Advances in polymer nanocomposites presentmany opportunities for tuning material properties. In comparison to utilising zero-dimensional and one-dimensional filler materials, the advent of 2D materials with inherently unique properties allows further fine-tuning of the nanomaterial composite. Additive Manufacturing, or 3D printing, provides an advantage in the production of advanced polymer nanocomposites, enabling rapid-prototyping and facilitating increased design flexibility and optimisation that would not be possible to achieve otherwise. Of particular interest is the ability to utilise multiple materials in the manufacture of a single component or a functional assembled device. This review specifically details the recent advances in multifunctional 3D printing of polymer/2D nanomaterial composites, focusing on the widely commercialised technique of Fused Filament Fabrication (FFF) and the highly versatile technique of Direct Ink Writing (DIW). We will also highlight potential applications of these materials, processing techniques and resulting properties for various applications, including circuits, sensors, energy storage devices and electromagnetic interference shielding.
Recent advancements in flexible and stretchable electronics have underscored the critical importance of maintaining essential electrical properties under stretching conditions, especially in wearable technology. The integration of stretchable conductors into wearable devices, such as soft sensors and stretchable batteries, highlights efforts to enhance durability and performance. Despite extensive studies into the development of stretchable conductors, the impedance characteristics of stretchable electrodes have largely evaded in-depth examination within existing literature. This review paper aims to bridge this gap by offering a comprehensive overview of recent advancements in both material and structural designs tailored for impedance property of stretchable electrodes. It delves into the exploration of various conductive materials, including metals, liquid metals, conducting polymers, hydrogels, and textiles, each offering unique properties suited for specific applications. Moreover, it discusses the diverse fabrication methods employed, such as direct mixing, surface coating/deposition, printing, and specialized techniques for creating electrically conductive networks. Beyond material and fabrication strategies, the review also explores innovative structural concepts capable of accommodating large deformations, such as serpentine, coiled, Kirigami, and open-mesh structures. These designs not only enhance the mechanical resilience of stretchable electronics but also contribute to their electrical performance, particularly in low impedance electronic applications. Finally, the paper provides insights into the emerging applications of conductive nanocomposites with low impedance for wearable electronics, addressing key challenges and discussing future research directions.
Wearable tensile strain sensors are of great importance in both motion monitoring and next-generation, personalized health diagnostics. The accuracy, reliability and stability of the signals obtained from these sensors are significantly dependent on the conformal contact between the flexible sensor and the skin surface. In this study, we have developed a flexible double-layer film as a wearable tensile strain sensor by a simple solution-blending method and a layer-by-layer spraying method. D-sorbitol was incorporated into a waterborne polyurethane (WPU) emulsion to enhance film adhesion, achieving a strength of 7.91 N/m, and to disrupt hydrogen bonds between the WPU chains. This disruption facilitates more straightforward conformational changes of the chains under stress, thereby substantially enhancing the mechanical flexibility of the film. The sensing layer was subsequently constructed by spraying silver microparticles, exhibiting extremely high sensitivity (gauge factor = 103.01) over a 19.3% strain range. This sensor can effectively monitor joint motions and subtle muscle movements as tensile strain sensors.

