Pub Date : 2024-04-23DOI: 10.1109/TQE.2024.3392834
David Winderl;Nicola Franco;Jeanette Miriam Lorenz
Variational quantum optimization algorithms, such as the variational quantum eigensolver (VQE) or the quantum approximate optimization algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on the VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding the problem into the variational ansatz and propose a classical optimization procedure to find the ground state of the ansatz in fewer iterations with a better or similar objective. In addition, we propose a method to embed the linear interpolation of the MaxCut problem on a quantum device. Furthermore, we compare classical optimizers for this variational ansatz on quadratic unconstrained binary optimization and graph partitioning problems.
{"title":"A Comparative Study on Solving Optimization Problems With Exponentially Fewer Qubits","authors":"David Winderl;Nicola Franco;Jeanette Miriam Lorenz","doi":"10.1109/TQE.2024.3392834","DOIUrl":"https://doi.org/10.1109/TQE.2024.3392834","url":null,"abstract":"Variational quantum optimization algorithms, such as the variational quantum eigensolver (VQE) or the quantum approximate optimization algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on the VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding the problem into the variational ansatz and propose a classical optimization procedure to find the ground state of the ansatz in fewer iterations with a better or similar objective. In addition, we propose a method to embed the linear interpolation of the MaxCut problem on a quantum device. Furthermore, we compare classical optimizers for this variational ansatz on quadratic unconstrained binary optimization and graph partitioning problems.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal $1 rightarrow M$