首页 > 最新文献

Deep Underground Science and Engineering最新文献

英文 中文
Field investigation of grout propagation within a caving mass under flowing water conditions in a metal mine 某金属矿山流水条件下崩落体内注浆扩展的现场研究
Pub Date : 2025-03-10 DOI: 10.1002/dug2.70001
Baofu Wu, Guilei Han, Zhiqi Wang, Jiabin Shi, Hongjiang You,  Asrullah

Due to the invisibility and complexity of the underground spaces, monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging, which complicates engineering treatment. This research investigated the propagation law of cement-sodium silicate slurry under flowing water conditions within the caving mass of a metal mine. First, based on borehole packer test results and borehole TV images, the fractured strata before grouting were classified into four types: cavity, hidden, fissure, and complete. Second, an orthogonal experimental design was employed to evaluate the impact of four key factors—stratigraphic fragmentation, water flow rate, grouting flow rate, and water-cement ratio—on the efficacy of grouting within a caving mass at the site. The results indicate that the factors influencing grouting efficacy are ranked in the following order of importance: stratigraphic fragmentation > water flow rate > water–cement ratio > grouting flow rate. Ultimately, five propagation filling modes—pure slurry, big crack, small crack, small karst pore, and pore penetration—were identified by examining the propagation filling characteristics of slurry in rock samples, incorporating microscopic material structure analysis through scanning electron microscopy and energy spectrum analysis. The findings of this study provide valuable insights into selecting engineering treatment parameters and methodologies, serving as a reference for preventing and controlling water–sand mixture inrush in metal mines, thereby enhancing treatment efficacy and ensuring grouting success.

由于地下空间的不可见性和复杂性,金属矿山水砂混合突水后注浆浆体的扩散和充填特性监测具有挑战性,这给工程处理带来了复杂性。研究了某金属矿山崩落体内水玻璃水泥浆在流水条件下的扩散规律。首先,根据井内封隔器测试结果和井内电视图像,将注浆前破碎地层划分为空腔型、隐伏型、裂隙型和完整型4种类型。其次,采用正交试验设计,评价了地层破碎度、水流速率、注浆速率和水灰比4个关键因素对塌落体注浆效果的影响。结果表明:影响注浆效果因素的重要程度依次为:地层破碎度>;水流量>;水灰比>;注浆流量。通过扫描电镜和能谱分析,结合细观材料结构分析,研究岩样中浆体的扩展充填特征,最终识别出纯浆体、大裂缝、小裂缝、小岩溶孔隙和孔隙渗透5种扩展充填模式。研究结果对工程治理参数和方法的选择提供了有价值的见解,可为金属矿山防治水砂混合涌水,提高治理效果,确保注浆成功提供参考。
{"title":"Field investigation of grout propagation within a caving mass under flowing water conditions in a metal mine","authors":"Baofu Wu,&nbsp;Guilei Han,&nbsp;Zhiqi Wang,&nbsp;Jiabin Shi,&nbsp;Hongjiang You,&nbsp; Asrullah","doi":"10.1002/dug2.70001","DOIUrl":"https://doi.org/10.1002/dug2.70001","url":null,"abstract":"<p>Due to the invisibility and complexity of the underground spaces, monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging, which complicates engineering treatment. This research investigated the propagation law of cement-sodium silicate slurry under flowing water conditions within the caving mass of a metal mine. First, based on borehole packer test results and borehole TV images, the fractured strata before grouting were classified into four types: cavity, hidden, fissure, and complete. Second, an orthogonal experimental design was employed to evaluate the impact of four key factors—stratigraphic fragmentation, water flow rate, grouting flow rate, and water-cement ratio—on the efficacy of grouting within a caving mass at the site. The results indicate that the factors influencing grouting efficacy are ranked in the following order of importance: stratigraphic fragmentation &gt; water flow rate &gt; water–cement ratio &gt; grouting flow rate. Ultimately, five propagation filling modes—pure slurry, big crack, small crack, small karst pore, and pore penetration—were identified by examining the propagation filling characteristics of slurry in rock samples, incorporating microscopic material structure analysis through scanning electron microscopy and energy spectrum analysis. The findings of this study provide valuable insights into selecting engineering treatment parameters and methodologies, serving as a reference for preventing and controlling water–sand mixture inrush in metal mines, thereby enhancing treatment efficacy and ensuring grouting success.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 2","pages":"222-240"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the CO2 storage potential in CO2-enhanced oil recovery: A case study of the Subei Basin, Jiangsu Province, China CO2强化采油CO2封存潜力评价——以苏北盆地为例
IF 5 Pub Date : 2025-03-05 DOI: 10.1002/dug2.12150
Lingxiang Wei, Dongjun Guo, Junyuan Ji, Zhilong Chen, Xiaohua Zhou, Mingming Liu, Xingxing Zhao, Hongjun Zheng, Lei Cai

CO2-enhanced oil recovery (CO2-EOR) is an economically viable carbon capture, utilization, and storage (CCUS) technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities. However, studies on CO2-EOR source–sink matching involving different emission sources, different carbon capture rates, and stepwise CO2 pipeline construction are scarce. Considering four types of carbon sources, including coal-fired power, iron and steel, cement, and chemical plants, with different CO2 capture rates (85%, 90%, 95%, and 100%, respectively), and using a five-phased construction plan with a 25-year build-up period, we developed a method for quantifying carbon emissions from different sources, calculating the effective storage of carbon in CO2-EOR and optimizing CO2-EOR source–sink matching to reduce project costs. Using the Subei Basin in the Jiangsu Province, China, as a case study, we calculated the theoretical CO2-EOR storage to be 1.7408 × 108 t and the effective CO2-EOR storage to be 0.435 × 108 t. We analyzed the completion rate of transportation pipelines, the number of connected carbon sources, and the mass of CO2 stored, as well as the cost-effectiveness and sensitivity. Implementation of CO2-EOR effectively reduced the total cost of source–sink matching in the five-stage 25-year construction approach. The reduction of CO2 capture rates had no effect on the value of oil repelling. The capture cost significantly affected the total cost of source–sink matching, and the impacts of the carbon sources on the total cost were in the order coal-fired power > iron and steel > cement > chemical plants. This study provides an innovative tool for evaluating the CO2 storage potential of CO2-EOR and provides an important framework for implementing CO2-EOR and planning CCUS projects in the Subei Basin and similar regions.

