首页 > 最新文献

ACS Central Science最新文献

英文 中文
Seeking Precise Protein-like Functions from Random Heteropolymer Ensemble and through Dimensionality Reduction 通过降维从随机杂多聚合物系综中寻找精确的类蛋白质功能
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1021/acscentsci.5c01382
Guangqi Wu, , , Tianyi Jin, , , Haisen Zhou, , , Connor W. Coley, , , Alfredo Alexander-Katz*, , and , Hua Lu*, 

Proteins achieve diverse biological functions through precise sequence-structure relationships, yet they can also function through statistical ensembles rather than as individual, static entities. Inspired by this paradigm, recent work has explored random heteropolymers (RHPs) as synthetic, scalable, and versatile protein mimetics. RHPs have been found to function as polymer ensembles capable of folding, binding, catalyzing, and stabilizing biomolecules with control over the monomer sequence. In this Outlook, we highlight recent advances in the discovery and mechanistic understanding of functional RHPs, emphasizing their emergent behaviors and utility across sustainability, human health, and pharmaceuticals. We discuss how autonomous experimentation, machine learning, and multiscale modeling are converging to accelerate design and discovery in this vast chemical space. By embracing statistical design principles, we propose a new framework for creating functional polymers that mirror biological systems.

Recent discoveries enabled by diverse strategies on random heteropolymers reveal emergent protein-like functions, paving the way for new catalysts, biomaterials, and sustainable technologies.

蛋白质通过精确的序列-结构关系实现多种生物功能,但它们也可以通过统计集合而不是单个的静态实体发挥作用。受这种模式的启发,最近的工作已经探索了随机异聚物(RHPs)作为合成的、可扩展的和多功能的蛋白质模拟物。RHPs已被发现作为聚合物集合体,具有折叠、结合、催化和稳定生物分子的功能,并能控制单体序列。在本展望中,我们重点介绍了功能性rhp的发现和机制理解方面的最新进展,强调了它们在可持续性、人类健康和制药领域的突发性行为和效用。我们讨论了自主实验、机器学习和多尺度建模如何融合在一起,以加速这个巨大化学领域的设计和发现。通过采用统计设计原则,我们提出了一个新的框架来创建反映生物系统的功能性聚合物。通过对随机异聚物的不同策略,最近的发现揭示了新兴的蛋白质样功能,为新的催化剂、生物材料和可持续技术铺平了道路。
{"title":"Seeking Precise Protein-like Functions from Random Heteropolymer Ensemble and through Dimensionality Reduction","authors":"Guangqi Wu,&nbsp;, ,&nbsp;Tianyi Jin,&nbsp;, ,&nbsp;Haisen Zhou,&nbsp;, ,&nbsp;Connor W. Coley,&nbsp;, ,&nbsp;Alfredo Alexander-Katz*,&nbsp;, and ,&nbsp;Hua Lu*,&nbsp;","doi":"10.1021/acscentsci.5c01382","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01382","url":null,"abstract":"<p >Proteins achieve diverse biological functions through precise sequence-structure relationships, yet they can also function through statistical ensembles rather than as individual, static entities. Inspired by this paradigm, recent work has explored random heteropolymers (RHPs) as synthetic, scalable, and versatile protein mimetics. RHPs have been found to function as polymer ensembles capable of folding, binding, catalyzing, and stabilizing biomolecules with control over the monomer sequence. In this Outlook, we highlight recent advances in the discovery and mechanistic understanding of functional RHPs, emphasizing their emergent behaviors and utility across sustainability, human health, and pharmaceuticals. We discuss how autonomous experimentation, machine learning, and multiscale modeling are converging to accelerate design and discovery in this vast chemical space. By embracing statistical design principles, we propose a new framework for creating functional polymers that mirror biological systems.</p><p >Recent discoveries enabled by diverse strategies on random heteropolymers reveal emergent protein-like functions, paving the way for new catalysts, biomaterials, and sustainable technologies.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 11","pages":"2053–2062"},"PeriodicalIF":10.4,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Live-Cell NanoBRET Assay to Monitor RNA–Protein Interactions and Their Inhibition by Small Molecules 一种监测rna -蛋白相互作用及其被小分子抑制的活细胞NanoBRET试验
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1021/acscentsci.5c00705
Jingsong Shan, , , Amirhossein Taghavi, , , Elizabeth A. Caine, , , Ryuichi Sekioka, , , Veronika Rajchin, , , James M. Burke, , , J. Monty Watkins, , , Jessica L. Childs-Disney, , and , Matthew D. Disney*, 

