Dr. Yikun Zhu, Dr. Zheng Zhou, Dr. Zheng Wei, Dr. Alexandra Tsybizova, Prof. Dr. Renana Gershoni-Poranne, Prof. Dr. Marina A. Petrukhina
Cyclooctatetraene (COT) and COT2− dianion are well-known as archetypical non-aromatic and aromatic systems, respectively. However, despite a wealth of studies the effect of one electron addition to the eight-membered ring remains equivocal. Herein, we report the first stepwise electron addition to tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT or tetraphenylene), accompanied by isolation and structural characterization of the mono- and doubly-reduced anions. The X-ray crystallographic study reveals only a small asymmetric distortion of the saddle-shaped core upon one electron uptake. In contrast, the doubly-reduced product exhibits a severely twisted conformation, with a new C−C bond separating the COT ring into two fused 5-membered rings. The reversibility of the two-fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. In agreement with experimental results, computational analysis confirms that the reduction-induced core rearrangement requires the addition of the second electron.
{"title":"What a Difference an Electron Makes: Structural Response of Saddle-Shaped Tetraphenylene to One and Two Electron Uptake","authors":"Dr. Yikun Zhu, Dr. Zheng Zhou, Dr. Zheng Wei, Dr. Alexandra Tsybizova, Prof. Dr. Renana Gershoni-Poranne, Prof. Dr. Marina A. Petrukhina","doi":"10.1002/ceur.202400055","DOIUrl":"https://doi.org/10.1002/ceur.202400055","url":null,"abstract":"<p>Cyclooctatetraene (COT) and COT<sup>2−</sup> dianion are well-known as archetypical non-aromatic and aromatic systems, respectively. However, despite a wealth of studies the effect of one electron addition to the eight-membered ring remains equivocal. Herein, we report the first stepwise electron addition to tetrabenzo[<i>a</i>,<i>c</i>,<i>e</i>,<i>g</i>]cyclooctatetraene (TBCOT or tetraphenylene), accompanied by isolation and structural characterization of the mono- and doubly-reduced anions. The X-ray crystallographic study reveals only a small asymmetric distortion of the saddle-shaped core upon one electron uptake. In contrast, the doubly-reduced product exhibits a severely twisted conformation, with a new C−C bond separating the COT ring into two fused 5-membered rings. The reversibility of the two-fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. In agreement with experimental results, computational analysis confirms that the reduction-induced core rearrangement requires the addition of the second electron.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qilu Zhu, Zhuoying Su, Xinyu Li, Jiaqi Ding, Longkai Zhang, Xin Xiao, Ronghua Zeng, Prof. Junming Nan, Prof. Xiaoxi Zuo
The uneven growth of lithium dendrites not only compromise the performance of lithium metal batteries, but also has security risks. In this sutudy, double coating with MgF2 and hydroxypropyl methylcellulose was synthesized on the surface of polyethylene separator through a simple soaking and in-situ chemical precipitation method, achieve the purpose of protecting lithium metal anode. Utilizing the MgF2/HPMC@PE separator, the Li||Li symmetric cell was capable of cycling for over 1000 hours with a voltage hysteresis of only 11.4 mV, comparing the voltage hysteresis based on the cell use of PE separator increases rapidly after 200 h. Furthermore, the initial discharge capacity of Li||LiNi0.6Co0.2Mn0.2O2(NCM622) is 144.6 mAh g−1 and the capacity retention is 87.2 % after 200 cycles at 1 C, which is higher than that of the PE separator (135.3 mAh g−1, with retention of 74.9 %). All improvements can be credited with the formation of stable solid electrolyte interphase(SEI) film induced by HPMC/MgF2 double coating, which is reduced the Li nucleation overpotential and ultimately promoted uniform Li deposition. This study provides a simple and effective strategy for improving the cycling performance and safety of lithium metal batteries.
