The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization procedure to fulfill this optimization task, and we investigate its performance in comparison with other global optimizers. We show that our approach allows for a significant reduction in the number of calls to the quantum circuit, which is typically the most expensive part of the QAOA. We demonstrate that our method works well also in the regime of slow circuit repetition rates and that a few measurements of the quantum ansatz would already suffice to achieve a good estimate of the energy. In addition, we study the performance of our method in the presence of noise at gate level, and we find that for low circuit depths, it is robust against noise. Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
{"title":"Bayesian Optimization for QAOA","authors":"Simone Tibaldi;Davide Vodola;Edoardo Tignone;Elisa Ercolessi","doi":"10.1109/TQE.2023.3325167","DOIUrl":"10.1109/TQE.2023.3325167","url":null,"abstract":"The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization procedure to fulfill this optimization task, and we investigate its performance in comparison with other global optimizers. We show that our approach allows for a significant reduction in the number of calls to the quantum circuit, which is typically the most expensive part of the QAOA. We demonstrate that our method works well also in the regime of slow circuit repetition rates and that a few measurements of the quantum ansatz would already suffice to achieve a good estimate of the energy. In addition, we study the performance of our method in the presence of noise at gate level, and we find that for low circuit depths, it is robust against noise. Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10286414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136371790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1109/TQE.2023.3324841
V. Reiher;Y. Bérubé-Lauzière
The double-quantum-dot device benefits from the advantages of both the spin and charge qubits, while offering ways to mitigate their drawbacks. Careful gate voltage modulation can grant greater spinlike or chargelike dynamics to the device, yielding long coherence times with the former and high electrical susceptibility with the latter for electrically driven spin rotations or coherent interactions with microwave photons. As this architecture is a serious contender for the realization of a versatile physical qubit, improving its control is a critical step toward building a large-scale spin-based universal quantum computer. We show that optimal control pulses generated using the gradient ascent pulse engineering algorithm can yield higher fidelity operating regime transfers than can be achieved using linear methods.
{"title":"Optimal Control of the Operating Regime of a Single-Electron Double Quantum Dot","authors":"V. Reiher;Y. Bérubé-Lauzière","doi":"10.1109/TQE.2023.3324841","DOIUrl":"https://doi.org/10.1109/TQE.2023.3324841","url":null,"abstract":"The double-quantum-dot device benefits from the advantages of both the spin and charge qubits, while offering ways to mitigate their drawbacks. Careful gate voltage modulation can grant greater spinlike or chargelike dynamics to the device, yielding long coherence times with the former and high electrical susceptibility with the latter for electrically driven spin rotations or coherent interactions with microwave photons. As this architecture is a serious contender for the realization of a versatile physical qubit, improving its control is a critical step toward building a large-scale spin-based universal quantum computer. We show that optimal control pulses generated using the gradient ascent pulse engineering algorithm can yield higher fidelity operating regime transfers than can be achieved using linear methods.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10286051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.1109/TQE.2023.3322171
Fangli Yang;Daowen Qiu;Paulo Mateus
Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.
{"title":"Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels","authors":"Fangli Yang;Daowen Qiu;Paulo Mateus","doi":"10.1109/TQE.2023.3322171","DOIUrl":"https://doi.org/10.1109/TQE.2023.3322171","url":null,"abstract":"Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10274121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.1109/TQE.2023.3322342
Farhana Anwar;Rafee Mahbub;Ronald A. Coutu
Thin films with quantum defects are emerging as a potential platform for quantum applications. Quantum defects in some thin films arise due to structural imperfections, such as vacancies or impurities. These defects generate localized electronic states with unique optical and electronic properties. Crystal vacancies or defects that occur when atoms are missing from a crystal lattice can influence a material's quantum properties. In this study, we investigated inexpensive, complementary metal oxide semiconductor compatible materials with quantum defects suitable for room temperature applications. The experiments indicated 5, 15, and 17 ns relaxation times for aluminum nitride, aluminum oxide or alumina, and tin oxides, respectively. For all these materials, distinct resonant peaks are observed at approximately 1.1, 1.6, 2.2, and 2.7 GHz at room temperature (i.e., 21 °C). These peaks exhibit slight frequency shifts, corresponding to known defect locations and thin film material properties. This discovery may lead the way to reliable, cost-effective quantum applications in our daily lives.
{"title":"Thin Film Materials for Room Temperature Quantum Applications","authors":"Farhana Anwar;Rafee Mahbub;Ronald A. Coutu","doi":"10.1109/TQE.2023.3322342","DOIUrl":"https://doi.org/10.1109/TQE.2023.3322342","url":null,"abstract":"Thin films with quantum defects are emerging as a potential platform for quantum applications. Quantum defects in some thin films arise due to structural imperfections, such as vacancies or impurities. These defects generate localized electronic states with unique optical and electronic properties. Crystal vacancies or defects that occur when atoms are missing from a crystal lattice can influence a material's quantum properties. In this study, we investigated inexpensive, complementary metal oxide semiconductor compatible materials with quantum defects suitable for room temperature applications. The experiments indicated 5, 15, and 17 ns relaxation times for aluminum nitride, aluminum oxide or alumina, and tin oxides, respectively. For all these materials, distinct resonant peaks are observed at approximately 1.1, 1.6, 2.2, and 2.7 GHz at room temperature (i.e., 21 °C). These peaks exhibit slight frequency shifts, corresponding to known defect locations and thin film material properties. This discovery may lead the way to reliable, cost-effective quantum applications in our daily lives.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10273435","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1109/TQE.2023.3319254
Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob
This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.
{"title":"Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach","authors":"Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob","doi":"10.1109/TQE.2023.3319254","DOIUrl":"https://doi.org/10.1109/TQE.2023.3319254","url":null,"abstract":"This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10269064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109229889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1109/TQE.2023.3319270
Samuel H. Knarr;Victor G. Bucklew;Jerrod Langston;Kevin C. Cox;Joshua C. Hill;David H. Meyer;James A. Drakes
Rydberg states of alkali atoms, where the outer valence electron is excited to high principal quantum numbers, have large electric dipole moments allowing them to be used as sensitive, wideband, electric field sensors. These sensors use electromagnetically induced transparency (EIT) to measure incident electric fields. The characteristic timescale necessary to establish EIT determines the effective speed at which the atoms respond to time-varying radio frequency (RF) radiation. Previous studies have predicted that this EIT relaxation rate causes a performance rolloff in EIT-based sensors beginning at an RF data symbol rate of less than 10 MHz. Here, we propose an architecture for increasing the response speed of Rydberg sensors to greater than 100 MHz, through spatiotemporal multiplexing (STM) of the probe laser. We present experimental results validating the architecture's temporal multiplexing component using a pulsed laser. We benchmark a numerical model of the sensor to these experimental data and use the model to predict the STM sensor's performance as an RF communications receiver. For an on