Even more fascinating than its bulk parent, a water droplet possesses extraordinary catalytic and hydro-voltaic capability, elastic adaptivity, hydrophobicity, sensitivity, thermal stability, etc., but the underlying mechanism is still elusive. We emphasize herewith that the H‒O bond follows the universal bond order‒length‒strength correlation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond (O:H‒O). Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H‒O bond by up to 10% while lengthening the intermolecular O:H nonbond by 20% cooperatively with an association of electron polarization, making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification. The supersolid skin dictates the performance and functionality of the droplet in chemical, dielectric, electrical, mechanical, optical, and thermal properties as well as the transport dynamics of electrons and phonons. The amplification of these findings could deepen our insight into the undercoordinated aqueous systems, including bubbles and molecular clusters, and promote deep engineering of water and ice.
{"title":"Skin supersolidity matters the performance and functionality of water droplets","authors":"Chang Q. Sun, Yong Zhou, Hengxin Fang, Biao Wang","doi":"10.1002/dro2.139","DOIUrl":"https://doi.org/10.1002/dro2.139","url":null,"abstract":"<p>Even more fascinating than its bulk parent, a water droplet possesses extraordinary catalytic and hydro-voltaic capability, elastic adaptivity, hydrophobicity, sensitivity, thermal stability, etc., but the underlying mechanism is still elusive. We emphasize herewith that the H‒O bond follows the universal bond order‒length‒strength correlation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond (O:H‒O). Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H‒O bond by up to 10% while lengthening the intermolecular O:H nonbond by 20% cooperatively with an association of electron polarization, making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification. The supersolid skin dictates the performance and functionality of the droplet in chemical, dielectric, electrical, mechanical, optical, and thermal properties as well as the transport dynamics of electrons and phonons. The amplification of these findings could deepen our insight into the undercoordinated aqueous systems, including bubbles and molecular clusters, and promote deep engineering of water and ice.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Curvilinear self-propelling of droplets has attracted great interest in the past few decades due to their irreplaceable roles in many areas. Conventional understanding is that a droplet moves only along a preset channel formed by morphology or chemical components. Achieving programmable curvilinear droplet motion independent of a preset channel remains greatly challenging. Here, we report a programmable curvilinear self-propelling of droplets (circle, divergence, and convergence) based on the collaboration of the curvilinear wetting gradient and the Leidenfrost effect. This design achieves motion trajectory in a well-controlled manner as well as high velocity and long distance of droplet transport independent of the preset channel. Moreover, the motion behaviors of droplets could be predicted accurately by theoretic simulation. We envision that our unique design could manifest extensive practical applications in fluidic devices, liquid transport, and heat transfer systems.
{"title":"Programmable curvilinear self-propelling of droplets without preset channels","authors":"Shile Feng, Yongping Hou, Yongmei Zheng","doi":"10.1002/dro2.138","DOIUrl":"https://doi.org/10.1002/dro2.138","url":null,"abstract":"<p>Curvilinear self-propelling of droplets has attracted great interest in the past few decades due to their irreplaceable roles in many areas. Conventional understanding is that a droplet moves only along a preset channel formed by morphology or chemical components. Achieving programmable curvilinear droplet motion independent of a preset channel remains greatly challenging. Here, we report a programmable curvilinear self-propelling of droplets (circle, divergence, and convergence) based on the collaboration of the curvilinear wetting gradient and the Leidenfrost effect. This design achieves motion trajectory in a well-controlled manner as well as high velocity and long distance of droplet transport independent of the preset channel. Moreover, the motion behaviors of droplets could be predicted accurately by theoretic simulation. We envision that our unique design could manifest extensive practical applications in fluidic devices, liquid transport, and heat transfer systems.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inside Back Cover: The cover image is based on the Research Article Collective wetting transitions of submerged gas-entrapping microtextured surfaces by Arunachalam and Mishra.
A variety of scenarios entail undesirable or accidental immersion in water, e.g., “smart” gadgets or air-breathing marine/land insects. We found that the air-filled microcavities can “communicate” with each other via diffusion and, thus, exhibit directionality as they get filled. The fascinating science behind this collective, directional wetting transitions is unveiled, which should inspire technologies for protecting devices against water ingression. (DOI: 10.1002/dro2.135)