Pub Date : 2024-06-24DOI: 10.1109/TQE.2024.3418094
André Sequeira;Luis Paulo Santos;Luis Soares Barbosa
This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, is less clear. Through a detailed analysis of Löwner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general, it is not superior to classical FIM preconditioning.
本文深入探讨了量子费雪信息矩阵(FIM)在提高基于参数化量子电路(PQC)的强化学习代理性能方面的作用。以往的研究强调了基于参数量子电路的策略以量子费雪信息矩阵为前提条件在情境匪帮中的有效性,但其在更广泛的强化学习环境(如马尔可夫决策过程)中的影响却不太明确。通过详细分析量子和经典 FIM 之间的洛纳不等式,本研究揭示了使用每种 FIM 的细微区别和影响。我们的研究结果表明,与经典 FIM 相比,基于 PQC 的代理在使用量子 FIM 时,如果没有额外的洞察力,通常会产生更大的近似误差,并且不能保证性能的提高。经典控制基准中的经验评估表明,尽管量子 FIM 预处理优于标准梯度上升,但总体而言,它并不优于经典 FIM 预处理。
{"title":"On Quantum Natural Policy Gradients","authors":"André Sequeira;Luis Paulo Santos;Luis Soares Barbosa","doi":"10.1109/TQE.2024.3418094","DOIUrl":"https://doi.org/10.1109/TQE.2024.3418094","url":null,"abstract":"This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, is less clear. Through a detailed analysis of Löwner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general, it is not superior to classical FIM preconditioning.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10569042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sapphire substrates have recently been recognized for their potential to improve the coherence time of superconducting qubits. However, due to challenges in via fabrication, silicon substrates have been predominantly used for qubits. In this study, we fabricated vias on sapphire substrates using lasers and deposited TiN films by chemical vapor deposition. Cross-sectional views of the via confirmed uniform thickness of the TiN film along the via wall. In addition, the TiN film exhibited a superconducting transition at 4.5 K, demonstrating the successful deposition of a high-quality homogeneous superconducting film. This represents the first example of realizing superconducting through-substrate vias on sapphire substrates, a crucial first step toward achieving the 3-D integration of qubits while maintaining coherence time.
蓝宝石衬底最近被认为具有改善超导量子比特相干时间的潜力。然而,由于通孔制作方面的挑战,硅衬底一直是量子比特的主要使用材料。在这项研究中,我们利用激光在蓝宝石基底上制作了通孔,并通过化学气相沉积沉积了 TiN 薄膜。通孔的横截面图证实,TiN 薄膜沿通孔壁的厚度均匀一致。此外,TiN 薄膜在 4.5 K 时出现了超导转变,证明成功沉积了高质量的均匀超导薄膜。这是在蓝宝石衬底上实现超导通孔的首个实例,是实现量子位三维集成并保持相干时间的关键第一步。
{"title":"Superconducting Through-Substrate Vias on Sapphire Substrates for Quantum Circuits","authors":"Kiyotaka Mukasa;Yusuke Nuruki;Hayato Kubo;Yoshihide Narahara;Motohiro Umehara;Kazuyuki Fujie","doi":"10.1109/TQE.2024.3416963","DOIUrl":"https://doi.org/10.1109/TQE.2024.3416963","url":null,"abstract":"Sapphire substrates have recently been recognized for their potential to improve the coherence time of superconducting qubits. However, due to challenges in via fabrication, silicon substrates have been predominantly used for qubits. In this study, we fabricated vias on sapphire substrates using lasers and deposited TiN films by chemical vapor deposition. Cross-sectional views of the via confirmed uniform thickness of the TiN film along the via wall. In addition, the TiN film exhibited a superconducting transition at 4.5 K, demonstrating the successful deposition of a high-quality homogeneous superconducting film. This represents the first example of realizing superconducting through-substrate vias on sapphire substrates, a crucial first step toward achieving the 3-D integration of qubits while maintaining coherence time.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1109/TQE.2024.3416836
Luc Enthoven;Masoud Babaie;Fabio Sebastiano
Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum computing platforms, the electrical interface required to control and read out such qubits may limit both the performance of the whole system and its scalability. To address this challenge, this work analyzes the requirements of the electrical interface and investigates how to efficiently implement the electronic controller in a scalable architecture comprising a large number of identical unit cells. Among the different discussed functionalities, a specific focus is devoted to the generation of the static and dynamic magnetic fields driving the electron and nuclear spins, because of their major impact on fidelity and scalability. Following the derived requirements, different system architectures, such as a qubit frequency-multiplexing scheme, are considered to identify the most power efficient approach, especially in the presence of inhomogeneity of the qubit Larmor frequency across the processor. As a result, a non-frequency-multiplexed 1- $,mathrm{m}mathrm{m}^{2}$