RNA–protein interactions are critical for cellular processes, including translation, pre-mRNA splicing, post-transcriptional modifications, and RNA stability. Their dysregulation is implicated in diseases such as myotonic dystrophy type 1 (DM1) and amyotrophic lateral sclerosis (ALS). To investigate RNA–protein interactions, here is described a live-cell NanoBioluminescence Resonance Energy Transfer (NanoBRET) assay to study the interaction between expanded r(CUG) repeats [r(CUG)exp] and muscleblind-like 1 (MBNL1), central to DM1 pathogenesis. This r(CUG)exp sequesters MBNL1, a regulator of alternative pre-mRNA splicing, in nuclear foci causing splicing dysregulation. In the NanoBRET assay, r(CUG)exp acts as a scaffold to bring into proximity a BRET pair, MBNL1–NanoLuciferase (NanoLuc) and MBNL1–HaloTag, enabling a quantitative readout of RNA–protein interactions. Following assay optimization, an RNA-focused small molecule library was screened, identifying ten compounds with shared chemotypes that disrupt the r(CUG)exp–MBNL1 complex. Nuclear magnetic resonance (NMR) studies revealed these inhibitors bind to the 1 × 1 UU internal loops formed when r(CUG)exp folds. Five of these molecules rescued two cellular hallmarks of DM1 in patient-derived myotubes, alternative pre-mRNA splicing defects and formation of nuclear r(CUG)/MBNL1-positive foci. These results demonstrate that the NanoBRET assay is a powerful tool to study RNA–protein interactions in live cells and to identify small molecules that alleviate RNA-mediated cellular pathology.

Live-cell NanoBRET probes RNA−protein interactions and identifies small molecules that disrupt the toxic r(CUG)exp−MBNL1 complex, alleviating pathology in myotonic dystrophy type 1 (DM1).