二氧化碳提高采收率(CO2-EOR)是一种经济可行的碳捕获、利用和封存(CCUS)技术,被广泛应用,对实现碳中和城市做出了巨大贡献。然而,针对不同排放源、不同碳捕集速率、分步建设CO2管道的CO2- eor源汇匹配研究较少。考虑到燃煤发电、钢铁、水泥和化工厂等四种碳源的不同CO2捕集率(分别为85%、90%、95%和100%),并采用五阶段建设计划(建设周期为25年),我们开发了一种量化不同碳源排放的方法,计算CO2- eor中的有效碳储量,并优化CO2- eor源库匹配以降低项目成本。以江苏苏北盆地为例,计算出理论CO2-EOR库存量为1.7408 × 108 t,有效CO2-EOR库存量为0.435 × 108 t。我们分析了运输管道的完成率、连接的碳源数量、储存的二氧化碳质量,以及成本效益和敏感性。在为期25年的五阶段建设中,CO2-EOR的实施有效降低了源汇匹配的总成本。二氧化碳捕集率的降低对驱油价值没有影响。捕集成本显著影响源库匹配的总成本,碳源对总成本的影响顺序为燃煤发电+钢铁+水泥+化工。该研究为CO2- eor储气潜力评价提供了创新工具,为苏北盆地及类似地区实施CO2- eor和CCUS项目规划提供了重要框架。
{"title":"Evaluation of the CO2 storage potential in CO2-enhanced oil recovery: A case study of the Subei Basin, Jiangsu Province, China","authors":"Lingxiang Wei,&nbsp;Dongjun Guo,&nbsp;Junyuan Ji,&nbsp;Zhilong Chen,&nbsp;Xiaohua Zhou,&nbsp;Mingming Liu,&nbsp;Xingxing Zhao,&nbsp;Hongjun Zheng,&nbsp;Lei Cai","doi":"10.1002/dug2.12150","DOIUrl":"https://doi.org/10.1002/dug2.12150","url":null,"abstract":"<p>CO<sub>2</sub>-enhanced oil recovery (CO<sub>2</sub>-EOR) is an economically viable carbon capture, utilization, and storage (CCUS) technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities. However, studies on CO<sub>2</sub>-EOR source–sink matching involving different emission sources, different carbon capture rates, and stepwise CO<sub>2</sub> pipeline construction are scarce. Considering four types of carbon sources, including coal-fired power, iron and steel, cement, and chemical plants, with different CO<sub>2</sub> capture rates (85%, 90%, 95%, and 100%, respectively), and using a five-phased construction plan with a 25-year build-up period, we developed a method for quantifying carbon emissions from different sources, calculating the effective storage of carbon in CO<sub>2</sub>-EOR and optimizing CO<sub>2</sub>-EOR source–sink matching to reduce project costs. Using the Subei Basin in the Jiangsu Province, China, as a case study, we calculated the theoretical CO<sub>2</sub>-EOR storage to be 1.7408 × 10<sup>8</sup> t and the effective CO<sub>2</sub>-EOR storage to be 0.435 × 10<sup>8</sup> t. We analyzed the completion rate of transportation pipelines, the number of connected carbon sources, and the mass of CO<sub>2</sub> stored, as well as the cost-effectiveness and sensitivity. Implementation of CO<sub>2</sub>-EOR effectively reduced the total cost of source–sink matching in the five-stage 25-year construction approach. The reduction of CO<sub>2</sub> capture rates had no effect on the value of oil repelling. The capture cost significantly affected the total cost of source–sink matching, and the impacts of the carbon sources on the total cost were in the order coal-fired power &gt; iron and steel &gt; cement &gt; chemical plants. This study provides an innovative tool for evaluating the CO<sub>2</sub> storage potential of CO<sub>2</sub>-EOR and provides an important framework for implementing CO<sub>2</sub>-EOR and planning CCUS projects in the Subei Basin and similar regions.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"739-761"},"PeriodicalIF":5.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning and Big Data in deep underground engineering 深层地下工程中的机器学习与大数据
Pub Date : 2025-02-26 DOI: 10.1002/dug2.70004
Asoke K. Nandi, Ru Zhang, Tao Zhao, Tao Lei
<p>This special issue of <i>Deep Underground Science and Engineering</i> (DUSE) showcases pioneering research on the transformative role of machine learning (ML) and Big Data in deep underground engineering. Edited by guest editors Prof. Asoke Nandi (Brunel University of London, UK), Prof. Ru Zhang (Sichuan University, China), Prof. Tao Zhao (Chinese Academy of Sciences, China), and Prof. Tao Lei (Shaanxi University of Science and Technology, China), this issue highlights the innovative applications of ML technique in reshaping structural safety, tunneling operations, and geotechnical investigations.</p><p>As underground engineering challenges grow in complexity, ML and Big Data have become indispensable tools for improving prediction accuracy, optimizing operational efficiency, and ensuring the long-term safety and sustainability of infrastructure. By leveraging vast datasets, automating critical processes, and predicting complex engineering outcomes, these technologies are enabling smarter, more reliable engineering practices that drive both performance and resilience.</p><p>The contributions to this special issue illustrate the diverse and impactful applications of ML and Big Data in deep underground engineering. One article introduces ALSTNet, an advanced data-driven model that integrates long- and short-term time-series data using autoencoders to predict tunnel structural behaviors. When applied to strain monitoring data from the Nanjing Dinghuaimen tunnel, ALSTNet outperforms traditional models, offering promising potential for early disaster prevention in real-world engineering scenarios. Another study presents two robust ML models—Gene Expression Programming (GEP) and a Decision Tree-Support Vector Machine (DT-SVM) hybrid algorithm—to assess pillar stability in deep underground mines. Validated with 236 case histories, these models demonstrate exceptional accuracy and provide valuable tools for project managers to evaluate pillar stability during both the design and operational phases of mining projects. Yet another study demonstrates the use of fuzzy C-means clustering combined with ML models in Tunnel Boring Machine (TBM) operations. This innovative approach enhances prediction accuracy, providing more reliable insights for TBM tunneling processes and boosting efficiency in underground excavation projects.</p><p>Several other papers focus on optimizing monitoring systems for underground structures. One contribution presents a low-cost micro-electromechanical systems (MEMS) sensor designed to monitor tilt and acceleration in underground structures. Aided by ML algorithms, this sensor facilitates real-time monitoring and early warning capabilities, thereby significantly improving safety during underground construction. Another paper introduces a ML-based optimization model for underwater shield tunnels, showing how strategically placed monitoring points—such as at the spandrel and arch crown—can improve the accuracy of stress distribution
本期《地下深层科学与工程》特刊展示了机器学习(ML)和大数据在地下深层工程中的变革作用的开创性研究。本期杂志由客座编辑Asoke Nandi教授(英国伦敦布鲁内尔大学)、张如教授(中国四川大学)、赵涛教授(中国科学院)和雷涛教授(中国陕西科技大学)编辑,重点介绍了机器学习技术在重塑结构安全、隧道施工和岩土工程勘察方面的创新应用。随着地下工程挑战的日益复杂,机器学习和大数据已成为提高预测精度、优化运营效率、确保基础设施长期安全和可持续性的不可或缺的工具。通过利用庞大的数据集、自动化关键流程和预测复杂的工程结果,这些技术正在实现更智能、更可靠的工程实践,从而提高性能和弹性。本期特刊的文章展示了机器学习和大数据在地下深层工程中的广泛而有影响力的应用。一篇文章介绍了ALSTNet,这是一种先进的数据驱动模型,它使用自动编码器集成了长期和短期时间序列数据来预测隧道结构行为。当应用于南京定怀门隧道的应变监测数据时,ALSTNet优于传统模型,为实际工程场景的早期灾害预防提供了良好的潜力。另一项研究提出了两种鲁棒的机器学习模型——基因表达编程(GEP)和决策树-支持向量机(DT-SVM)混合算法——来评估深部地下矿山矿柱的稳定性。经过236个案例的验证,这些模型显示出卓越的准确性,并为项目经理在采矿项目的设计和运营阶段评估矿柱稳定性提供了有价值的工具。然而,另一项研究展示了在隧道掘进机(TBM)操作中使用模糊c均值聚类与ML模型相结合。这种创新的方法提高了预测精度,为TBM隧道掘进过程提供了更可靠的见解,提高了地下开挖工程的效率。其他几篇论文的重点是优化地下结构的监测系统。一项贡献提出了一种低成本的微机电系统(MEMS)传感器,用于监测地下结构的倾斜和加速度。在ML算法的辅助下,该传感器有助于实时监测和预警能力,从而显着提高地下施工的安全性。另一篇论文介绍了水下盾构隧道的基于ml的优化模型,展示了如何有策略地放置监测点(如在拱顶和拱顶)来提高应力分布预测的准确性,并加强结构健康监测。此外,该专题还解决了爆破后岩石破碎预测的挑战。一套混合机器学习模型-随机森林,AdaBoost和梯度增强-与贝叶斯优化算法(BOA)优化,展示了卓越的预测精度。这些模型为采矿工程中岩石破碎预测提供了一种先进的、高可靠性的方法。这些论文将机器学习与传感器技术、优化算法和预测模型相结合,凸显了人工智能在彻底改变地下深层工程方面的巨大潜力。随着这些技术的不断发展,它们有望推动该行业在安全性、效率和环境可持续性方面的实质性改进。通过本期特刊,DUSE重申致力于推动机器学习技术在深部地下工程中的应用。我们期待着未来的贡献,继续探索新的应用,并在这个快速发展的领域突破可能的界限。
{"title":"Machine learning and Big Data in deep underground engineering","authors":"Asoke K. Nandi,&nbsp;Ru Zhang,&nbsp;Tao Zhao,&nbsp;Tao Lei","doi":"10.1002/dug2.70004","DOIUrl":"https://doi.org/10.1002/dug2.70004","url":null,"abstract":"&lt;p&gt;This special issue of &lt;i&gt;Deep Underground Science and Engineering&lt;/i&gt; (DUSE) showcases pioneering research on the transformative role of machine learning (ML) and Big Data in deep underground engineering. Edited by guest editors Prof. Asoke Nandi (Brunel University of London, UK), Prof. Ru Zhang (Sichuan University, China), Prof. Tao Zhao (Chinese Academy of Sciences, China), and Prof. Tao Lei (Shaanxi University of Science and Technology, China), this issue highlights the innovative applications of ML technique in reshaping structural safety, tunneling operations, and geotechnical investigations.&lt;/p&gt;&lt;p&gt;As underground engineering challenges grow in complexity, ML and Big Data have become indispensable tools for improving prediction accuracy, optimizing operational efficiency, and ensuring the long-term safety and sustainability of infrastructure. By leveraging vast datasets, automating critical processes, and predicting complex engineering outcomes, these technologies are enabling smarter, more reliable engineering practices that drive both performance and resilience.&lt;/p&gt;&lt;p&gt;The contributions to this special issue illustrate the diverse and impactful applications of ML and Big Data in deep underground engineering. One article introduces ALSTNet, an advanced data-driven model that integrates long- and short-term time-series data using autoencoders to predict tunnel structural behaviors. When applied to strain monitoring data from the Nanjing Dinghuaimen tunnel, ALSTNet outperforms traditional models, offering promising potential for early disaster prevention in real-world engineering scenarios. Another study presents two robust ML models—Gene Expression Programming (GEP) and a Decision Tree-Support Vector Machine (DT-SVM) hybrid algorithm—to assess pillar stability in deep underground mines. Validated with 236 case histories, these models demonstrate exceptional accuracy and provide valuable tools for project managers to evaluate pillar stability during both the design and operational phases of mining projects. Yet another study demonstrates the use of fuzzy C-means clustering combined with ML models in Tunnel Boring Machine (TBM) operations. This innovative approach enhances prediction accuracy, providing more reliable insights for TBM tunneling processes and boosting efficiency in underground excavation projects.&lt;/p&gt;&lt;p&gt;Several other papers focus on optimizing monitoring systems for underground structures. One contribution presents a low-cost micro-electromechanical systems (MEMS) sensor designed to monitor tilt and acceleration in underground structures. Aided by ML algorithms, this sensor facilitates real-time monitoring and early warning capabilities, thereby significantly improving safety during underground construction. Another paper introduces a ML-based optimization model for underwater shield tunnels, showing how strategically placed monitoring points—such as at the spandrel and arch crown—can improve the accuracy of stress distribution","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen sulfide in underground hydrogen storage sites: Implication of thermochemical sulfate reduction 地下储氢场所的硫化氢:热化学硫酸盐还原的含义
IF 5 Pub Date : 2025-02-26 DOI: 10.1002/dug2.70000
Sadegh Ahmadpour, Raoof Gholami
<p>Hydrogen is recognized as a clean energy carrier that can decarbonize heavy industry and the aviation system. However, the infrastructure is not yet ready for a hydrogen economy and large-scale hydrogen storage is needed to balance the mismatch between supply and demand. Therefore, depleted gas fields have been proposed as suitable storage sites, given the presence of infrastructure and pipeline network for distribution and utilization. Attempts have been made to analyze the suitability of these reservoirs for hydrogen storage, with a focus on choosing higher temperature and salinity conditions to neutralize the effects of microbial activities as one of the main sources of hydrogen loss in the depleted gas reservoirs. However, thermochemical sulfate reduction (TSR) is activated at high temperatures and has a huge potential not only to consume hydrogen through abiotic reactions but also to generate a huge amount of <span></span><math> <semantics> <mrow> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>S</mi> </mrow> </mrow> </semantics></math>. In this study, a one-dimensional diffusion-based mass transport model was built using PHREEQC to highlight the potential challenges posed by the TSR in depleted gas fields. The results obtained indicated that the presence of iron minerals (pyrite and hematite) is crucial for <span></span><math> <semantics> <mrow> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>S</mi> </mrow> </mrow> </semantics></math> generation through TSR reactions. An increase in temperature also leads to an increase in <span></span><math> <semantics> <mrow> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>S</mi> </mrow> </mrow> </semantics></math> concentration in the brine and gas phase. However, since most of the <span></span><math> <semantics> <mrow> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub>
氢是公认的清洁能源载体,可以使重工业和航空系统脱碳。然而,基础设施尚未为氢经济做好准备,需要大规模的氢储存来平衡供需之间的不匹配。因此,鉴于存在分配和利用的基础设施和管网,已枯竭的气田被提议作为合适的储存地点。研究人员试图分析这些储层的储氢适宜性,重点是选择更高的温度和盐度条件,以抵消微生物活动的影响,微生物活动是耗尽气藏中氢气损失的主要来源之一。然而,热化学硫酸盐还原(TSR)在高温下被激活,不仅具有通过非生物反应消耗氢的巨大潜力,而且具有产生大量h2s的巨大潜力。在这项研究中,利用PHREEQC建立了一个基于一维扩散的质量输运模型,以突出枯竭气田TSR带来的潜在挑战。结果表明,铁矿物(黄铁矿和赤铁矿)的存在对TSR反应生成h2s至关重要。温度的升高也会导致盐水和气相中h2s浓度的增加。然而,由于大部分h2s的形成来自黄铁矿的溶解,而黄铁矿的溶解在较低温度下仍然很强,低温不一定是避免h2s形成的最佳选择标准。因此,必须采取预防措施,以确保TSR的激活不会造成重大的环境问题。
{"title":"Hydrogen sulfide in underground hydrogen storage sites: Implication of thermochemical sulfate reduction","authors":"Sadegh Ahmadpour,&nbsp;Raoof Gholami","doi":"10.1002/dug2.70000","DOIUrl":"https://doi.org/10.1002/dug2.70000","url":null,"abstract":"&lt;p&gt;Hydrogen is recognized as a clean energy carrier that can decarbonize heavy industry and the aviation system. However, the infrastructure is not yet ready for a hydrogen economy and large-scale hydrogen storage is needed to balance the mismatch between supply and demand. Therefore, depleted gas fields have been proposed as suitable storage sites, given the presence of infrastructure and pipeline network for distribution and utilization. Attempts have been made to analyze the suitability of these reservoirs for hydrogen storage, with a focus on choosing higher temperature and salinity conditions to neutralize the effects of microbial activities as one of the main sources of hydrogen loss in the depleted gas reservoirs. However, thermochemical sulfate reduction (TSR) is activated at high temperatures and has a huge potential not only to consume hydrogen through abiotic reactions but also to generate a huge amount of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this study, a one-dimensional diffusion-based mass transport model was built using PHREEQC to highlight the potential challenges posed by the TSR in depleted gas fields. The results obtained indicated that the presence of iron minerals (pyrite and hematite) is crucial for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; generation through TSR reactions. An increase in temperature also leads to an increase in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; concentration in the brine and gas phase. However, since most of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 ","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"709-724"},"PeriodicalIF":5.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated temperature effects on swelling pressure of compacted bentonite 高温对膨润土膨胀压力的影响
IF 5 Pub Date : 2025-01-23 DOI: 10.1002/dug2.12145
Linhua He, Majid Sedighi, Mojgan Hadi Mosleh, Andrey Jivkov, Jiangfeng Liu

Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonite-based buffer, backfill, and sealing systems in deep geological disposal of high-level radioactive wastes. Motivated by such applications, most past experimental studies were focused on highly compacted and high-quality bentonite. Such degrees of dry densities may not be economically or technically feasible for other emerging applications, including as an alternative material to cement in plugging and abandonment of wells. A bespoke high-pressure high-temperature constant rate of strain (CRS) apparatus was developed for the work reported here to conduct a series of tests for evaluating the hydro-mechanical response of compacted bentonite to elevated temperatures. Experiments were performed with bentonite specimens with high impurity contents at a range of dry densities (1.1, 1.4, and 1.7 Mg/m3) and temperatures between 20 and 80°C. The results show that temperature increase leads to the decrease of swelling pressure for all studied densities. Larger reductions of swelling pressure were observed with increasing dry densities, suggesting the possibility of a larger exchange of pore water in the microstructure system of the clay. The transfer of water from micropores to macropores at elevated temperatures is shown to be a key controlling process at high-density compacted bentonite by which temperature affects the swelling pressure and hydraulic conductivity.

了解温度对压实膨润土流体力学行为的影响,对于评估膨润土基缓冲、回填和高放射性废物深层地质处置密封系统的性能具有重要意义。在这些应用的激励下,过去的大多数实验研究都集中在高压实和高质量的膨润土上。这种程度的干密度在经济上或技术上可能不适合其他新兴应用,包括作为水泥封堵和弃井的替代材料。为此,开发了一种定制的高压高温恒应变速率(CRS)装置,用于进行一系列测试,以评估压实膨润土对高温的水力学响应。实验采用高杂质含量的膨润土试样,在干密度范围(1.1、1.4和1.7 Mg/m3)和温度范围(20至80°C)下进行。结果表明,温度升高会导致所有密度的膨胀压力降低。随着干密度的增加,膨胀压力的降低幅度更大,这表明粘土微观结构系统中孔隙水的交换可能更大。高温下水从微孔向大孔的转移是高密度膨润土的关键控制过程,温度影响膨润土的膨胀压力和导水性。
{"title":"Elevated temperature effects on swelling pressure of compacted bentonite","authors":"Linhua He,&nbsp;Majid Sedighi,&nbsp;Mojgan Hadi Mosleh,&nbsp;Andrey Jivkov,&nbsp;Jiangfeng Liu","doi":"10.1002/dug2.12145","DOIUrl":"https://doi.org/10.1002/dug2.12145","url":null,"abstract":"<p>Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonite-based buffer, backfill, and sealing systems in deep geological disposal of high-level radioactive wastes. Motivated by such applications, most past experimental studies were focused on highly compacted and high-quality bentonite. Such degrees of dry densities may not be economically or technically feasible for other emerging applications, including as an alternative material to cement in plugging and abandonment of wells. A bespoke high-pressure high-temperature constant rate of strain (CRS) apparatus was developed for the work reported here to conduct a series of tests for evaluating the hydro-mechanical response of compacted bentonite to elevated temperatures. Experiments were performed with bentonite specimens with high impurity contents at a range of dry densities (1.1, 1.4, and 1.7 Mg/m<sup>3</sup>) and temperatures between 20 and 80°C. The results show that temperature increase leads to the decrease of swelling pressure for all studied densities. Larger reductions of swelling pressure were observed with increasing dry densities, suggesting the possibility of a larger exchange of pore water in the microstructure system of the clay. The transfer of water from micropores to macropores at elevated temperatures is shown to be a key controlling process at high-density compacted bentonite by which temperature affects the swelling pressure and hydraulic conductivity.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"699-708"},"PeriodicalIF":5.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of thermal–hydro–mechanical coupling on grouting in a single fracture under coal mine flowing water conditions 煤矿流水条件下热-水-力耦合对单裂隙注浆的影响
Pub Date : 2025-01-08 DOI: 10.1002/dug2.12144
Dingyang Zhang, Dangping Liu

Groundwater inrush is a hazard that always occurs during underground mining. Grouting is one of the most effective processes to seal underground water inflow for hazard prevention. In this study, grouting experiments are conducted by using a visualized transparent single-fracture replica with plane roughness. Image processing and analysis are performed to investigate the thermo–hydro–mechanical coupling effect on the grouting diffusion under coal mine flowing water conditions. The results show that higher ambient temperature leads to shorter initial gel time of chemical grout and leads to a better relative sealing efficiency in the case of a lower flow rate. However, with a higher water flow rate, the relative sealing efficiency is gradually reduced under higher temperature conditions. The grouting pressure, the seepage pressure, and the temperature are measured. The results reveal that the seepage pressure shows a positive correlation with the grouting pressure, while the temperature change shows a negative correlation with the seepage pressure and the grouting pressure. The “equivalent grouting point offset” effect of grouting shows an eccentric elliptical diffusion with larger grouting distance and width under lower temperature conditions.

地下突水是地下开采过程中经常发生的灾害。注浆是防止地下进水危害的最有效方法之一。本研究采用具有平面粗糙度的可视化透明单断裂模型进行注浆试验。通过图像处理和分析,研究了煤矿流水条件下热-水-力耦合对注浆扩散的影响。结果表明:环境温度越高,化学浆液初始凝胶时间越短,在流量较低的情况下,化学浆液的相对密封效果越好;但在较高温度条件下,随着水流量的增大,相对密封效率逐渐降低。测量了注浆压力、渗流压力和温度。结果表明:渗流压力与注浆压力呈正相关,温度变化与渗流压力、注浆压力呈负相关。低温条件下,注浆的“等效注浆点偏移”效应表现为偏心椭圆扩散,注浆距离和宽度越大。
{"title":"The effect of thermal–hydro–mechanical coupling on grouting in a single fracture under coal mine flowing water conditions","authors":"Dingyang Zhang,&nbsp;Dangping Liu","doi":"10.1002/dug2.12144","DOIUrl":"https://doi.org/10.1002/dug2.12144","url":null,"abstract":"<p>Groundwater inrush is a hazard that always occurs during underground mining. Grouting is one of the most effective processes to seal underground water inflow for hazard prevention. In this study, grouting experiments are conducted by using a visualized transparent single-fracture replica with plane roughness. Image processing and analysis are performed to investigate the thermo–hydro–mechanical coupling effect on the grouting diffusion under coal mine flowing water conditions. The results show that higher ambient temperature leads to shorter initial gel time of chemical grout and leads to a better relative sealing efficiency in the case of a lower flow rate. However, with a higher water flow rate, the relative sealing efficiency is gradually reduced under higher temperature conditions. The grouting pressure, the seepage pressure, and the temperature are measured. The results reveal that the seepage pressure shows a positive correlation with the grouting pressure, while the temperature change shows a negative correlation with the seepage pressure and the grouting pressure. The “equivalent grouting point offset” effect of grouting shows an eccentric elliptical diffusion with larger grouting distance and width under lower temperature conditions.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 2","pages":"264-277"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laboratory evaluation of a low-cost micro electro-mechanical systems sensor for inclination and acceleration monitoring 用于倾斜和加速度监测的低成本微机电系统传感器的实验室评估
Pub Date : 2024-12-15 DOI: 10.1002/dug2.12135
Antonis Paganis, Vassiliki N. Georgiannou, Xenofon Lignos, Reina El Dahr

In this study, the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented. Α micro electro-mechanical systems, micro electro mechanical systems, sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node. Online capabilities accessible by mobile phone such as real-time graph, early warning notification, and database logging were implemented using Python programming. The sensor response was calibrated for inherent bias and errors, and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers. Satisfactory accuracy was achieved in real time using the Complementary Filter method, and it was further improved in LabVIEW using Kalman Filters with parameter tuning. A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of high-speed embedded filters, further optimizing sensor results. Kalman and embedded filtering results show agreement for the sensor, followed closely by the low-complexity complementary filter applied in real time. The sensor's dynamic response was also verified by shaking table tests, simulating past recorded seismic excitations or artificial vibrations, indicating negligible effect of external acceleration on measured tilt; sensor measurements were benchmarked using high-quality tilt and acceleration measuring transducers. A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.

