首页 > 最新文献

Mechanobiology in Medicine最新文献

英文 中文
The effects of matrix stiffness on immune cells in bone biology 骨生物学中基质硬度对免疫细胞的影响
Pub Date : 2024-02-22 DOI: 10.1016/j.mbm.2024.100046
Ting Jiang , Meng-Ting Zheng , Ruo-Mei Li , Ning-Juan Ouyang

Bone and immune cells typically inhabit the same microenvironment and engage in mutual interactions to collectively execute the functions of the “osteoimmune system.” Establishing a harmonized and enduring osteoimmune system significantly enhances bone regeneration, necessitating the maintenance of bone and immune homeostasis. Recently, mechanobiology has garnered increasing interest in bone tissue engineering, with matrix stiffness emerging as a crucial parameter that has been extensively investigated. The effect of matrix stiffness on bone homeostasis remains relatively clear. Soft substrates tend to significantly affect the chondrogenic differentiation of bone marrow mesenchymal stem cells, whereas increasing matrix stiffness is advantageous for osteogenic differentiation. Increased stiffness increases osteoclast differentiation and activity. Additionally, there is increasing emphasis on immune homeostasis, which necessitates dynamic communication between immune cells. Immune cells are crucial in initiating bone regeneration and driving early inflammatory responses. Functional changes induced by matrix stiffness are pivotal for determining the outcomes of engineered tissue mimics. However, inconsistent and incomparable findings regarding the responses of different immune cells to matrix stiffness can be perplexing owing to variations in the stiffness range, measurement methods, and other factors. Therefore, this study aimed to provide a comprehensive review of the specific effects of matrix stiffness on diverse immune cells, with a particular focus on its implications for bone regeneration, which would offer theoretical insights into the treatment of large segmental bony defects and assist in the clinical development of new engineering strategies.

骨细胞和免疫细胞通常居住在同一微环境中,并相互影响,共同执行 "骨免疫系统 "的功能。建立一个和谐持久的骨免疫系统能显著促进骨再生,因此必须维持骨和免疫的平衡。近来,机械生物学在骨组织工程中引起了越来越多的关注,基质硬度作为一个关键参数受到了广泛研究。基质硬度对骨稳态的影响仍然相对明确。软基质往往会严重影响骨髓间充质干细胞的软骨分化,而增加基质硬度则有利于成骨分化。增加硬度会增加破骨细胞的分化和活性。此外,人们越来越重视免疫平衡,这就需要免疫细胞之间进行动态交流。免疫细胞在启动骨再生和驱动早期炎症反应方面至关重要。基质硬度引起的功能变化是决定工程组织模拟结果的关键。然而,由于基质硬度范围、测量方法和其他因素的不同,关于不同免疫细胞对基质硬度反应的研究结果不一致且不可比,这可能会令人困惑。因此,本研究旨在全面综述基质硬度对不同免疫细胞的具体影响,尤其关注其对骨再生的影响,这将为大段骨缺损的治疗提供理论依据,并有助于新工程策略的临床开发。
{"title":"The effects of matrix stiffness on immune cells in bone biology","authors":"Ting Jiang ,&nbsp;Meng-Ting Zheng ,&nbsp;Ruo-Mei Li ,&nbsp;Ning-Juan Ouyang","doi":"10.1016/j.mbm.2024.100046","DOIUrl":"10.1016/j.mbm.2024.100046","url":null,"abstract":"<div><p>Bone and immune cells typically inhabit the same microenvironment and engage in mutual interactions to collectively execute the functions of the “osteoimmune system.” Establishing a harmonized and enduring osteoimmune system significantly enhances bone regeneration, necessitating the maintenance of bone and immune homeostasis. Recently, mechanobiology has garnered increasing interest in bone tissue engineering, with matrix stiffness emerging as a crucial parameter that has been extensively investigated. The effect of matrix stiffness on bone homeostasis remains relatively clear. Soft substrates tend to significantly affect the chondrogenic differentiation of bone marrow mesenchymal stem cells, whereas increasing matrix stiffness is advantageous for osteogenic differentiation. Increased stiffness increases osteoclast differentiation and activity. Additionally, there is increasing emphasis on immune homeostasis, which necessitates dynamic communication between immune cells. Immune cells are crucial in initiating bone regeneration and driving early inflammatory responses. Functional changes induced by matrix stiffness are pivotal for determining the outcomes of engineered tissue mimics. However, inconsistent and incomparable findings regarding the responses of different immune cells to matrix stiffness can be perplexing owing to variations in the stiffness range, measurement methods, and other factors. Therefore, this study aimed to provide a comprehensive review of the specific effects of matrix stiffness on diverse immune cells, with a particular focus on its implications for bone regeneration, which would offer theoretical insights into the treatment of large segmental bony defects and assist in the clinical development of new engineering strategies.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 2","pages":"Article 100046"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000093/pdfft?md5=32830fd5ccb0440aa455483d1f52a402&pid=1-s2.0-S2949907024000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140465958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanics of serotonin-producing human entero-endocrine cells 分泌羟色胺的人类肠内分泌细胞的机理
Pub Date : 2024-02-08 DOI: 10.1016/j.mbm.2024.100044
Tom M.J. Evers , Joep Beumer , Hans Clevers , Alireza Mashaghi