锂枝晶的不均匀生长不仅会影响锂金属电池的性能,还存在安全隐患。本研究通过简单的浸泡和原位化学沉淀方法,在聚乙烯隔膜表面合成了 MgF2 和羟丙基甲基纤维素双涂层,达到了保护锂金属负极的目的。利用MgF2/HPMC@PE隔膜,锂||锂对称电池可循环使用1000小时以上,电压滞后仅为11.4 mV,而使用PE隔膜的电池在200小时后电压滞后迅速增加。此外,Li||LiNi0.6Co0.2Mn0.2O2(NCM622)的初始放电容量为 144.6 mAh g-1,在 1 C 下循环 200 次后容量保持率为 87.2%,高于 PE 隔离层(135.3 mAh g-1,容量保持率为 74.9%)。所有这些改进都归功于 HPMC/MgF2 双涂层诱导形成了稳定的固体电解质相(SEI)膜,从而降低了锂成核过电位,并最终促进了锂的均匀沉积。这项研究为提高锂金属电池的循环性能和安全性提供了一种简单而有效的策略。
{"title":"Regulate the Uniform Deposition of Lithium Through MgF2/Hydroxypropyl Modified Polyethylene Separator Applied to Lithium Metal Batteries","authors":"Qilu Zhu, Zhuoying Su, Xinyu Li, Jiaqi Ding, Longkai Zhang, Xin Xiao, Ronghua Zeng, Prof. Junming Nan, Prof. Xiaoxi Zuo","doi":"10.1002/ceur.202400035","DOIUrl":"https://doi.org/10.1002/ceur.202400035","url":null,"abstract":"<p>The uneven growth of lithium dendrites not only compromise the performance of lithium metal batteries, but also has security risks. In this sutudy, double coating with MgF<sub>2</sub> and hydroxypropyl methylcellulose was synthesized on the surface of polyethylene separator through a simple soaking and in-situ chemical precipitation method, achieve the purpose of protecting lithium metal anode. Utilizing the MgF<sub>2</sub>/HPMC@PE separator, the Li||Li symmetric cell was capable of cycling for over 1000 hours with a voltage hysteresis of only 11.4 mV, comparing the voltage hysteresis based on the cell use of PE separator increases rapidly after 200 h. Furthermore, the initial discharge capacity of Li||LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>(NCM622) is 144.6 mAh g<sup>−1</sup> and the capacity retention is 87.2 % after 200 cycles at 1 C, which is higher than that of the PE separator (135.3 mAh g<sup>−1</sup>, with retention of 74.9 %). All improvements can be credited with the formation of stable solid electrolyte interphase(SEI) film induced by HPMC/MgF<sub>2</sub> double coating, which is reduced the Li nucleation overpotential and ultimately promoted uniform Li deposition. This study provides a simple and effective strategy for improving the cycling performance and safety of lithium metal batteries.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the growing field of peptidomimetics, there is a constant need for new synthetic methods to generate new bioactive compounds. Herein, we present an atom-economic approach for the branched-selective allylation of aliphatic amine moieties of α-amino acids and small oligopeptides. This Rh-catalyzed hydroamination of allenes with a commercially available ligand forms a new stereocenter, often chemoselectively, in a catalyst-controlled manner, providing high yields and stereoselectivities without the need for an additive. The method is shown to be effective in gram scale without the need for column chromatography for purification, and ready-to-use allylated substrates for solid-phase peptide synthesis can be synthesized in two steps from the products of the catalysis.
{"title":"Rh-Catalyzed Hydroamination of Allenes: Asymmetric N-Allylation of Amino Acids and Peptides","authors":"Edward Damer, Prof. Dr. Bernhard Breit","doi":"10.1002/ceur.202400037","DOIUrl":"https://doi.org/10.1002/ceur.202400037","url":null,"abstract":"<p>In the growing field of peptidomimetics, there is a constant need for new synthetic methods to generate new bioactive compounds. Herein, we present an atom-economic approach for the branched-selective allylation of aliphatic amine moieties of α-amino acids and small oligopeptides. This Rh-catalyzed hydroamination of allenes with a commercially available ligand forms a new stereocenter, often chemoselectively, in a catalyst-controlled manner, providing high yields and stereoselectivities without the need for an additive. The method is shown to be effective in gram scale without the need for column chromatography for purification, and ready-to-use allylated substrates for solid-phase peptide synthesis can be synthesized in two steps from the products of the catalysis.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena Capdevila, Max T. G. M. Derks, Marc Montilla, Josep M. Luis, Jana Roithová, Xavi Ribas
Herein, we describe the trifluoro- and difluoroethoxylation of C(sp2)-H bonds using nickel(II) complexes incorporating a model macrocyclic arene substrate. Due to the coordinative properties of the macrocyclic substrate, we were able to detect and characterize the just-formed C(sp2)−OCH2CF3−Ni(II) species by HRMS and IRPD. DFT studies on the C(sp2)−OCH2CF3 bond formation mechanism indicate that it involves a Ni(III)/Ni(I) reductive elimination followed by oxidation to Ni(II) rather than the higher energy barrier Ni(IV)/Ni(II) reductive elimination. This mechanistic investigation deepens the versatile redox abilities of Ni compounds and might help in designing new catalysts for the 2,2,2-trifluoroethoxylation and 2,2-difluoroethoxylation of arene C−H bonds.