RNA -蛋白相互作用对细胞过程至关重要,包括翻译、mrna前剪接、转录后修饰和RNA稳定性。它们的失调与1型肌强直性营养不良(DM1)和肌萎缩侧索硬化症(ALS)等疾病有关。为了研究rna -蛋白相互作用,本文描述了一种活细胞纳米发光共振能量转移(NanoBRET)实验,以研究扩展r(CUG)重复序列[r(CUG)exp]与DM1发病机制核心的肌盲样1 (MBNL1)之间的相互作用。该基因(CUG)在导致剪接失调的核病灶中隔离了MBNL1,一种可选择性前mrna剪接的调节因子。在NanoBRET分析中,r(CUG)exp作为支架,将BRET对、mbnl1 - nanoliferase (NanoLuc)和MBNL1-HaloTag靠近,从而能够定量读出rna -蛋白相互作用。在实验优化后,筛选了一个以rna为重点的小分子文库,确定了10个具有共同化学型的化合物,这些化合物可以破坏r(CUG) expe - mbnl1复合物。核磁共振(NMR)研究表明,这些抑制剂与r(CUG)exp折叠时形成的1 × 1 UU内环结合。其中5种分子在患者源性肌管中挽救了DM1的两个细胞特征,替代mrna前剪接缺陷和核r(CUG)/ mbnl1阳性灶的形成。这些结果表明,NanoBRET分析是研究活细胞中rna -蛋白相互作用和识别减轻rna介导的细胞病理的小分子的有力工具。活细胞NanoBRET探测RNA -蛋白相互作用,并识别破坏毒性r(CUG)exp - MBNL1复合物的小分子,减轻1型肌强直性营养不良(DM1)的病理。
{"title":"A Live-Cell NanoBRET Assay to Monitor RNA–Protein Interactions and Their Inhibition by Small Molecules","authors":"Jingsong Shan,&nbsp;, ,&nbsp;Amirhossein Taghavi,&nbsp;, ,&nbsp;Elizabeth A. Caine,&nbsp;, ,&nbsp;Ryuichi Sekioka,&nbsp;, ,&nbsp;Veronika Rajchin,&nbsp;, ,&nbsp;James M. Burke,&nbsp;, ,&nbsp;J. Monty Watkins,&nbsp;, ,&nbsp;Jessica L. Childs-Disney,&nbsp;, and ,&nbsp;Matthew D. Disney*,&nbsp;","doi":"10.1021/acscentsci.5c00705","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00705","url":null,"abstract":"<p >RNA–protein interactions are critical for cellular processes, including translation, pre-mRNA splicing, post-transcriptional modifications, and RNA stability. Their dysregulation is implicated in diseases such as myotonic dystrophy type 1 (DM1) and amyotrophic lateral sclerosis (ALS). To investigate RNA–protein interactions, here is described a live-cell NanoBioluminescence Resonance Energy Transfer (NanoBRET) assay to study the interaction between expanded r(CUG) repeats [r(CUG)<sup>exp</sup>] and muscleblind-like 1 (MBNL1), central to DM1 pathogenesis. This r(CUG)<sup>exp</sup> sequesters MBNL1, a regulator of alternative pre-mRNA splicing, in nuclear foci causing splicing dysregulation. In the NanoBRET assay, r(CUG)<sup>exp</sup> acts as a scaffold to bring into proximity a BRET pair, MBNL1–NanoLuciferase (NanoLuc) and MBNL1–HaloTag, enabling a quantitative readout of RNA–protein interactions. Following assay optimization, an RNA-focused small molecule library was screened, identifying ten compounds with shared chemotypes that disrupt the r(CUG)<sup>exp</sup>–MBNL1 complex. Nuclear magnetic resonance (NMR) studies revealed these inhibitors bind to the 1 × 1 UU internal loops formed when r(CUG)<sup>exp</sup> folds. Five of these molecules rescued two cellular hallmarks of DM1 in patient-derived myotubes, alternative pre-mRNA splicing defects and formation of nuclear r(CUG)/MBNL1-positive foci. These results demonstrate that the NanoBRET assay is a powerful tool to study RNA–protein interactions in live cells and to identify small molecules that alleviate RNA-mediated cellular pathology.</p><p >Live-cell NanoBRET probes RNA−protein interactions and identifies small molecules that disrupt the toxic r(CUG)<sup>exp</sup>−MBNL1 complex, alleviating pathology in myotonic dystrophy type 1 (DM1).</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 11","pages":"2154–2171"},"PeriodicalIF":10.4,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACS Central Science: Embracing Breadth in Scope and Scientific Topical Representation ACS中心科学:拥抱广度的范围和科学专题代表性
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-24 DOI: 10.1021/acscentsci.5c01315
Sofia Garakyaraghi,  and , Kirk S. Schanze*, 
{"title":"ACS Central Science: Embracing Breadth in Scope and Scientific Topical Representation","authors":"Sofia Garakyaraghi,&nbsp; and ,&nbsp;Kirk S. Schanze*,&nbsp;","doi":"10.1021/acscentsci.5c01315","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01315","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1512–1514"},"PeriodicalIF":10.4,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing Hidden Length by Force: Decoupling Modulus and Toughness in Network Gels 用力揭示隐藏长度:网络凝胶的解耦模量和韧性
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-23 DOI: 10.1021/acscentsci.5c01718
Shakkeeb Thazhathethil,  and , Xiaoran Hu*, 

Reactive strand extension decouples toughness from modulus in single- and double-network gels.

