In this study, we present a mathematical model for the codynamics of taeniasis and neurocysticercosis and rigorously analyze it. To understand the underlying dynamics of the proposed model, basic system properties such as the positivity and boundedness of solutions are investigated through the completing differential process. The basic reproduction number was calculated using the next-generation matrix method, and the analysis showed that when , the disease in the community eventually dies out, and when , the diseases persist. Local stability of the equilibria was analyzed using the Jacobian matrix, and Lyapunov function techniques were used to determine the global analysis, which showed that the endemic equilibrium point was globally stable when . On the other hand, the disease-free equilibrium was determined to be globally stable when . To identify the most influential parameters of the proposed model, partial correlation coefficient techniques were used. The numerical results depict that the model aligns well with the transmission dynamics, which goes through two populations: humans and pigs, whereby the model system stabilizes after some time, showing the validity of the proposed model. Furthermore, the simulations of the proposed model revealed that the shedding habit of infected humans with taeniasis and the bad cooking habit or eating of raw or undercooked pork products have a higher impact on the spread of neurocysticercosis and taeniasis in the community. Hence, this study proposes that in order to control taeniasis and neurocysticercosis, effective disease control measures should primarily prioritize hygienic behaviour and proper cooking of pork meat to the required temperature.
{"title":"A Mathematical Model for Transmission of Taeniasis and Neurocysticercosis","authors":"Gideon Eustace Rwabona, Verdiana Grace Masanja, Sayoki Mfinanga, Abdoelnaser Degoot, Silas Mirau","doi":"10.1155/2024/2550598","DOIUrl":"10.1155/2024/2550598","url":null,"abstract":"<p>In this study, we present a mathematical model for the codynamics of taeniasis and neurocysticercosis and rigorously analyze it. To understand the underlying dynamics of the proposed model, basic system properties such as the positivity and boundedness of solutions are investigated through the completing differential process. The basic reproduction number was calculated using the next-generation matrix method, and the analysis showed that when <span></span><math></math>, the disease in the community eventually dies out, and when <span></span><math></math>, the diseases persist. Local stability of the equilibria was analyzed using the Jacobian matrix, and Lyapunov function techniques were used to determine the global analysis, which showed that the endemic equilibrium point was globally stable when <span></span><math></math>. On the other hand, the disease-free equilibrium was determined to be globally stable when <span></span><math></math>. To identify the most influential parameters of the proposed model, partial correlation coefficient techniques were used. The numerical results depict that the model aligns well with the transmission dynamics, which goes through two populations: humans and pigs, whereby the model system stabilizes after some time, showing the validity of the proposed model. Furthermore, the simulations of the proposed model revealed that the shedding habit of infected humans with taeniasis and the bad cooking habit or eating of raw or undercooked pork products have a higher impact on the spread of neurocysticercosis and taeniasis in the community. Hence, this study proposes that in order to control taeniasis and neurocysticercosis, effective disease control measures should primarily prioritize hygienic behaviour and proper cooking of pork meat to the required temperature.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2550598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salifu Nanga, Shei Baba Sayibu, Irene Dekomwine Angbing, Mubarika Alhassan, Abdul-Majeed Benson, Abdul Ghaniyyu Abubakari, Suleman Nasiru
In this study, Secant Kumaraswamy family of distributions is proposed and studied. This is motivated by the fact that no one distribution can model all types of data from different fields. Therefore, there is the need to develop distributions with desirable properties and flexible enough for modelling data exhibiting different characteristics. Some properties of the new family of distributions, including the quantile function, moments, moment generating function, and mean residual life function, are derived. Five special cases of the family of distributions are presented, and their flexibility is shown by the varying degrees of skewness and kurtosis and nonmonotonic hazard rates. The maximum likelihood estimation method is used to obtain estimators of the family of distributions. Two location-scale regression models are developed for the Secant Kumaraswamy Weibull distribution, which is a special case of the family of distributions. Six different real datasets are used to demonstrate the usefulness of the family of distributions and the regression models. The results show that the family of distributions can be used to model real datasets.
{"title":"Secant Kumaraswamy Family of Distributions: Properties, Regression Model, and Applications","authors":"Salifu Nanga, Shei Baba Sayibu, Irene Dekomwine Angbing, Mubarika Alhassan, Abdul-Majeed Benson, Abdul Ghaniyyu Abubakari, Suleman Nasiru","doi":"10.1155/2024/8925329","DOIUrl":"10.1155/2024/8925329","url":null,"abstract":"<p>In this study, Secant Kumaraswamy family of distributions is proposed and studied. This is motivated by the fact that no one distribution can model all types of data from different fields. Therefore, there is the need to develop distributions with desirable properties and flexible enough for modelling data exhibiting different characteristics. Some properties of the new family of distributions, including the quantile function, moments, moment generating function, and mean residual life function, are derived. Five special cases of the family of distributions are presented, and their flexibility is shown by the varying degrees of skewness and kurtosis and nonmonotonic hazard rates. The maximum likelihood estimation method is used to obtain estimators of the family of distributions. Two location-scale regression models are developed for the Secant Kumaraswamy Weibull distribution, which is a special case of the family of distributions. Six different real datasets are used to demonstrate the usefulness of the family of distributions and the regression models. The results show that the family of distributions can be used to model real datasets.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8925329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139614665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}