Pub Date : 2023-11-17DOI: 10.1109/JISPIN.2023.3333852
Min Wang;Aurélie Dommes;Valérie Renaudin;Ni Zhu
Navigating in urban environment is a major challenge for visually impaired people. Spatial landmarks are crucial for them to orient and navigate in their environment. In this paper, the spatial landmarks most important and commonly used by visually impaired people are identified through interviews, and geometric constraints of these landmarks are constructed to facilitate the development of map-matching algorithms. Interviews were conducted with 12 visually impaired people who had a range of visual impairments and used various mobility aids. Data were analyzed by sensory modality, occurrence of use, and number of users. 14 main landmarks for urban navigation were selected and categorized into two groups: Waypoints and Reassurance Points, depending on whether they are directly detected by touch. Geometric constraints were developed for each landmark to prepare their integration into map-matching or path-planning algorithms. The result is a comprehensive dictionary of landmarks and their geometric constraints is created, specifically tailored to help visually impaired people navigate urban environments. Our user-centric approach successfully translates the subjective navigation experiences of visually impaired people into an objective, universally accessible format. This bridges the gap between personal experiences and practical applications and paves the way for more inclusive navigation solutions for visually impaired people in urban environments.
{"title":"Analysis of Spatial Landmarks for Seamless Urban Navigation of Visually Impaired People","authors":"Min Wang;Aurélie Dommes;Valérie Renaudin;Ni Zhu","doi":"10.1109/JISPIN.2023.3333852","DOIUrl":"https://doi.org/10.1109/JISPIN.2023.3333852","url":null,"abstract":"Navigating in urban environment is a major challenge for visually impaired people. Spatial landmarks are crucial for them to orient and navigate in their environment. In this paper, the spatial landmarks most important and commonly used by visually impaired people are identified through interviews, and geometric constraints of these landmarks are constructed to facilitate the development of map-matching algorithms. Interviews were conducted with 12 visually impaired people who had a range of visual impairments and used various mobility aids. Data were analyzed by sensory modality, occurrence of use, and number of users. 14 main landmarks for urban navigation were selected and categorized into two groups: Waypoints and Reassurance Points, depending on whether they are directly detected by touch. Geometric constraints were developed for each landmark to prepare their integration into map-matching or path-planning algorithms. The result is a comprehensive dictionary of landmarks and their geometric constraints is created, specifically tailored to help visually impaired people navigate urban environments. Our user-centric approach successfully translates the subjective navigation experiences of visually impaired people into an objective, universally accessible format. This bridges the gap between personal experiences and practical applications and paves the way for more inclusive navigation solutions for visually impaired people in urban environments.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"93-103"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10320446","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the robust localization, via Gaussian process regression (GPR), of multiple transmitters/targets based on received signal strength indicator (RSSI) data collected by fixed sensors distributed in the environment. For such a scenario and approach, we contribute both with a novel noise robust procedure to train the parameters of the GPR model, which is achieved via a mini-batch stochastic gradient descent (SGD) scheme with gradients given in closed form, and with a pair of corresponding robust marginalization procedures for the estimation of target locations. Simulation results validate the contributions by showing that the proposed methods significantly outperform the best related state-of-the-art (SotA) alternative and approach the performance of a genie-aided (GA) scheme.
{"title":"Robust Received Signal Strength Indicator (RSSI)-Based Multitarget Localization via Gaussian Process Regression","authors":"Niclas Führling;Hyeon Seok Rou;Giuseppe Thadeu Freitas de Abreu;David González G.;Osvaldo Gonsa","doi":"10.1109/JISPIN.2023.3332033","DOIUrl":"10.1109/JISPIN.2023.3332033","url":null,"abstract":"We consider the robust localization, via Gaussian process regression (GPR), of multiple transmitters/targets based on received signal strength indicator (RSSI) data collected by fixed sensors distributed in the environment. For such a scenario and approach, we contribute both with a novel noise robust procedure to train the parameters of the GPR model, which is achieved via a mini-batch stochastic gradient descent (SGD) scheme with gradients given in closed form, and with a pair of corresponding robust marginalization procedures for the estimation of target locations. Simulation results validate the contributions by showing that the proposed methods significantly outperform the best related state-of-the-art (SotA) alternative and approach the performance of a genie-aided (GA) scheme.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"104-114"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10314734","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135610964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional pedestrian dead reckoning (PDR) systems have been designed for scenarios where users walk straight ahead. However, user behavior observation at the museum revealed that users often stop or walk sideways to look at the exhibits. If the user's smartphone is moving when the user is stopped, false step detection may occur. In addition, the correct step or change of direction may not be detected in sideways walking. To solve these problems, we propose a novel PDR system. First, we classify the user's walking style to address the problems of false step detection and undetected changes of direction. Next, we use a classifier to detect when the foot touches the ground from smartphone sensor data and perform step detection. Compared with the existing SmartPDR, our proposed method improved positioning accuracy by 20% in straight walking and 70% in sideways walking.