反应链延伸使单网和双网凝胶的韧性与模量脱钩。
{"title":"Revealing Hidden Length by Force: Decoupling Modulus and Toughness in Network Gels","authors":"Shakkeeb Thazhathethil,&nbsp; and ,&nbsp;Xiaoran Hu*,&nbsp;","doi":"10.1021/acscentsci.5c01718","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01718","url":null,"abstract":"<p >Reactive strand extension decouples toughness from modulus in single- and double-network gels.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1805–1807"},"PeriodicalIF":10.4,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Versatile Enzymatic Pathway for Modification of Peptide C-Termini 多肽c末端修饰的多用途酶途径
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-20 DOI: 10.1021/acscentsci.5c01243
Shravan R. Dommaraju, , , Sanath K. Kandy, , , Hengqian Ren, , , Dominic P. Luciano, , , Shogo Fujiki, , , David Sarlah, , , Huimin Zhao, , , Jonathan R. Chekan*, , and , Douglas A. Mitchell*, 

Advances in bioinformatics have enabled the discovery of unique enzymatic reactions, particularly for ribosomally synthesized and post-translationally modified peptides (RiPPs). The recently discovered daptides, peptides with their C-terminus replaced by an amine, represent one such case, but the diversity, requirements, and engineering potential of daptide biosynthesis remain to be established. Using the daptide biosynthetic gene clusters from Thermobifida fusca and Streptomyces azureus, we reconstituted daptide biosynthesis in vitro, revealing the enzymatic requirements for successive oxidative decarboxylation, transamination, and N,N-dimethylation. In vitro and in vivo studies showed a tailoring family of YcaO enzymes convert a secondary amine intermediate to a C-terminal imidazoline. We further demonstrated enzymatic activity toward shortened, leader peptide-free, and non-native core peptides, highlighting a broad substrate tolerance. Using these insights, we directed the daptide pathway to install new C-termini, including a bioconjugation-compatible aminoacetone, on various peptide and protein substrates.

Daptide biosynthetic enzymes convert C-termini to aminoacetone, diaminopropane, dimethylimidazoline, etc. and can install these modifications onto a broad range of substrates.