The gastrointestinal (GI) tract's primary role is food digestion, relying on coordinated fluid secretion and bowel movements triggered by mechanosensation. Enteroendocrine cells (EECs) are specialized mechanosensitive cells that convert mechanical forces into electrochemical signals, culminating in serotonin release to regulate GI motility. Despite their pivotal role, knowledge of EEC mechanical properties has been lacking due to their rarity and limited accessibility. In this brief report, we present the first single-cell mechanical characterization of human ECCs isolated from healthy intestinal organoids. Using single-cell optical tweezers, we measured EEC stiffness profiles at the physiological temperature and investigated changes following tryptophan metabolism inhibition. Our findings not only shed light on EEC mechanics but also highlight the potential of adult stem cell-derived organoids for studying these elusive cells.

胃肠道(GI)的主要作用是消化食物,依靠协调的液体分泌和机械感引发的肠道运动。肠内分泌细胞(EECs)是特化的机械敏感细胞,可将机械力转化为电化学信号,最终释放血清素来调节胃肠道蠕动。尽管 EEC 起着举足轻重的作用,但由于其稀有性和有限的可及性,有关其机械特性的知识一直很匮乏。在这篇简短的报告中,我们首次对从健康肠道器官组织中分离出来的人类 ECCs 进行了单细胞机械特性分析。利用单细胞光学镊子,我们测量了生理温度下 EEC 的硬度曲线,并研究了色氨酸代谢抑制后的变化。我们的研究结果不仅揭示了EEC的力学,还凸显了成体干细胞衍生的器官组织在研究这些难以捉摸的细胞方面的潜力。
{"title":"Mechanics of serotonin-producing human entero-endocrine cells","authors":"Tom M.J. Evers ,&nbsp;Joep Beumer ,&nbsp;Hans Clevers ,&nbsp;Alireza Mashaghi","doi":"10.1016/j.mbm.2024.100044","DOIUrl":"10.1016/j.mbm.2024.100044","url":null,"abstract":"<div><p>The gastrointestinal (GI) tract's primary role is food digestion, relying on coordinated fluid secretion and bowel movements triggered by mechanosensation. Enteroendocrine cells (EECs) are specialized mechanosensitive cells that convert mechanical forces into electrochemical signals, culminating in serotonin release to regulate GI motility. Despite their pivotal role, knowledge of EEC mechanical properties has been lacking due to their rarity and limited accessibility. In this brief report, we present the first single-cell mechanical characterization of human ECCs isolated from healthy intestinal organoids. Using single-cell optical tweezers, we measured EEC stiffness profiles at the physiological temperature and investigated changes following tryptophan metabolism inhibition. Our findings not only shed light on EEC mechanics but also highlight the potential of adult stem cell-derived organoids for studying these elusive cells.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 2","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294990702400007X/pdfft?md5=7e7a84b1d3091d22eb0e704bba9d73c7&pid=1-s2.0-S294990702400007X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139873958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanotransduction in distinct F-actin architectures: a novel molecular tension sensor revealing cellular mechanical anisotropy 不同 F-肌动蛋白结构中的机械传导:揭示细胞机械各向异性的新型分子张力传感器
Pub Date : 2024-02-06 DOI: 10.1016/j.mbm.2024.100045
Ting Liang, Bin Li

Mechanotransduction is essential for cell fate and behavior, and F-actin plays a key role in the generation and transmission of molecular forces. A recent study published in Nature Communication presented a novel high-precision molecular tension measurement method using a Förster resonance energy transfer–based tension sensor with separated load-bearing function within distinct F-actin structures, and demonstrated that cellular mechanical anisotropy depends on cell shape, loading direction, and magnitude.