在本研究中,设计和开发了一种由低成本零件制成的用于监测倾斜和加速度的传感器。Α微机电系统,微机电系统,传感器被安置在一个坚固的外壳中,并与具有互联网连接的树莓派微型计算机连接到拟议的倾斜和加速度监测节点。可以通过移动电话访问的在线功能,如实时图形、早期预警通知和数据库日志记录,都是使用Python编程实现的。对传感器响应进行了固有偏差和误差校准,然后在实验室中与高质量传感器一起在静态和动态加载条件下进行了全面测试。利用互补滤波方法获得了满意的实时精度,并在LabVIEW中利用参数可调的卡尔曼滤波器进一步提高了精度。传感器接口与LabVIEW和600 MHz CPU微控制器允许实时实现高速嵌入式滤波器,进一步优化传感器结果。卡尔曼滤波和嵌入式滤波结果显示传感器的一致性,其次是低复杂度的互补滤波应用于实时。传感器的动态响应也通过振动台测试得到验证,模拟过去记录的地震激励或人工振动,表明外部加速度对测量倾斜度的影响可以忽略不计;传感器测量使用高质量的倾斜和加速度测量传感器进行基准测试。初步的现场评估表明传感器对恶劣天气条件的鲁棒性。
{"title":"Laboratory evaluation of a low-cost micro electro-mechanical systems sensor for inclination and acceleration monitoring","authors":"Antonis Paganis,&nbsp;Vassiliki N. Georgiannou,&nbsp;Xenofon Lignos,&nbsp;Reina El Dahr","doi":"10.1002/dug2.12135","DOIUrl":"https://doi.org/10.1002/dug2.12135","url":null,"abstract":"<p>In this study, the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented. Α micro electro-mechanical systems, micro electro mechanical systems, sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node. Online capabilities accessible by mobile phone such as real-time graph, early warning notification, and database logging were implemented using Python programming. The sensor response was calibrated for inherent bias and errors, and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers. Satisfactory accuracy was achieved in real time using the Complementary Filter method, and it was further improved in LabVIEW using Kalman Filters with parameter tuning. A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of high-speed embedded filters, further optimizing sensor results. Kalman and embedded filtering results show agreement for the sensor, followed closely by the low-complexity complementary filter applied in real time. The sensor's dynamic response was also verified by shaking table tests, simulating past recorded seismic excitations or artificial vibrations, indicating negligible effect of external acceleration on measured tilt; sensor measurements were benchmarked using high-quality tilt and acceleration measuring transducers. A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 1","pages":"46-54"},"PeriodicalIF":0.0,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-year growth of Deep Underground Science and Engineering: A perspective 深部地下科学与工程的两年成长:一个展望
Pub Date : 2024-12-13 DOI: 10.1002/dug2.12139
Jianguo Wang, Chunfai Leung, Heping Xie, Xiaozhao Li, Na Yue, Qingping Hou, Jihong Wang

Deep Underground Science and Engineering (DUSE) launched its first issue in September 2022 as a quarterly journal. So far, it has published 106 articles with nine issues and online early view. The volume of received manuscripts increases by 50% each year and over 200 manuscripts were received by 28th of November 2024. In the early period, DUSE authorship came from five countries and now reaches 29 countries. DUSE articles have been downloaded over 97 000 times by readers from 170 countries/regions. It is indeed encouraging to note that DUSE has been admitted to different indices, including ESCI (August 2024), EI (March 2024), Scopus (July 2023), and DOAJ (May 2023). Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024. Its first impact factor from the Web of Science will be available in 2025. DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.

DUSE is making its best efforts to trace and shape a full-chain deep underground science and engineering through its six directions. Direction 1: Exploration and extraction of geo-resources. The geo-resources refer to minerals, energy sources, and water. DUSE makes efforts to streamline research studies in geo-resources from the initial geological analysis of source location, geo-resource volume estimation, and hot sweat point identification. These processes involve geology, geophysics, rock mechanics, and related material science and technology. After the identification of geo-resources, the next step is to extract these geo-resources from (deep) ground. This step involves engineering science and technology, such as rock mechanics, hydraulic fracturing technology, blasting, and so on. The key outcome is the extraction of these identified geo-sources from the deep ground with technical feasibility and economic benefit. Direction 2: Energy extraction and storage. Deep underground has abundant fuel matter, which was generated through long-term geological actions. Deep underground also has abundant space for the storage of energy and materials. This direction involves branches of engineering science, such as petroleum, engineering science and technology, material science, and environment science. Direction 3: Underground infrastructures. This direction focuses on the excavation and utilization of underground spaces, such as cavern construction, tunneling, and other pore space use. Direction 4: Geo-environments and waste geological disposal, which deals with the solutions to environmental problems in deep underground. The environmental problems have two types: The first one refers to the environmental problems induced by the exploitation of underground resources. The second one refers to the utilization of underground space (including pore space) to solve the environmental problems that are difficult to tackle on the ground surface, such as geological disposal of nuclea