生物信息学的进步使得独特的酶促反应得以发现,尤其是核糖体合成和翻译后修饰肽(RiPPs)。最近发现的肽,其c端被胺取代的肽,代表了这样的一个例子,但生物合成的多样性、要求和工程潜力仍有待确定。利用fusca Thermobifida和blue Streptomyces的dap肽生物合成基因簇,我们在体外重建了dap肽的生物合成,揭示了一系列氧化脱羧、转氨化和N,N-二甲基化的酶促过程。体外和体内研究表明,YcaO酶的裁剪家族可将仲胺中间体转化为c端咪唑啉。我们进一步证明了酶对缩短的,无前导肽和非天然核心肽的活性,突出了广泛的底物耐受性。利用这些见解,我们指导了肽途径在各种肽和蛋白质底物上安装新的c -末端,包括生物偶联相容的氨基丙酮。肽生物合成酶将c -末端转化为氨基丙酮、二氨基丙烷、二甲基咪唑啉等,并可以将这些修饰物安装在广泛的底物上。
{"title":"A Versatile Enzymatic Pathway for Modification of Peptide C-Termini","authors":"Shravan R. Dommaraju,&nbsp;, ,&nbsp;Sanath K. Kandy,&nbsp;, ,&nbsp;Hengqian Ren,&nbsp;, ,&nbsp;Dominic P. Luciano,&nbsp;, ,&nbsp;Shogo Fujiki,&nbsp;, ,&nbsp;David Sarlah,&nbsp;, ,&nbsp;Huimin Zhao,&nbsp;, ,&nbsp;Jonathan R. Chekan*,&nbsp;, and ,&nbsp;Douglas A. Mitchell*,&nbsp;","doi":"10.1021/acscentsci.5c01243","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01243","url":null,"abstract":"<p >Advances in bioinformatics have enabled the discovery of unique enzymatic reactions, particularly for ribosomally synthesized and post-translationally modified peptides (RiPPs). The recently discovered daptides, peptides with their C-terminus replaced by an amine, represent one such case, but the diversity, requirements, and engineering potential of daptide biosynthesis remain to be established. Using the daptide biosynthetic gene clusters from <i>Thermobifida fusca</i> and <i>Streptomyces azureus</i>, we reconstituted daptide biosynthesis <i>in vitro</i>, revealing the enzymatic requirements for successive oxidative decarboxylation, transamination, and <i>N</i>,<i>N</i>-dimethylation. <i>In vitro</i> and <i>in vivo</i> studies showed a tailoring family of YcaO enzymes convert a secondary amine intermediate to a C-terminal imidazoline. We further demonstrated enzymatic activity toward shortened, leader peptide-free, and non-native core peptides, highlighting a broad substrate tolerance. Using these insights, we directed the daptide pathway to install new C-termini, including a bioconjugation-compatible aminoacetone, on various peptide and protein substrates.</p><p >Daptide biosynthetic enzymes convert C-termini to aminoacetone, diaminopropane, dimethylimidazoline, etc. and can install these modifications onto a broad range of substrates.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 11","pages":"2143–2153"},"PeriodicalIF":10.4,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Slingshot Geometry Site on Single-Atom La Catalyst Largely Promotes Oxidative Methane Coupling 单原子La催化剂上的活性弹弓几何位点促进甲烷氧化偶联
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-20 DOI: 10.1021/acscentsci.5c01016
Lizhuo Wang, , , Liwei Cao, , , Ang Li*, , , Wenjie Yang, , , Wei Li, , , Xiaozhou Liao, , , Xiaodong Han*, , and , Jun Huang*, 

Oxidative methane coupling (OCM) has long been deemed a promising route for the direct conversion of methane to valuable ethylene. Despite its potential and many progresses, OCM’s industrial implementation has been hampered by low C2 yields and insufficient understanding of the reaction mechanism for catalyst design. In this study, we present a surface geometric modification strategy to enhance OCM performance. Single La atoms incorporated onto MgO surface (SA-La/MgO) form a unique La–O–Mg “slingshot” geometry. This configuration, driven by the large atomic radius of La and its valency mismatch with Mg, significantly activates surface lattice oxygen. These activated oxygen species initiate the OCM by reacting with methane, while the resulting oxygen vacancies are rapidly replenished by dioxygen, sustaining active oxygen supply and preserving the structural integrity of single La atoms. These processes are realized by state-of-the-art in situ environmental electron microscopy and electron energy loss spectroscopy. Remarkably, the La–O–Mg “slingshot” geometry doubles C2 yields and significantly elevates the turnover frequency of SA-La/MgO compared to La2O3 particles on MgO, which lacks such active oxygen species. This work discovers a new mechanism for largely enhancing the OCM performance, emphasizing the importance of atomic-scale geometric and electronic modifications in catalyst design.

Atomic-scale La−O−Mg geometry enhances OCM performance by activating lattice oxygen, offering new insights into catalyst design through in situ electron microscopy.