机械传导对细胞的命运和行为至关重要,而 F-肌动蛋白在分子力的产生和传递中起着关键作用。最近发表在《自然-通讯》(Nature Communication)上的一项研究介绍了一种新型高精度分子张力测量方法,该方法使用了基于佛斯特共振能量转移的张力传感器,该传感器在不同的 F-actin 结构中具有分离的承载功能,并证明细胞机械各向异性取决于细胞形状、加载方向和幅度。
{"title":"Mechanotransduction in distinct F-actin architectures: a novel molecular tension sensor revealing cellular mechanical anisotropy","authors":"Ting Liang,&nbsp;Bin Li","doi":"10.1016/j.mbm.2024.100045","DOIUrl":"10.1016/j.mbm.2024.100045","url":null,"abstract":"<div><p>Mechanotransduction is essential for cell fate and behavior, and F-actin plays a key role in the generation and transmission of molecular forces. A recent study published in <em>Nature Communication</em> presented a novel high-precision molecular tension measurement method using a Förster resonance energy transfer–based tension sensor with separated load-bearing function within distinct F-actin structures, and demonstrated that cellular mechanical anisotropy depends on cell shape, loading direction, and magnitude.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000081/pdfft?md5=bf931c2754476d0bbf59edb231c0f974&pid=1-s2.0-S2949907024000081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanotransduction in subchondral bone microenvironment and targeted interventions for osteoarthritis 软骨下骨微环境中的机制传导和骨关节炎的靶向干预措施
Pub Date : 2024-02-05 DOI: 10.1016/j.mbm.2024.100043
Rui Feng , Wenhui Hu , Yuheng Li , Xuan Yao , Jianmei Li , Xiaoming Li , Jing Zhang , Yu Wu , Fei Kang , Shiwu Dong

Osteoarthritis (OA) is a progressive degenerative joint sickness related with mechanics, obesity, ageing, etc., mainly characterized by cartilage degeneration, subchondral bone damage and synovium inflammation. Coordinated mechanical absorption and conduction of the joint play significant roles in the prevalence and development of OA. Subchondral bone is generally considered a load-burdening tissue where mechanosensitive cells are resident, including osteocytes, osteoblast lineage cells, and osteoclast lineage cells (especially less concerned in mechanical studies). Mechano-signaling imbalances affect complicated cellular events and disorders of subchondral bone homeostasis. This paper will focus on the significance of mechanical force as the pathogenesis, involvement of various mechanical force patterns in mechanosensitive cells, and mechanobiology research of loading devices in vitro and in vivo, which are further discussed. Additionally, various mechanosensing structures (e.g., transient receptor potential channels, gap junctions, primary cilia, podosome-associated complexes, extracellular vesicles) and mechanotransduction signaling pathways (e.g., Ca2+ signaling, Wnt/β-catenin, RhoA GTPase, focal adhesion kinase, cotranscriptional activators YAP/TAZ) in mechanosensitive bone cells. Finally, we highlight potential targets for improving mechanoprotection in the treatment of OA. These advances furnish an integration of mechanical regulation of subchondral bone homeostasis, as well as OA therapeutic approaches by modulating mechanical homeostasis.