{"title":"Direct 2,2,2-Trifluoro and 2,2-Difluoroethoxylation of a Model Macrocyclic Ar−H Substrate via Ni-Catalysis","authors":"Lorena Capdevila, Max T. G. M. Derks, Marc Montilla, Josep M. Luis, Jana Roithová, Xavi Ribas","doi":"10.1002/ceur.202400023","DOIUrl":"https://doi.org/10.1002/ceur.202400023","url":null,"abstract":"<p>Herein, we describe the trifluoro- and difluoroethoxylation of C(sp<sup>2</sup>)-H bonds using nickel(II) complexes incorporating a model macrocyclic arene substrate. Due to the coordinative properties of the macrocyclic substrate, we were able to detect and characterize the just-formed C(sp<sup>2</sup>)−OCH<sub>2</sub>CF<sub>3</sub>−Ni(II) species by HRMS and IRPD. DFT studies on the C(sp<sup>2</sup>)−OCH<sub>2</sub>CF<sub>3</sub> bond formation mechanism indicate that it involves a Ni(III)/Ni(I) reductive elimination followed by oxidation to Ni(II) rather than the higher energy barrier Ni(IV)/Ni(II) reductive elimination. This mechanistic investigation deepens the versatile redox abilities of Ni compounds and might help in designing new catalysts for the 2,2,2-trifluoroethoxylation and 2,2-difluoroethoxylation of arene C−H bonds.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filipe Coelho, Lukas Zeisel, Prof. Oliver Thorn-Seshold, Prof. Stefan Matile
Dynamic-covalent electrophiles called cascade exchangers (CAXs) can reversibly engage cell-surface thiols. Conjugates between CAXs and molecular or even protein-sized cargos can deliver these cargos into cells by thiol-mediated uptake (TMU); free CAXs can also hinder TMU presumably by competing for thiol exchange sites. So far, three orthogonal networks of cellular thiol exchange partners have been identified to participate in TMU, centering on the transferrin receptor, integrins, and protein disulfide isomerases. This study introduces cyclic selenenylsulfides as a new CAX type, with polarised reactivity that brings important differences from the known disulfide and diselenide CAXs. Additionally, this study introduces methods to modulate CAX activity by employing remote functional groups to tune ring re-closure rates, e. g. via thiolate de/stabilization by hydrogen bonding and ion pairing. Differently to all CAXs known, Se-centred CAXs participate in two different TMU networks (integrins preferred, PDIA3 tolerated). When free, the remotely tuned Se-centred CAXs were strong inhibitors of most TMU systems, but again brought a novel feature: they increased the uptake of tetrel-centred Michael acceptor CAXs, making them the first free CAX we know of that can accelerate TMU. We conclude that Se- and tetrel-centred CAXs share a cellular thiol exchange partner that hinders TMU, which may be a target for improving the delivery of Michael acceptor drugs. The unique thiol exchange partner patterns generated by Se-centered CAXs with remotely tuned ring closure motifs support that they will prove a valuable tool to help decode TMU and achieve chemical control over cellular entry on the molecular level.