《地下深层科学与工程》(DUSE)于2022年9月作为季刊创刊号发行。截至目前,已发表文章106篇,共9期,并在线抢先浏览。收到的稿件数量每年增加50%,到2024年11月28日收到200多篇稿件。从早期的5个国家到现在的29个国家。DUSE的文章已被来自170个国家/地区的读者下载超过97000次。令人鼓舞的是,DUSE已被纳入不同的指数,包括ESCI(2024年8月)、EI(2024年3月)、Scopus(2023年7月)和DOAJ(2023年5月)。其在Scopus中的CiteScore在2023年为2.2,到2024年11月中旬上升到5.1。它的第一个来自科学网的影响因子将在2025年可用。在深入的地下研究和实践中,DUSE正迅速成长为读者认可的国际性期刊。通过六大方向,全力追踪和塑造深地下科学与工程全链条。方向一:地质资源勘探与开采。地质资源是指矿产、能源和水。从地质资源定位的初始地质分析、地质资源体积估算到热汗点识别,努力简化地质资源研究工作。这些过程涉及地质学、地球物理学、岩石力学以及相关的材料科学和技术。地质资源确定后,下一步就是从(深)地提取地质资源。这一步涉及工程科学技术,如岩石力学、水力压裂技术、爆破等。关键的结果是这些已确定的地下深层地质资源的开采具有技术可行性和经济效益。方向二:能源提取与储存。地下深处蕴藏着丰富的燃料物质,这是长期地质作用的结果。地下深处也有丰富的空间来储存能量和物质。该方向涉及工程科学的分支,如石油、工程科学与技术、材料科学和环境科学。方向三:地下基础设施。该方向侧重于地下空间的挖掘与利用,如洞室建设、隧道掘进等孔隙空间的利用。方向四:地质环境与废物地质处置,研究解决地下深部环境问题。环境问题有两种类型:第一类是指开采地下资源所引起的环境问题。二是利用地下空间(含孔隙空间)解决地表难以解决的环境问题,如核废料、二氧化碳的地质处置等。方向五:地下深部研究与试验空间。该方向对地球科学的某些基础研究具有重要意义,但该方向的项目或成果较少。方向六:地下空间与工程规划、设计与施工技术。该方向通过安全、经济的方式创造性地实施工程活动,基本支持上述五个方向。该方向强调在地下深部测试、规划、设计和施工方面的创新技术。因此,从多学科互动的角度来看,DUSE侧重于一个集成的解决方案策略。新闻部正在努力覆盖六个方向。到目前为止,已发表技术文章106篇(包括研究和评论文章),其中以电子形式和纸质版发表68篇,在线早期发表38篇。这些文章已经涵盖了所有六个方向,但每个方向的份额是不平衡的。值得注意的是,有些条款可能涉及几个方向。方向1有56篇文章,占39.72%。方向2有16篇文章,占11.35%。方向3发表文章26篇,占18.44%。方向4只有3篇文章,占比2.13%。方向5有6篇文章,占比4.26%,方向6有34篇文章,占比24.11%。这表明,前3位份额分别为地质资源勘探开采方向1、地下基础设施方向3、工程技术方向6。DUSE通过组织特刊努力吸引特定研究领域的高质量手稿。 到目前为止,DUSE已经组织了10期专刊,分别是①①深地下灾害演化(DEDU)、①深海科学与工程中的矿产资源、③深地下空间开发与运营中的多物理耦合过程、②可持续宜居城市的地下空间与基础设施的规划与发展、⑤深地下开采中的地下水与稳定性、➅深地下工程中的机器学习与大数据、③地下工程的地热能源、①深地下空间的➇当代地下活动地质安全理论与技术,<s:2>深地下空间跨学科研究进展,➉碳中和背景下的地下大规模储能技术。这些特刊有助于DUSE吸引这些特定研究领域的高质量手稿。例如,地热能专题突出了地热能勘探和开采面临的挑战,如初期成本高、地下深层采热困难等。它侧重于新的地热开采系统,新理论,新技术,最新技术的新应用,如人工智能,以及潜在的环境影响。DUSE将不断邀请专家作为客座编辑,针对研究热点组织专题或探讨未来研究趋势。这将使DUSE能够推进当前和未来深部地下热点研究课题的前沿。此时此刻,让我们回顾一下为gdp增长设定的目标。正如我们在创刊号的社论中所述,DUSE的使命是报道深部地下科学与工程的最新创新和前沿研究成果。DUSE旨在聚集重要的革命性技术和理论突破,为全球深部地下科学与工程领域的研究人员提供高水平的学术交流平台。它旨在为世界各地的研究人员提供了解地下深处最新发展的机会。为了实现这些目标,编辑委员会成员(编辑委员会和早期职业编辑委员会)和编辑部在过去两年中密切合作。我们可以感到自豪的是,DUSE在短时间内实现了某些关键目标,包括进入完善的数据库。裁军司希望在不久的将来实现更高的目标。编辑们希望感谢编辑委员会成员,编辑部,赞助商和出版商(约翰威利和儿子)的重大贡献。特别感谢中国矿业大学周国庆教授和李婷博士。他们敏锐地抓住了地下深层科学学科的前沿,通过整合一切可行的资源,开展了DUSE。在学报办刊的两年中,他们对学报的创刊起到了带头和全力支持的作用,帮助学报取得了快速发展。如果没有他们的努力,裁军司不可能在如此短的时间内达到目前的地位。感谢过去两年来文章作者和读者的支持。编辑委员会和编辑部期待得到您的大力支持和贡献。DUSE是您的期刊,旨在为深入的地下研究和实践提供一个受人尊敬的真正的国际交流论坛。DUSE的成长离不开国际深地下社区的持续大力支持。在这里,编辑们诚挚地邀请您作为编委会成员或/和作者加入深地下社区。让我们精简军需部,填补科学技术方面的研究空白。我们相信,深地工程的发展必将带动深地科学与工程的进步,促进深地科学学科的形成与发展。
{"title":"Two-year growth of Deep Underground Science and Engineering: A perspective","authors":"Jianguo Wang,&nbsp;Chunfai Leung,&nbsp;Heping Xie,&nbsp;Xiaozhao Li,&nbsp;Na Yue,&nbsp;Qingping Hou,&nbsp;Jihong Wang","doi":"10.1002/dug2.12139","DOIUrl":"https://doi.org/10.1002/dug2.12139","url":null,"abstract":"<p><i>Deep Underground Science and Engineering</i> (DUSE) launched its first issue in September 2022 as a quarterly journal. So far, it has published 106 articles with nine issues and online early view. The volume of received manuscripts increases by 50% each year and over 200 manuscripts were received by 28th of November 2024. In the early period, DUSE authorship came from five countries and now reaches 29 countries. DUSE articles have been downloaded over 97 000 times by readers from 170 countries/regions. It is indeed encouraging to note that DUSE has been admitted to different indices, including ESCI (August 2024), EI (March 2024), Scopus (July 2023), and DOAJ (May 2023). Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024. Its first impact factor from the Web of Science will be available in 2025. DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.</p><p>DUSE is making its best efforts to trace and shape a full-chain deep underground science and engineering through its six directions. <i>Direction 1</i>: Exploration and extraction of geo-resources. The geo-resources refer to minerals, energy sources, and water. DUSE makes efforts to streamline research studies in geo-resources from the initial geological analysis of source location, geo-resource volume estimation, and hot sweat point identification. These processes involve geology, geophysics, rock mechanics, and related material science and technology. After the identification of geo-resources, the next step is to extract these geo-resources from (deep) ground. This step involves engineering science and technology, such as rock mechanics, hydraulic fracturing technology, blasting, and so on. The key outcome is the extraction of these identified geo-sources from the deep ground with technical feasibility and economic benefit. <i>Direction 2</i>: Energy extraction and storage. Deep underground has abundant fuel matter, which was generated through long-term geological actions. Deep underground also has abundant space for the storage of energy and materials. This direction involves branches of engineering science, such as petroleum, engineering science and technology, material science, and environment science. <i>Direction 3</i>: Underground infrastructures. This direction focuses on the excavation and utilization of underground spaces, such as cavern construction, tunneling, and other pore space use. <i>Direction 4</i>: Geo-environments and waste geological disposal, which deals with the solutions to environmental problems in deep underground. The environmental problems have two types: The first one refers to the environmental problems induced by the exploitation of underground resources. The second one refers to the utilization of underground space (including pore space) to solve the environmental problems that are difficult to tackle on the ground surface, such as geological disposal of nuclea","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"3 4","pages":"383-384"},"PeriodicalIF":0.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143252587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of reviewers 审稿人致谢