骨关节炎(OA)是一种进行性退行性关节疾病,与力学、肥胖、衰老等因素有关,主要特征是软骨退化、软骨下骨损伤和滑膜炎症。关节协调的机械吸收和传导在 OA 的流行和发展中起着重要作用。软骨下骨通常被认为是一种负载负担组织,其中驻留着对机械敏感的细胞,包括骨细胞、成骨细胞系细胞和破骨细胞系细胞(尤其在机械研究中较少关注)。机械信号转导失衡会影响复杂的细胞事件和软骨下骨稳态失调。本文将重点讨论机械力作为发病机制的意义、各种机械力模式在机械敏感细胞中的参与,以及体外和体内加载装置的机械生物学研究。此外,我们还讨论了机械敏感性骨细胞中的各种机械传感结构(如瞬时受体电位通道、间隙连接、初级纤毛、荚膜相关复合物、细胞外囊泡)和机械传导信号通路(如 Ca2+ 信号、Wnt/β-catenin、RhoA GTPase、病灶粘附激酶、共转录激活剂 YAP/TAZ)。最后,我们强调了在治疗 OA 时改善机械保护的潜在靶点。这些进展整合了软骨下骨稳态的机械调控以及通过调节机械稳态治疗 OA 的方法。
{"title":"Mechanotransduction in subchondral bone microenvironment and targeted interventions for osteoarthritis","authors":"Rui Feng ,&nbsp;Wenhui Hu ,&nbsp;Yuheng Li ,&nbsp;Xuan Yao ,&nbsp;Jianmei Li ,&nbsp;Xiaoming Li ,&nbsp;Jing Zhang ,&nbsp;Yu Wu ,&nbsp;Fei Kang ,&nbsp;Shiwu Dong","doi":"10.1016/j.mbm.2024.100043","DOIUrl":"10.1016/j.mbm.2024.100043","url":null,"abstract":"<div><p>Osteoarthritis (OA) is a progressive degenerative joint sickness related with mechanics, obesity, ageing, <em>etc</em>., mainly characterized by cartilage degeneration, subchondral bone damage and synovium inflammation. Coordinated mechanical absorption and conduction of the joint play significant roles in the prevalence and development of OA. Subchondral bone is generally considered a load-burdening tissue where mechanosensitive cells are resident, including osteocytes, osteoblast lineage cells, and osteoclast lineage cells (especially less concerned in mechanical studies). Mechano-signaling imbalances affect complicated cellular events and disorders of subchondral bone homeostasis. This paper will focus on the significance of mechanical force as the pathogenesis, involvement of various mechanical force patterns in mechanosensitive cells, and mechanobiology research of loading devices <em>in vitro</em> and <em>in vivo</em>, which are further discussed. Additionally, various mechanosensing structures (<em>e.g</em>., transient receptor potential channels, gap junctions, primary cilia, podosome-associated complexes, extracellular vesicles) and mechanotransduction signaling pathways (<em>e.g</em>., Ca<sup>2+</sup> signaling, Wnt/β-catenin, RhoA GTPase, focal adhesion kinase, cotranscriptional activators YAP/TAZ) in mechanosensitive bone cells. Finally, we highlight potential targets for improving mechanoprotection in the treatment of OA. These advances furnish an integration of mechanical regulation of subchondral bone homeostasis, as well as OA therapeutic approaches by modulating mechanical homeostasis.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 2","pages":"Article 100043"},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000068/pdfft?md5=2456e3a7b55c2a6f548d64379791d3e8&pid=1-s2.0-S2949907024000068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139817437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical impact on biomineralization: Enhancing the strength of composite materials 机械对生物矿化的影响:增强复合材料的强度
Pub Date : 2024-02-02 DOI: 10.1016/j.mbm.2024.100042
Xufeng Niu , Chunyang Ma , Yubo Fan

A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react, forming Zn/S mineral microrods within an organogel. These microrods selectively reinforce synthetic polymer composites, offering a unique approach to material strengthening. The method provides a distinctive pathway for mechanical mineralization in composite materials.

最近发表在《自然-通讯》(Nature Communications)上的一项研究介绍了一种新颖的机械介导反应,其中涉及氧化锌纳米粒子的自主反应,在有机凝胶中形成 Zn/S 矿物微晶。这些微晶可选择性地加固合成聚合物复合材料,为材料加固提供了一种独特的方法。这种方法为复合材料的机械矿化提供了一种独特的途径。
{"title":"Mechanical impact on biomineralization: Enhancing the strength of composite materials","authors":"Xufeng Niu ,&nbsp;Chunyang Ma ,&nbsp;Yubo Fan","doi":"10.1016/j.mbm.2024.100042","DOIUrl":"https://doi.org/10.1016/j.mbm.2024.100042","url":null,"abstract":"<div><p>A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react, forming Zn/S mineral microrods within an organogel. These microrods selectively reinforce synthetic polymer composites, offering a unique approach to material strengthening. The method provides a distinctive pathway for mechanical mineralization in composite materials.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100042"},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000056/pdfft?md5=c47df0d8e24d3f9e5042823d5f466916&pid=1-s2.0-S2949907024000056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139709567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanobiology of Type 1 hypersensitivity: Elucidating the impacts of mechanical forces in allergic reactions 1 型超敏反应的机械生物学:阐明过敏反应中机械力的影响
Pub Date : 2024-02-01 DOI: 10.1016/j.mbm.2024.100041
Henry Sutanto

