Pub Date : 2024-11-27DOI: 10.1109/TQE.2024.3507155
Nishanth Chandra;Pradeep Kumar Krishnamurthy
In this article, we propose and experimentally demonstrate a novel synchronization method for quantum key distribution (QKD) systems. The method consists of maximizing the visibility of frequency-domain interference of optical sidebands about an optical carrier at the receiver node. The sidebands are generated by phase modulation of the optical carrier by an radio-frequency (RF) signal whose phase can be dynamically varied. The phase-variable RF signal is generated by the field-programmable gate array (FPGA) at the transmitter and the receiver using GTX transceivers. In order to facilitate this, we use square waveforms for RF signal instead of the conventional sinusoidal signals. We derive mathematical expressions for sideband power as a function of the phase difference between RF signals at transmitter and receiver. The phase is adjusted using dynamic phase shifter module, implemented by the FPGA. We propose a complete workflow that allows transmitter and receiver synchronization to within 12.6 ps directly over the quantum channel of QKD systems. Once synchronized, the same system can be switched over to quantum transmission by user-defined time delay. The workflow was implemented on a Xilinx Kintex-7 KC705 FPGA board. We studied the robustness of our technique by evaluating the stability of the interferometer over an operation of 10 min with standard deviation of interference to be less than 9% of the mean detection amplitude.
{"title":"FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD","authors":"Nishanth Chandra;Pradeep Kumar Krishnamurthy","doi":"10.1109/TQE.2024.3507155","DOIUrl":"https://doi.org/10.1109/TQE.2024.3507155","url":null,"abstract":"In this article, we propose and experimentally demonstrate a novel synchronization method for quantum key distribution (QKD) systems. The method consists of maximizing the visibility of frequency-domain interference of optical sidebands about an optical carrier at the receiver node. The sidebands are generated by phase modulation of the optical carrier by an radio-frequency (RF) signal whose phase can be dynamically varied. The phase-variable RF signal is generated by the field-programmable gate array (FPGA) at the transmitter and the receiver using GTX transceivers. In order to facilitate this, we use square waveforms for RF signal instead of the conventional sinusoidal signals. We derive mathematical expressions for sideband power as a function of the phase difference between RF signals at transmitter and receiver. The phase is adjusted using dynamic phase shifter module, implemented by the FPGA. We propose a complete workflow that allows transmitter and receiver synchronization to within 12.6 ps directly over the quantum channel of QKD systems. Once synchronized, the same system can be switched over to quantum transmission by user-defined time delay. The workflow was implemented on a Xilinx Kintex-7 KC705 FPGA board. We studied the robustness of our technique by evaluating the stability of the interferometer over an operation of 10 min with standard deviation of interference to be less than 9% of the mean detection amplitude.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1109/TQE.2024.3501683
Miloš Prokop;Petros Wallden;David Joseph
Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a sufficient level of security. Grover's search quantum algorithm provides a generic quadratic speedup, given access to an oracle implementing some function, which describes when a solution is found. In this article, we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers that use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this combination.
{"title":"Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers","authors":"Miloš Prokop;Petros Wallden;David Joseph","doi":"10.1109/TQE.2024.3501683","DOIUrl":"https://doi.org/10.1109/TQE.2024.3501683","url":null,"abstract":"Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a sufficient level of security. Grover's search quantum algorithm provides a generic quadratic speedup, given access to an oracle implementing some function, which describes when a solution is found. In this article, we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers that use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this combination.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1109/TQE.2024.3488518
Jorge M. Ramirez;Elaine Wong;Caio Alves;Sarah Chehade;Ryan Bennink
This study investigates the frame potential and expressiveness of commutative quantum circuits. Based on the Fourier series representation of these circuits, we express quantum expectation and pairwise fidelity as characteristic functions of random variables, and we characterize expressiveness as the recurrence probability of a random walk on a lattice. A central outcome of our work includes formulas to approximate the frame potential and expressiveness for any commutative quantum circuit, underpinned by convergence theorems in the probability theory. We identify the lattice volume of the random walk as means to approximate expressiveness based on circuit architecture. In the specific case of commutative circuits involving Pauli- $Z$