Pub Date : 2024-12-08 DOI: 10.1002/dug2.12137
<p>The Editors of <i>Deep Underground Science and Engineering</i> (DUSE) wish to extend our deepest thanks to the following peer reviewers in 2024. We are grateful to their contributions of time and expertise to improve the quality of DUSE. We have made every effort to ensure that all ad hoc reviewers are correctly listed. Our apologies are given to those whose names were unwittingly misspelled or omitted.</p><p>Mahamuda Abu</p><p>Salaam Jansbaka Adams</p><p>Musab A. Q. Al-Janabi</p><p>Ni An</p><p>Matteo Antelmi</p><p>Gabriel de Alemar Barberes</p><p>Luca Basilone</p><p>Jianchao Cai</p><p>Jian Cao</p><p>Jie Cao</p><p>Shuai Cao</p><p>Zhiming Chao</p><p>Chaofan Chen</p><p>Jueliang Chen</p><p>Luwang Chen</p><p>Min Chen</p><p>Shi Chen</p><p>Yifan Chen</p><p>Yuedu Chen</p><p>Gang Cheng</p><p>Guanglei Cui</p><p>Xiaopu Cui</p><p>Chenxi Ding</p><p>Zhuo Dong</p><p>Xueming Du</p><p>Hongyu Duan</p><p>Hongyun Fan</p><p>Jinyang Fan</p><p>Ning Fan</p><p>Gan Feng</p><p>Aime Fournier</p><p>Jinwei Fu</p><p>Xiaolu Gan</p><p>Yanan Gao</p><p>Mehran Ghasabeh</p><p>Bin Gong</p><p>Fengqiang Gong</p><p>Qiuming Gong</p><p>Ankit Grag</p><p>Dogukan Guner</p><p>Weiyao Guo</p><p>Zhizheng Guo</p><p>H. Haeri</p><p>Jianyong Han</p><p>Sakuma Hiroshi</p><p>Hussein Hoteit</p><p>Zhengmeng Hou</p><p>Dawei Hu</p><p>Nan Hu</p><p>Xunjian Hu</p><p>Haiping Huang</p><p>Changbao Jiang</p><p>Wencheng Jin</p><p>Xiangsong Kong</p><p>Sunil Kumar</p><p>Guohui Lei</p><p>Bo Li</p><p>Genzhuang Li</p><p>Xiaofeng Li</p><p>Xing Li</p><p>Xudong Li</p><p>Yanghui Li</p><p>Yuwei Li</p><p>Zhiqiang Li</p><p>Wei Liang</p><p>Botao Lin</p><p>Hang Lin</p><p>Hejuan Liu</p><p>Jian Liu</p><p>Jianfeng Liu</p><p>Liyuan Liu</p><p>Mengxin Liu</p><p>Xuesheng Liu</p><p>A. J. (Tom) Van Loon</p><p>Shifeng Lu</p><p>Shouqing Lu</p><p>Yimin Lu</p><p>Zhao Lu</p><p>Zheng Lu</p><p>Hu Lv</p><p>Dongdong Ma</p><p>Ke Ma</p><p>Tianshou Ma</p><p>Satar Mahdevari</p><p>Mohamed Malki</p><p>Mohammad Mehrad</p><p>Pinqiang Mo</p><p>Mostafa Mollaali</p><p>Arun Narayanan Nair</p><p>Hongyang Ni</p><p>Fulong Ning</p><p>Qiang Ou</p><p>Dongjiang Pan</p><p>Deepak Patwa</p><p>J. K. Pearce</p><p>Huafu Pei</p><p>Chunde Piao</p><p>Chengzhi Qi</p><p>Dwarikanath Ratha</p><p>Bharat Rattan</p><p>Arshad Raza</p><p>Shengjie Rui</p><p>Zhenhua Rui</p><p>Ahmad Sakhaee Pour</p><p>Vahab Sarfarazi</p><p>Axel Schippers</p><p>Resmi Sebastian</p><p>Jianfu Shao</p><p>Zhushan Shao</p><p>Jihong Shi</p><p>Yue Shi</p><p>Dazhao Song</p><p>Yang Song</p><p>Zhanping Song</p><p>Mairaj Soomro</p><p>Alfred Strauss</p><p>Benyu Su</p><p>Shanjie Su</p><p>Wanghua Sui</p><p>Qiang Sun</p><p>Yuantian Sun</p><p>Xu Tao</p><p>Zhigang Tao</p><p>Francesco Tinti</p><p>Olli H. Tuovinen</p><p>Chunguang Wang</p><p>Daobing Wang</p><p>Fuyong Wang</p><p>Haiyang Wang</p><p>Huimin Wang</p><p>Jun Wang</p><p>Lu Wang</p><p>Luqi Wang</p><p>Mingquan Wang</p><p>Susheng Wang</p><p>Xiao Wang</p><p>Yukai Wang</p><p>Ming Wen</p><p>Tao Wen</p><p>Fei Wu</p><p>Huanyu Wu</p><p>Jinwen Wu</p><p>Saisai Wu</p><p>X
《深部地下科学与工程》(DUSE)编辑向2024年的以下同行评审人员致以最深切的感谢。我们感谢他们贡献时间和专门知识,以提高DUSE的质量。我们已经尽了一切努力来确保所有特别审稿人都被正确列出。我们向那些无意中拼写错误或遗漏姓名的人表示歉意。Mahamuda AbuSalaam Jansbaka adama . qal - janabini AnMatteo antelgabriel de Alemar barbera basilone建超蔡健曹杰曹帅曹志明超超凡陈珏良陈鲁旺陈敏陈一凡陈月都陈刚陈光磊崔晓普崔光西丁卓董学明杜宏宇端宏云樊锦阳樊宁方安冯爱梅金伟傅晓鲁甘彦亚南高美兰加萨比斌工风强工秋明工ankit GragDogukan GunerWeiyao郭志正海日建勇汉古玛宏世候赛因酒店正名侯大伟湖南胡勋健胡海平黄长宝江文成金祥松孔世利kumiguohui雷波李根庄李晓峰李兴李旭东李阳辉李宇伟李志强李伟梁博涛林航林鹤娟刘健刘建峰刘立元刘孟鑫刘学生刘华J. (Tom)范龙世峰吕寿清吕义民陆昭陆正陆虎吕东东MaKe MaTianshou MaSatar MahdevariMohamed MalkiMohammad MehradPinqiang MoMostafa MollaaliArun Narayanan NairHongyang NiFulong宁强OuDongjiang PanDeepak PatwaJ。K. pearcehufu PeiChunde PiaoChengzhi QiDwarikanath RathaBharat rattashad RazaShengjie rui振华RuiAhmad Sakhaee pourvaaziaxel SchippersResmi SebastianJianfu shaozhu山ShaoJihong ShiYue shidazhasongyang SongZhanping SongMairaj SoomroAlfred StraussBenyu sussanjie SuWanghua SuiQiang孙元天孙旭陶志刚taoffrancesco TintiOlli . TuovinenChunguang王道兵王福永王海洋王惠民王军王璐王璐琪王明权王素生王晓王玉凯王明文涛文飞吴焕宇吴金文吴小天吴开宗夏静谢莉香谢春雷新博徐光泉徐景敏徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅徐帅学言闫海清杨家杰杨建华杨开芳杨林杨生奇杨玉顺杨志伟叶志伟叶慧永银华玉龙星余阳余朴元元元元元元元元元元元元元元元元元元元朱崇强,朱春,邹朱春江