{"title":"Pedestrian Dead Reckoning for Multiple Walking Styles Using Classifier-Based Step Detection","authors":"Ibuki Yoshida;Takumi Suzaki;Hiroaki Murakami;Hiroki Watanabe;Mananari Nakamura;Hiromichi Hashizume;Masanori Sugimoto","doi":"10.1109/JISPIN.2023.3323937","DOIUrl":"10.1109/JISPIN.2023.3323937","url":null,"abstract":"Traditional pedestrian dead reckoning (PDR) systems have been designed for scenarios where users walk straight ahead. However, user behavior observation at the museum revealed that users often stop or walk sideways to look at the exhibits. If the user's smartphone is moving when the user is stopped, false step detection may occur. In addition, the correct step or change of direction may not be detected in sideways walking. To solve these problems, we propose a novel PDR system. First, we classify the user's walking style to address the problems of false step detection and undetected changes of direction. Next, we use a classifier to detect when the foot touches the ground from smartphone sensor data and perform step detection. Compared with the existing SmartPDR, our proposed method improved positioning accuracy by 20% in straight walking and 70% in sideways walking.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"69-79"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10285345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136305815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1109/JISPIN.2023.3324279
Chi-Shih Jao;Danmeng Wang;Changwei Chen;Eudald Sangenis;Joe Grasso;Solmaz S. Kia;Andrei M. Shkel
This article proposes a generalized UltraWideBand (UWB)-Zero-velocity-UPdaTe (ZUPT)-simultaneous localization and mapping (SLAM) algorithm, a SLAM approach, utilizing a combination of foot-mounted localization systems integrating inertial measurement units (IMUs), UWB modules, barometers, and dynamically-deployed beacons incorporating UWB, IMUs, and reference barometers. The proposed approach leverages a ZUPT-aided Inertial Navigation System augmented with self-contained sensor fusion techniques to map unknown UWB beacons dynamically deployed in an environment during navigation and then utilizes the localized beacons to bound position error propagation. An experimental testbed was developed, and we conducted two series of experiments to validate the performance of the proposed approach. The first experiment involved high-accuracy motion capture cameras in generating ground truth, and the results showed that the proposed approach estimated positions of UWB beacons with a maximum localization error of 0.36 m, when deployed during the first 15 and 20 s of the navigation. In the second experiment, a pedestrian traveled for around 3.5 km in 1 h in a large multifloor indoor environment and deployed seven beacons, during the first 63, 151, 290, 399, 517, 585, and 786 s of the experiment. The proposed generalized UWB-ZUPT-SLAM had a 3-D mean absolute error of 0.48 m in this experiment, equivalent to 0.013% traveling distance.
{"title":"Augmented UWB-ZUPT-SLAM Utilizing Multisensor Fusion","authors":"Chi-Shih Jao;Danmeng Wang;Changwei Chen;Eudald Sangenis;Joe Grasso;Solmaz S. Kia;Andrei M. Shkel","doi":"10.1109/JISPIN.2023.3324279","DOIUrl":"10.1109/JISPIN.2023.3324279","url":null,"abstract":"This article proposes a generalized UltraWideBand (UWB)-Zero-velocity-UPdaTe (ZUPT)-simultaneous localization and mapping (SLAM) algorithm, a SLAM approach, utilizing a combination of foot-mounted localization systems integrating inertial measurement units (IMUs), UWB modules, barometers, and dynamically-deployed beacons incorporating UWB, IMUs, and reference barometers. The proposed approach leverages a ZUPT-aided Inertial Navigation System augmented with self-contained sensor fusion techniques to map unknown UWB beacons dynamically deployed in an environment during navigation and then utilizes the localized beacons to bound position error propagation. An experimental testbed was developed, and we conducted two series of experiments to validate the performance of the proposed approach. The first experiment involved high-accuracy motion capture cameras in generating ground truth, and the results showed that the proposed approach estimated positions of UWB beacons with a maximum localization error of 0.36 m, when deployed during the first 15 and 20 s of the navigation. In the second experiment, a pedestrian traveled for around 3.5 km in 1 h in a large multifloor indoor environment and deployed seven beacons, during the first 63, 151, 290, 399, 517, 585, and 786 s of the experiment. The proposed generalized UWB-ZUPT-SLAM had a 3-D mean absolute error of 0.48 m in this experiment, equivalent to 0.013% traveling distance.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"80-92"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136302860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.1109/JISPIN.2023.3299433
Darwin P. Quezada Gaibor;Lucie Klus;Roman Klus;Elena Simona Lohan;Jari Nurmi;Mikko Valkama;Joaquín Huerta;Joaquín Torres-Sospedra
Indoor positioning based on machine-learning (ML) models has attracted widespread interest in the last few years, given its high performance and usability. Supervised, semisupervised, and unsupervised models have thus been widely used in this field, not only to estimate the user position, but also to compress, clean, and denoise fingerprinting datasets. Some scholars have focused on developing, improving, and optimizing ML models to provide accurate solutions to the end user. This article introduces a novel method to initialize the input weights in autoencoder extreme learning machine (AE-ELM), namely factorized input data (FID), which is based on the normalized form of the orthogonal component of the input data. AE-ELM with FID weight initialization is used to efficiently reduce the radio map. Once the dimensionality of the dataset is reduced, we use $k$