氧化甲烷偶联(OCM)一直被认为是甲烷直接转化为有价乙烯的一条有前途的途径。尽管OCM具有潜力,也取得了许多进展,但由于C2产率低,以及对催化剂设计的反应机理了解不足,OCM的工业实施受到了阻碍。在这项研究中,我们提出了一种表面几何修饰策略来提高OCM性能。单个La原子结合到MgO表面(SA-La/MgO)形成独特的La - o - mg“弹弓”几何形状。这种结构是由La的大原子半径和它与Mg的价错驱动的,显著地激活了表面晶格氧。这些活性氧通过与甲烷反应引发OCM,而产生的氧空位被双氧迅速补充,维持活性氧供应并保持单个La原子的结构完整性。这些过程是通过最先进的原位环境电子显微镜和电子能量损失光谱来实现的。值得注意的是,与缺乏这些活性氧的MgO上的La2O3颗粒相比,La-O-Mg“弹弓”几何结构使C2产率翻了一倍,并且显著提高了SA-La/MgO的周转频率。这项工作发现了一种大大提高OCM性能的新机制,强调了催化剂设计中原子尺度几何和电子修饰的重要性。原子尺度的La−O−Mg几何结构通过激活晶格氧来增强OCM性能,通过原位电子显微镜为催化剂设计提供了新的见解。
{"title":"Active Slingshot Geometry Site on Single-Atom La Catalyst Largely Promotes Oxidative Methane Coupling","authors":"Lizhuo Wang,&nbsp;, ,&nbsp;Liwei Cao,&nbsp;, ,&nbsp;Ang Li*,&nbsp;, ,&nbsp;Wenjie Yang,&nbsp;, ,&nbsp;Wei Li,&nbsp;, ,&nbsp;Xiaozhou Liao,&nbsp;, ,&nbsp;Xiaodong Han*,&nbsp;, and ,&nbsp;Jun Huang*,&nbsp;","doi":"10.1021/acscentsci.5c01016","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01016","url":null,"abstract":"<p >Oxidative methane coupling (OCM) has long been deemed a promising route for the direct conversion of methane to valuable ethylene. Despite its potential and many progresses, OCM’s industrial implementation has been hampered by low C<sub>2</sub> yields and insufficient understanding of the reaction mechanism for catalyst design. In this study, we present a surface geometric modification strategy to enhance OCM performance. Single La atoms incorporated onto MgO surface (SA-La/MgO) form a unique La–O–Mg “slingshot” geometry. This configuration, driven by the large atomic radius of La and its valency mismatch with Mg, significantly activates surface lattice oxygen. These activated oxygen species initiate the OCM by reacting with methane, while the resulting oxygen vacancies are rapidly replenished by dioxygen, sustaining active oxygen supply and preserving the structural integrity of single La atoms. These processes are realized by state-of-the-art <i>in situ</i> environmental electron microscopy and electron energy loss spectroscopy. Remarkably, the La–O–Mg “slingshot” geometry doubles C<sub>2</sub> yields and significantly elevates the turnover frequency of SA-La/MgO compared to La<sub>2</sub>O<sub>3</sub> particles on MgO, which lacks such active oxygen species. This work discovers a new mechanism for largely enhancing the OCM performance, emphasizing the importance of atomic-scale geometric and electronic modifications in catalyst design.</p><p >Atomic-scale La−O−Mg geometry enhances OCM performance by activating lattice oxygen, offering new insights into catalyst design through <i>in situ</i> electron microscopy.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 11","pages":"2188–2195"},"PeriodicalIF":10.4,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chasing Waterfalls: A Cascade Mechanism to Generate Triplets from 2LMCT States 追逐瀑布:从2LMCT状态生成三胞胎的级联机制
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-19 DOI: 10.1021/acscentsci.5c01666
Alexandra T. Barth​,  and , Felix N. Castellano, 

Earth-abundant ligand-to-metal charge transfer (LMCT) chromophores in donor–acceptor dyads unlock an electron transfer pathway for efficient triplet state formation.

