doi.org/10.1021/acscentsci.4c02041https://doi.org/10.1021/acscentsci.4c02041","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"1–5 1–5"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143084875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16eCollection Date: 2025-01-22DOI: 10.1021/acscentsci.4c02041
Svetlana B Tsogoeva, Kirk S Schanze
{"title":"Organic Synthesis and Catalysis Enable Facile Access to Bioactive Compounds and Drugs.","authors":"Svetlana B Tsogoeva, Kirk S Schanze","doi":"10.1021/acscentsci.4c02041","DOIUrl":"10.1021/acscentsci.4c02041","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"1-5"},"PeriodicalIF":12.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1021/acscentsci.4c0117710.1021/acscentsci.4c01177
Nathanael P. Kazmierczak, Paul H. Oyala and Ryan G. Hadt*,
Spin–lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (T1) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional T1 fitting approaches cannot reliably extract this information. Single-crystal T1 anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature T1 anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.
Variable-temperature measurements of electron spin relaxation anisotropy reveal the character of the nuclear motions that destroy quantum information.
{"title":"Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation","authors":"Nathanael P. Kazmierczak, Paul H. Oyala and Ryan G. Hadt*, ","doi":"10.1021/acscentsci.4c0117710.1021/acscentsci.4c01177","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01177https://doi.org/10.1021/acscentsci.4c01177","url":null,"abstract":"<p >Spin–lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (<i>T</i><sub>1</sub>) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional <i>T</i><sub>1</sub> fitting approaches cannot reliably extract this information. Single-crystal <i>T</i><sub>1</sub> anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature <i>T</i><sub>1</sub> anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.</p><p >Variable-temperature measurements of electron spin relaxation anisotropy reveal the character of the nuclear motions that destroy quantum information.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2353–2362 2353–2362"},"PeriodicalIF":12.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143125994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing. Here, we designed a solid-state DNA origami register that compresses output data from a 3D solution to a 2D surface, establishing a rewritable register suitable for solid-state storage. We developed a heterogeneous integration architecture of liquid-state circuits and solid-state registers, reducing the register-mediated signal transfer time between circuits to less than 1 h, thereby achieving fast sequential DNA computing. Furthermore, we designed a trace signal amplifier to read surface-stored signals back into solution. This compact approach not only enhances the speed of sequential DNA computing but also lays the foundation for the visual debugging and automated execution of DNA molecular algorithms.
{"title":"High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register.","authors":"Qian Zhang, Mingqiang Li, Yuqing Tang, Jinyan Zhang, Chenyun Sun, Yaya Hao, Jianing Cheng, Xiaodong Xie, Sisi Jia, Hui Lv, Fei Wang, Chunhai Fan","doi":"10.1021/acscentsci.4c01557","DOIUrl":"10.1021/acscentsci.4c01557","url":null,"abstract":"<p><p>DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing. Here, we designed a solid-state DNA origami register that compresses output data from a 3D solution to a 2D surface, establishing a rewritable register suitable for solid-state storage. We developed a heterogeneous integration architecture of liquid-state circuits and solid-state registers, reducing the register-mediated signal transfer time between circuits to less than 1 h, thereby achieving fast sequential DNA computing. Furthermore, we designed a trace signal amplifier to read surface-stored signals back into solution. This compact approach not only enhances the speed of sequential DNA computing but also lays the foundation for the visual debugging and automated execution of DNA molecular algorithms.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2285-2293"},"PeriodicalIF":12.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672539/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}