{"title":"Selenium-Centered Cascade Exchangers and Conformational Control Unlock Unique Patterns of Thiol-Mediated Cellular Uptake","authors":"Filipe Coelho, Lukas Zeisel, Prof. Oliver Thorn-Seshold, Prof. Stefan Matile","doi":"10.1002/ceur.202400032","DOIUrl":"https://doi.org/10.1002/ceur.202400032","url":null,"abstract":"<p>Dynamic-covalent electrophiles called cascade exchangers (CAXs) can reversibly engage cell-surface thiols. Conjugates between CAXs and molecular or even protein-sized cargos can deliver these cargos into cells by thiol-mediated uptake (TMU); free CAXs can also hinder TMU presumably by competing for thiol exchange sites. So far, three orthogonal networks of cellular thiol exchange partners have been identified to participate in TMU, centering on the transferrin receptor, integrins, and protein disulfide isomerases. This study introduces cyclic selenenylsulfides as a new CAX type, with polarised reactivity that brings important differences from the known disulfide and diselenide CAXs. Additionally, this study introduces methods to modulate CAX activity by employing remote functional groups to tune ring re-closure rates, e. g. via thiolate de/stabilization by hydrogen bonding and ion pairing. Differently to all CAXs known, Se-centred CAXs participate in <i>two</i> different TMU networks (integrins preferred, PDIA3 tolerated). When free, the remotely tuned Se-centred CAXs were strong inhibitors of most TMU systems, but again brought a novel feature: they <i>increased</i> the uptake of tetrel-centred Michael acceptor CAXs, making them the first free CAX we know of that can accelerate TMU. We conclude that Se- and tetrel-centred CAXs share a cellular thiol exchange partner that <i>hinders</i> TMU, which may be a target for improving the delivery of Michael acceptor drugs. The unique thiol exchange partner patterns generated by Se-centered CAXs with remotely tuned ring closure motifs support that they will prove a valuable tool to help decode TMU and achieve chemical control over cellular entry on the molecular level.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There has been a plethora of experience in conducting organic reactions in solution, with little to no knowledge in organic reactions on surfaces. Broadening the horizon of organic on-surface synthesis will enable creation of functional materials and direct integration into devices. Herein, we report an Ullmann reaction on thiol-functionalized gold nanoparticles serving as reactant, stabilizing agent, catalyst and reducing agent in this transformation. The orientation of ligands and formation of Surface Assembled Monolayer (SAM) on the gold nanoparticles were exploited to attain selectivity of hetero- over homo-Ullmann coupling, thus, expanding the toolbox of organic on-surface synthesis to nanoparticles.
{"title":"Ullmann Coupling Reactions on Gold Nanoparticles","authors":"Nathaniel Ukah, Prof. Dr. Hermann A. Wegner","doi":"10.1002/ceur.202400024","DOIUrl":"10.1002/ceur.202400024","url":null,"abstract":"<p>There has been a plethora of experience in conducting organic reactions in solution, with little to no knowledge in organic reactions on surfaces. Broadening the horizon of organic on-surface synthesis will enable creation of functional materials and direct integration into devices. Herein, we report an Ullmann reaction on thiol-functionalized gold nanoparticles serving as reactant, stabilizing agent, catalyst and reducing agent in this transformation. The orientation of ligands and formation of Surface Assembled Monolayer (SAM) on the gold nanoparticles were exploited to attain selectivity of hetero- over homo-Ullmann coupling, thus, expanding the toolbox of organic on-surface synthesis to nanoparticles.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Daishiro Kobayashi, Dr. Masaya Denda, Junya Hayashi, Kota Hidaka, Yutaka Kohmura, Dr. Takaaki Tsunematsu, Dr. Kohei Nishino, Dr. Harunori Yoshikawa, Dr. Kento Ohkawachi, Dr. Kiyomi Nigorikawa, Dr. Tetsuro Yoshimaru, Prof. Naozumi Ishimaru, Prof. Wataru Nomura, Prof. Toyomasa Katagiri, Prof. Hidetaka Kosako, Prof. Akira Otaka
A tryptophan modification that utilizes S-acetamidomethyl cysteine sulfoxide under mildly acidic conditions with magnesium chloride was achieved. An optimum condition in an ionic liquid allowed antibody modification without significant denaturation. In their Research Article, A. Otaka and co-workers describe the difference in chemical behaviors to acids between S-acetamidomethyl and p-methoxybenzyl cysteine sulfoxides permitted peptide heterodimerization in a one-pot sequential manner.