地球上丰富的配体-金属电荷转移(LMCT)发色团在供体-受体二元体中开启了一个有效的三重态形成的电子转移途径。
{"title":"Chasing Waterfalls: A Cascade Mechanism to Generate Triplets from 2LMCT States","authors":"Alexandra T. Barth​,&nbsp; and ,&nbsp;Felix N. Castellano,&nbsp;","doi":"10.1021/acscentsci.5c01666","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01666","url":null,"abstract":"<p >Earth-abundant ligand-to-metal charge transfer (LMCT) chromophores in donor–acceptor dyads unlock an electron transfer pathway for efficient triplet state formation.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1802–1804"},"PeriodicalIF":10.4,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Quantum Compass for Materials Discovery: Navigating the Combinatorial Explosion 材料发现的量子指南针:引导组合爆炸
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-19 DOI: 10.1021/acscentsci.5c01713
Kwang S. Kim​, 

A quantum algorithm navigating the immense design space of multivariate porous materials demonstrates a logical and practical roadmap for the future of chemical synthesis.

在多元多孔材料的巨大设计空间中导航的量子算法为化学合成的未来展示了一个合乎逻辑且实用的路线图。
{"title":"A Quantum Compass for Materials Discovery: Navigating the Combinatorial Explosion","authors":"Kwang S. Kim​,&nbsp;","doi":"10.1021/acscentsci.5c01713","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01713","url":null,"abstract":"<p >A quantum algorithm navigating the immense design space of multivariate porous materials demonstrates a logical and practical roadmap for the future of chemical synthesis.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1808–1811"},"PeriodicalIF":10.4,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron Donation Stabilizes Pt Catalysts in Methanol Fuel Cells 甲醇燃料电池中铂催化剂的电子赋能稳定性
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-19 DOI: 10.1021/acscentsci.5c01712
Xin Wan,  and , Jianglan Shui*, 

An electron-enriched PtNiCo catalyst enabled by TiN support boosts stability in methanol fuel cells by simultaneously overcoming CO poisoning and metal dissolution.

一种由TiN支持的富电子PtNiCo催化剂通过同时克服CO中毒和金属溶解来提高甲醇燃料电池的稳定性。
{"title":"Electron Donation Stabilizes Pt Catalysts in Methanol Fuel Cells","authors":"Xin Wan,&nbsp; and ,&nbsp;Jianglan Shui*,&nbsp;","doi":"10.1021/acscentsci.5c01712","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01712","url":null,"abstract":"<p >An electron-enriched PtNiCo catalyst enabled by TiN support boosts stability in methanol fuel cells by simultaneously overcoming CO poisoning and metal dissolution.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1799–1801"},"PeriodicalIF":10.4,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Antibiotics Targeting the Bacterial Ribosome 靶向细菌核糖体的混合抗生素
IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-17 DOI: 10.1021/acscentsci.5c01046
Seul Ki Yeon, , , Jenna Pellegrino, , , Tushar Raskar, , , Minh L. N. Tran, , , Mohamad Dandan, , , François Guérin, , , Manuel Einsiedler, , , Vincent Cattoir, , , James S. Fraser, , and , Ian B. Seiple*, 

Antimicrobial resistance remains a formidable challenge to modern medicine, with bacterial resistance mechanisms increasingly eroding the utility of clinically important antibiotics. While recent efforts have expanded the antibacterial pipeline, the development of resistance in priority pathogens continues to exceed the pace of new drug development. One emerging strategy to overcome resistance is the rational design of hybrid antibiotics that engage multiple binding sites. Here we describe the design, synthesis, and microbiological and structural characterization of hybrid antibiotics of azithromycin, tedizolid, and chloramphenicol that span the peptidyltransferase center (PTC) and nascent peptide exit tunnel (NPET) in the bacterial ribosome. We characterize the binding of four such hybrids by cryo-electron microscopy, granting insight into their molecular mechanisms of action. We identify a hybrid of azithromycin and tedizolid that is active against a diverse panel of multidrug-resistant Gram-positive bacteria and is minimally affected by ribosomal protection (ABC-F) resistance mechanisms. These results extend our understanding of ribosome inhibition and provide a pipeline for the rational design of dual-action antibiotics that target the ribosome. In a broader context, this work offers a framework for developing bifunctional inhibitors that engage adjacent binding sites by means of a rational cycle of synthetic optimization, biological evaluation, and structural characterization.

