首页 > 最新文献

Brain Organoid and Systems Neuroscience Journal最新文献

英文 中文
Disease modeling and drug screening using human airway organoids: a systematic review 人类气道类器官的疾病建模和药物筛选:系统综述
Pub Date : 2021-05-30 DOI: 10.51335/ORGANOID.2021.1.E8
D. Kim, S. Kim
Increasing levels of fine environmental dust particles due to industrialization and emerging respiratory illnesses, such as coronavirus disease 2019, pose serious threats to human life. The use of organoids for disease modeling and drug screening has been proposed as a new treatment approach for respiratory diseases. As discussed in this review, various pathogen models, genetic disease models, and patient-derived lung cancer organoid models have been reported for disease modeling and drug testing using human airway organoids. Despite these promising recent advances, several issues must be addressed before the disease modeling potential of human airway organoids can be fully realized. If systematic methods to produce mature airway organoids can be developed, and reproducible organoid models can be implemented using standardized protocols, airway organoids will likely become valuable respiratory disease models and drug screening tools.
工业化和新型冠状病毒等呼吸道疾病导致的环境微细粉尘水平不断上升,对人类生命构成严重威胁。利用类器官进行疾病建模和药物筛选已被提出作为一种新的治疗呼吸系统疾病的方法。正如本文所讨论的,各种病原体模型、遗传疾病模型和患者来源的肺癌类器官模型已被报道用于使用人类气道类器官进行疾病建模和药物测试。尽管最近取得了这些有希望的进展,但在充分实现人类气道类器官的疾病建模潜力之前,必须解决几个问题。如果能够开发出系统的方法来生产成熟的气道类器官,并且可以使用标准化的方案实现可复制的类器官模型,气道类器官将有可能成为有价值的呼吸系统疾病模型和药物筛选工具。
{"title":"Disease modeling and drug screening using human airway organoids: a systematic review","authors":"D. Kim, S. Kim","doi":"10.51335/ORGANOID.2021.1.E8","DOIUrl":"https://doi.org/10.51335/ORGANOID.2021.1.E8","url":null,"abstract":"Increasing levels of fine environmental dust particles due to industrialization and emerging respiratory illnesses, such as coronavirus disease 2019, pose serious threats to human life. The use of organoids for disease modeling and drug screening has been proposed as a new treatment approach for respiratory diseases. As discussed in this review, various pathogen models, genetic disease models, and patient-derived lung cancer organoid models have been reported for disease modeling and drug testing using human airway organoids. Despite these promising recent advances, several issues must be addressed before the disease modeling potential of human airway organoids can be fully realized. If systematic methods to produce mature airway organoids can be developed, and reproducible organoid models can be implemented using standardized protocols, airway organoids will likely become valuable respiratory disease models and drug screening tools.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"309 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78917085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Therapeutic applications of three-dimensional organoid models in lung cancer 三维类器官模型在肺癌治疗中的应用
Pub Date : 2021-04-10 DOI: 10.51335/organoid.2021.1.e6
C. Yeo, Y. Yun, Dong Hyuck Ahn, Y. Hwang, Seung Hee Yang, Hyobin Won, Hyeong Jun Cho, Chan Kwon Park, S. Kim, Jong Y. Park
Lung cancer, which remains a major cause of mortality worldwide, is a histologically diverse condition and demonstrates substantial phenotypic and genomic diversity among individual patients, manifesting as both intertumoral and intratumoral heterogeneity. This heterogeneity has made it difficult to develop lung cancer models. Two-dimensional (2D) cancer cell lines have been used to study genetic and molecular alterations in lung cancer. However, cancer cell lines have several disadvantages, including random genetic drift caused by long-term culture, a lack of annotated clinical data, and most importantly, the fact that only a subset of tumors shows 2D growth on plastic. Three-dimensional models of cancer have the potential to improve cancer research and drug development because they are more representative of cancer biology and its diverse pathophysiology. Herein, we present an integrated review of current information on preclinical lung cancer models and their limitations, including cancer cell line models, patient-derived xenografts, and lung cancer organoids, and discuss their possible therapeutic applications for drug discovery and screening to guide precision medicine in lung cancer research. Altogether, the success rate of generating lung cancer organoids must be improved, and a lung cancer organoid culture system is necessary to achieve the goal of designing an individualized therapeutic strategy for each lung cancer patient.
肺癌仍然是世界范围内死亡的主要原因,它是一种组织学多样化的疾病,在个体患者中表现出大量的表型和基因组多样性,表现为肿瘤间和肿瘤内的异质性。这种异质性使得建立肺癌模型变得困难。二维(2D)癌细胞系已被用于研究肺癌的遗传和分子改变。然而,癌细胞系有几个缺点,包括长期培养引起的随机遗传漂变,缺乏注释的临床数据,最重要的是,只有一小部分肿瘤在塑料上显示2D生长。癌症的三维模型有可能改善癌症研究和药物开发,因为它们更能代表癌症生物学及其多样化的病理生理。在此,我们综合回顾了临床前肺癌模型及其局限性的最新信息,包括癌细胞系模型、患者来源的异种移植物和肺癌类器官,并讨论了它们在药物发现和筛选方面可能的治疗应用,以指导肺癌研究中的精准医学。总之,必须提高肺癌类器官的生成成功率,并且需要一个肺癌类器官培养系统来实现为每个肺癌患者设计个体化治疗策略的目标。
{"title":"Therapeutic applications of three-dimensional organoid models in lung cancer","authors":"C. Yeo, Y. Yun, Dong Hyuck Ahn, Y. Hwang, Seung Hee Yang, Hyobin Won, Hyeong Jun Cho, Chan Kwon Park, S. Kim, Jong Y. Park","doi":"10.51335/organoid.2021.1.e6","DOIUrl":"https://doi.org/10.51335/organoid.2021.1.e6","url":null,"abstract":"Lung cancer, which remains a major cause of mortality worldwide, is a histologically diverse condition and demonstrates substantial phenotypic and genomic diversity among individual patients, manifesting as both intertumoral and intratumoral heterogeneity. This heterogeneity has made it difficult to develop lung cancer models. Two-dimensional (2D) cancer cell lines have been used to study genetic and molecular alterations in lung cancer. However, cancer cell lines have several disadvantages, including random genetic drift caused by long-term culture, a lack of annotated clinical data, and most importantly, the fact that only a subset of tumors shows 2D growth on plastic. Three-dimensional models of cancer have the potential to improve cancer research and drug development because they are more representative of cancer biology and its diverse pathophysiology. Herein, we present an integrated review of current information on preclinical lung cancer models and their limitations, including cancer cell line models, patient-derived xenografts, and lung cancer organoids, and discuss their possible therapeutic applications for drug discovery and screening to guide precision medicine in lung cancer research. Altogether, the success rate of generating lung cancer organoids must be improved, and a lung cancer organoid culture system is necessary to achieve the goal of designing an individualized therapeutic strategy for each lung cancer patient.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87055180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presidential message 总统的消息
Pub Date : 2021-01-20 DOI: 10.51335/organoid.2021.1.e1
Hyung-Ryong Kim
{"title":"Presidential message","authors":"Hyung-Ryong Kim","doi":"10.51335/organoid.2021.1.e1","DOIUrl":"https://doi.org/10.51335/organoid.2021.1.e1","url":null,"abstract":"","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80539779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brain Organoid and Systems Neuroscience Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1