{"title":"Acknowledgment of reviewers","authors":"","doi":"10.1002/dug2.12137","DOIUrl":"https://doi.org/10.1002/dug2.12137","url":null,"abstract":"&lt;p&gt;The Editors of &lt;i&gt;Deep Underground Science and Engineering&lt;/i&gt; (DUSE) wish to extend our deepest thanks to the following peer reviewers in 2024. We are grateful to their contributions of time and expertise to improve the quality of DUSE. We have made every effort to ensure that all ad hoc reviewers are correctly listed. Our apologies are given to those whose names were unwittingly misspelled or omitted.&lt;/p&gt;&lt;p&gt;Mahamuda Abu&lt;/p&gt;&lt;p&gt;Salaam Jansbaka Adams&lt;/p&gt;&lt;p&gt;Musab A. Q. Al-Janabi&lt;/p&gt;&lt;p&gt;Ni An&lt;/p&gt;&lt;p&gt;Matteo Antelmi&lt;/p&gt;&lt;p&gt;Gabriel de Alemar Barberes&lt;/p&gt;&lt;p&gt;Luca Basilone&lt;/p&gt;&lt;p&gt;Jianchao Cai&lt;/p&gt;&lt;p&gt;Jian Cao&lt;/p&gt;&lt;p&gt;Jie Cao&lt;/p&gt;&lt;p&gt;Shuai Cao&lt;/p&gt;&lt;p&gt;Zhiming Chao&lt;/p&gt;&lt;p&gt;Chaofan Chen&lt;/p&gt;&lt;p&gt;Jueliang Chen&lt;/p&gt;&lt;p&gt;Luwang Chen&lt;/p&gt;&lt;p&gt;Min Chen&lt;/p&gt;&lt;p&gt;Shi Chen&lt;/p&gt;&lt;p&gt;Yifan Chen&lt;/p&gt;&lt;p&gt;Yuedu Chen&lt;/p&gt;&lt;p&gt;Gang Cheng&lt;/p&gt;&lt;p&gt;Guanglei Cui&lt;/p&gt;&lt;p&gt;Xiaopu Cui&lt;/p&gt;&lt;p&gt;Chenxi Ding&lt;/p&gt;&lt;p&gt;Zhuo Dong&lt;/p&gt;&lt;p&gt;Xueming Du&lt;/p&gt;&lt;p&gt;Hongyu Duan&lt;/p&gt;&lt;p&gt;Hongyun Fan&lt;/p&gt;&lt;p&gt;Jinyang Fan&lt;/p&gt;&lt;p&gt;Ning Fan&lt;/p&gt;&lt;p&gt;Gan Feng&lt;/p&gt;&lt;p&gt;Aime Fournier&lt;/p&gt;&lt;p&gt;Jinwei Fu&lt;/p&gt;&lt;p&gt;Xiaolu Gan&lt;/p&gt;&lt;p&gt;Yanan Gao&lt;/p&gt;&lt;p&gt;Mehran Ghasabeh&lt;/p&gt;&lt;p&gt;Bin Gong&lt;/p&gt;&lt;p&gt;Fengqiang Gong&lt;/p&gt;&lt;p&gt;Qiuming Gong&lt;/p&gt;&lt;p&gt;Ankit Grag&lt;/p&gt;&lt;p&gt;Dogukan Guner&lt;/p&gt;&lt;p&gt;Weiyao Guo&lt;/p&gt;&lt;p&gt;Zhizheng Guo&lt;/p&gt;&lt;p&gt;H. Haeri&lt;/p&gt;&lt;p&gt;Jianyong Han&lt;/p&gt;&lt;p&gt;Sakuma Hiroshi&lt;/p&gt;&lt;p&gt;Hussein Hoteit&lt;/p&gt;&lt;p&gt;Zhengmeng Hou&lt;/p&gt;&lt;p&gt;Dawei Hu&lt;/p&gt;&lt;p&gt;Nan Hu&lt;/p&gt;&lt;p&gt;Xunjian Hu&lt;/p&gt;&lt;p&gt;Haiping Huang&lt;/p&gt;&lt;p&gt;Changbao Jiang&lt;/p&gt;&lt;p&gt;Wencheng Jin&lt;/p&gt;&lt;p&gt;Xiangsong Kong&lt;/p&gt;&lt;p&gt;Sunil Kumar&lt;/p&gt;&lt;p&gt;Guohui Lei&lt;/p&gt;&lt;p&gt;Bo Li&lt;/p&gt;&lt;p&gt;Genzhuang Li&lt;/p&gt;&lt;p&gt;Xiaofeng Li&lt;/p&gt;&lt;p&gt;Xing Li&lt;/p&gt;&lt;p&gt;Xudong Li&lt;/p&gt;&lt;p&gt;Yanghui Li&lt;/p&gt;&lt;p&gt;Yuwei Li&lt;/p&gt;&lt;p&gt;Zhiqiang Li&lt;/p&gt;&lt;p&gt;Wei Liang&lt;/p&gt;&lt;p&gt;Botao Lin&lt;/p&gt;&lt;p&gt;Hang Lin&lt;/p&gt;&lt;p&gt;Hejuan Liu&lt;/p&gt;&lt;p&gt;Jian Liu&lt;/p&gt;&lt;p&gt;Jianfeng Liu&lt;/p&gt;&lt;p&gt;Liyuan Liu&lt;/p&gt;&lt;p&gt;Mengxin Liu&lt;/p&gt;&lt;p&gt;Xuesheng Liu&lt;/p&gt;&lt;p&gt;A. J. (Tom) Van Loon&lt;/p&gt;&lt;p&gt;Shifeng Lu&lt;/p&gt;&lt;p&gt;Shouqing Lu&lt;/p&gt;&lt;p&gt;Yimin Lu&lt;/p&gt;&lt;p&gt;Zhao Lu&lt;/p&gt;&lt;p&gt;Zheng Lu&lt;/p&gt;&lt;p&gt;Hu Lv&lt;/p&gt;&lt;p&gt;Dongdong Ma&lt;/p&gt;&lt;p&gt;Ke Ma&lt;/p&gt;&lt;p&gt;Tianshou Ma&lt;/p&gt;&lt;p&gt;Satar Mahdevari&lt;/p&gt;&lt;p&gt;Mohamed Malki&lt;/p&gt;&lt;p&gt;Mohammad Mehrad&lt;/p&gt;&lt;p&gt;Pinqiang Mo&lt;/p&gt;&lt;p&gt;Mostafa Mollaali&lt;/p&gt;&lt;p&gt;Arun Narayanan Nair&lt;/p&gt;&lt;p&gt;Hongyang Ni&lt;/p&gt;&lt;p&gt;Fulong Ning&lt;/p&gt;&lt;p&gt;Qiang Ou&lt;/p&gt;&lt;p&gt;Dongjiang Pan&lt;/p&gt;&lt;p&gt;Deepak Patwa&lt;/p&gt;&lt;p&gt;J. K. Pearce&lt;/p&gt;&lt;p&gt;Huafu Pei&lt;/p&gt;&lt;p&gt;Chunde Piao&lt;/p&gt;&lt;p&gt;Chengzhi Qi&lt;/p&gt;&lt;p&gt;Dwarikanath Ratha&lt;/p&gt;&lt;p&gt;Bharat Rattan&lt;/p&gt;&lt;p&gt;Arshad Raza&lt;/p&gt;&lt;p&gt;Shengjie Rui&lt;/p&gt;&lt;p&gt;Zhenhua Rui&lt;/p&gt;&lt;p&gt;Ahmad Sakhaee Pour&lt;/p&gt;&lt;p&gt;Vahab Sarfarazi&lt;/p&gt;&lt;p&gt;Axel Schippers&lt;/p&gt;&lt;p&gt;Resmi Sebastian&lt;/p&gt;&lt;p&gt;Jianfu Shao&lt;/p&gt;&lt;p&gt;Zhushan Shao&lt;/p&gt;&lt;p&gt;Jihong Shi&lt;/p&gt;&lt;p&gt;Yue Shi&lt;/p&gt;&lt;p&gt;Dazhao Song&lt;/p&gt;&lt;p&gt;Yang Song&lt;/p&gt;&lt;p&gt;Zhanping Song&lt;/p&gt;&lt;p&gt;Mairaj Soomro&lt;/p&gt;&lt;p&gt;Alfred Strauss&lt;/p&gt;&lt;p&gt;Benyu Su&lt;/p&gt;&lt;p&gt;Shanjie Su&lt;/p&gt;&lt;p&gt;Wanghua Sui&lt;/p&gt;&lt;p&gt;Qiang Sun&lt;/p&gt;&lt;p&gt;Yuantian Sun&lt;/p&gt;&lt;p&gt;Xu Tao&lt;/p&gt;&lt;p&gt;Zhigang Tao&lt;/p&gt;&lt;p&gt;Francesco Tinti&lt;/p&gt;&lt;p&gt;Olli H. Tuovinen&lt;/p&gt;&lt;p&gt;Chunguang Wang&lt;/p&gt;&lt;p&gt;Daobing Wang&lt;/p&gt;&lt;p&gt;Fuyong Wang&lt;/p&gt;&lt;p&gt;Haiyang Wang&lt;/p&gt;&lt;p&gt;Huimin Wang&lt;/p&gt;&lt;p&gt;Jun Wang&lt;/p&gt;&lt;p&gt;Lu Wang&lt;/p&gt;&lt;p&gt;Luqi Wang&lt;/p&gt;&lt;p&gt;Mingquan Wang&lt;/p&gt;&lt;p&gt;Susheng Wang&lt;/p&gt;&lt;p&gt;Xiao Wang&lt;/p&gt;&lt;p&gt;Yukai Wang&lt;/p&gt;&lt;p&gt;Ming Wen&lt;/p&gt;&lt;p&gt;Tao Wen&lt;/p&gt;&lt;p&gt;Fei Wu&lt;/p&gt;&lt;p&gt;Huanyu Wu&lt;/p&gt;&lt;p&gt;Jinwen Wu&lt;/p&gt;&lt;p&gt;Saisai Wu&lt;/p&gt;&lt;p&gt;X","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"3 4","pages":"508-509"},"PeriodicalIF":0.0,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on transparency of coal mine geological conditions based on distributed fiber-optic sensing technology 基于分布式光纤传感技术的煤矿地质条件透明度研究
Pub Date : 2024-12-01 DOI: 10.1002/dug2.12134
Chunde Piao, Yanzhu Yin, Zhihao He, Wenchi Du, Guangqing Wei