An integrated platform to develop hybrid antibiotics that inhibit the bacterial ribosome.

抗微生物药物耐药性仍然是现代医学面临的一个巨大挑战,细菌耐药机制日益侵蚀临床重要抗生素的效用。虽然最近的努力扩大了抗菌管道,但重点病原体的耐药性发展继续超过新药开发的步伐。一种克服耐药性的新策略是合理设计混合抗生素,使其参与多个结合位点。在这里,我们描述了阿奇霉素、泰地唑胺和氯霉素的杂交抗生素的设计、合成、微生物学和结构表征,这些抗生素跨越了细菌核糖体中的肽基转移酶中心(PTC)和新生肽出口通道(NPET)。我们通过低温电子显微镜表征了四种这样的杂交体的结合,从而深入了解了它们的分子作用机制。我们鉴定了一种阿奇霉素和泰地唑胺的混合物,它对多种多重耐药革兰氏阳性细菌具有活性,并且受核糖体保护(ABC-F)耐药机制的影响最小。这些结果扩展了我们对核糖体抑制的理解,并为合理设计针对核糖体的双作用抗生素提供了途径。在更广泛的背景下,这项工作为开发双功能抑制剂提供了一个框架,通过合理的合成优化、生物学评估和结构表征的循环来结合邻近的结合位点。开发抑制细菌核糖体的混合抗生素的综合平台。
{"title":"Hybrid Antibiotics Targeting the Bacterial Ribosome","authors":"Seul Ki Yeon,&nbsp;, ,&nbsp;Jenna Pellegrino,&nbsp;, ,&nbsp;Tushar Raskar,&nbsp;, ,&nbsp;Minh L. N. Tran,&nbsp;, ,&nbsp;Mohamad Dandan,&nbsp;, ,&nbsp;François Guérin,&nbsp;, ,&nbsp;Manuel Einsiedler,&nbsp;, ,&nbsp;Vincent Cattoir,&nbsp;, ,&nbsp;James S. Fraser,&nbsp;, and ,&nbsp;Ian B. Seiple*,&nbsp;","doi":"10.1021/acscentsci.5c01046","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01046","url":null,"abstract":"<p >Antimicrobial resistance remains a formidable challenge to modern medicine, with bacterial resistance mechanisms increasingly eroding the utility of clinically important antibiotics. While recent efforts have expanded the antibacterial pipeline, the development of resistance in priority pathogens continues to exceed the pace of new drug development. One emerging strategy to overcome resistance is the rational design of hybrid antibiotics that engage multiple binding sites. Here we describe the design, synthesis, and microbiological and structural characterization of hybrid antibiotics of azithromycin, tedizolid, and chloramphenicol that span the peptidyltransferase center (PTC) and nascent peptide exit tunnel (NPET) in the bacterial ribosome. We characterize the binding of four such hybrids by cryo-electron microscopy, granting insight into their molecular mechanisms of action. We identify a hybrid of azithromycin and tedizolid that is active against a diverse panel of multidrug-resistant Gram-positive bacteria and is minimally affected by ribosomal protection (ABC-F) resistance mechanisms. These results extend our understanding of ribosome inhibition and provide a pipeline for the rational design of dual-action antibiotics that target the ribosome. In a broader context, this work offers a framework for developing bifunctional inhibitors that engage adjacent binding sites by means of a rational cycle of synthetic optimization, biological evaluation, and structural characterization.</p><p >An integrated platform to develop hybrid antibiotics that inhibit the bacterial ribosome.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 11","pages":"2133–2142"},"PeriodicalIF":10.4,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Central Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1