Coal mining induces changes in the nature of rock and soil bodies, as well as hydrogeological conditions, which can easily trigger the occurrence of geological disasters such as water inrush, movement of the coal seam roof and floor, and rock burst. Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention. In this sense, it is of great significance to address the requirements for informatizing coal mine geological conditions, dynamically adjust sensing parameters, and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters. This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining. On this basis, it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines. Combined with the multi-field monitoring characteristics of the strain field, the temperature field, and the vibration field of distributed optical fiber sensing technology, parameters such as the strain increment ratio, the aquifer temperature gradient, and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking, aquifer water level, and water cut range, and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters. The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring, identification accuracy of optical fiber acoustic signals, multi-parameter monitoring, and early warning methods.

煤矿开采引起岩土体性质和水文地质条件的变化,容易引发突水、煤层顶底板移动、冲击地压等地质灾害的发生。煤矿地质条件的透明化为智能采煤和地质灾害防治提供了技术支撑。因此,解决煤矿地质条件信息化的要求,动态调整传感参数,准确识别灾害特征,对防治煤矿地质灾害具有重要意义。研究了与采煤工作面地质灾害相关的各种作用场,探讨了煤层开采地质灾害的类型和传感参数。在此基础上,总结了煤矿透明地质分布式光纤传感技术框架。结合分布式光纤传感技术应变场、温度场、振动场的多场监测特征,提取应变增量比、含水层温度梯度、声波振幅等参数作为特征值,用于识别岩石破碎程度、含水层水位、含水范围;建立了一种多场感应方法来识别采动岩体灾害特征。从传感光纤结构进行大变形监测、光纤声信号识别精度、多参数监测、预警方法等方面提出了基于光纤传感技术的透明地质的发展方向。
{"title":"Research on transparency of coal mine geological conditions based on distributed fiber-optic sensing technology","authors":"Chunde Piao,&nbsp;Yanzhu Yin,&nbsp;Zhihao He,&nbsp;Wenchi Du,&nbsp;Guangqing Wei","doi":"10.1002/dug2.12134","DOIUrl":"https://doi.org/10.1002/dug2.12134","url":null,"abstract":"<p>Coal mining induces changes in the nature of rock and soil bodies, as well as hydrogeological conditions, which can easily trigger the occurrence of geological disasters such as water inrush, movement of the coal seam roof and floor, and rock burst. Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention. In this sense, it is of great significance to address the requirements for informatizing coal mine geological conditions, dynamically adjust sensing parameters, and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters. This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining. On this basis, it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines. Combined with the multi-field monitoring characteristics of the strain field, the temperature field, and the vibration field of distributed optical fiber sensing technology, parameters such as the strain increment ratio, the aquifer temperature gradient, and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking, aquifer water level, and water cut range, and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters. The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring, identification accuracy of optical fiber acoustic signals, multi-parameter monitoring, and early warning methods.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 2","pages":"255-263"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Deep Underground Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1