Type 1 hypersensitivity involves an exaggerated immune reaction triggered by allergen exposure, leading to rapid release of inflammatory mediators. Meanwhile, mechanobiology explores how physical forces influence cellular processes, and recent research underscores its relevance in allergic reactions. This review provides a concise overview of Type 1 hypersensitivity, highlighting the pivotal role of mast cells and immunoglobulin E (IgE) antibodies in orchestrating allergic reactions. Recognizing the dynamic nature of cellular responses in allergies, this study subsequently delves into the emerging field of mechanobiology and its significance in understanding the mechanical forces governing immune cell behavior. Furthermore, molecular forces during mast cell activation and degranulation are explored, elucidating the mechanical aspects of IgE binding and cytoskeletal rearrangements. Next, we discuss the intricate interplay between immune cells and the extracellular matrix, emphasizing the impact of matrix stiffness on cellular responses. Additionally, we examine key mechanosensitive signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway, Rho guanosine triphosphatase (GTPase) and integrin-mediated focal adhesion signaling, shedding light on their contributions to hypersensitivity reactions. This interplay of mechanobiology and Type 1 hypersensitivity provides insights into potential therapeutic targets and biomarkers, paving the way for better clinical management of Type 1 hypersensitivity reactions.

1 型超敏反应是指接触过敏原后引发的过度免疫反应,导致炎症介质的快速释放。同时,机械生物学探讨了物理力如何影响细胞过程,最新研究强调了机械生物学与过敏反应的相关性。本综述简要概述了 1 型超敏反应,强调了肥大细胞和免疫球蛋白 E (IgE) 抗体在协调过敏反应中的关键作用。由于认识到过敏中细胞反应的动态性质,本研究随后深入探讨了新兴的机械生物学领域及其在理解支配免疫细胞行为的机械力方面的意义。此外,我们还探讨了肥大细胞活化和脱颗粒过程中的分子力,阐明了 IgE 结合和细胞骨架重排的机械方面。接下来,我们讨论了免疫细胞与细胞外基质之间错综复杂的相互作用,强调了基质硬度对细胞反应的影响。此外,我们还研究了关键的机械敏感信号通路,包括丝裂原活化蛋白激酶(MAPK)通路、Rho鸟苷三磷酸酶(GTPase)和整合素介导的病灶粘附信号,揭示了它们对超敏反应的贡献。机械生物学与 1 型超敏反应的相互作用为潜在的治疗目标和生物标记物提供了见解,为更好地临床管理 1 型超敏反应铺平了道路。
{"title":"Mechanobiology of Type 1 hypersensitivity: Elucidating the impacts of mechanical forces in allergic reactions","authors":"Henry Sutanto","doi":"10.1016/j.mbm.2024.100041","DOIUrl":"https://doi.org/10.1016/j.mbm.2024.100041","url":null,"abstract":"<div><p>Type 1 hypersensitivity involves an exaggerated immune reaction triggered by allergen exposure, leading to rapid release of inflammatory mediators. Meanwhile, mechanobiology explores how physical forces influence cellular processes, and recent research underscores its relevance in allergic reactions. This review provides a concise overview of Type 1 hypersensitivity, highlighting the pivotal role of mast cells and immunoglobulin E (IgE) antibodies in orchestrating allergic reactions. Recognizing the dynamic nature of cellular responses in allergies, this study subsequently delves into the emerging field of mechanobiology and its significance in understanding the mechanical forces governing immune cell behavior. Furthermore, molecular forces during mast cell activation and degranulation are explored, elucidating the mechanical aspects of IgE binding and cytoskeletal rearrangements. Next, we discuss the intricate interplay between immune cells and the extracellular matrix, emphasizing the impact of matrix stiffness on cellular responses. Additionally, we examine key mechanosensitive signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway, Rho guanosine triphosphatase (GTPase) and integrin-mediated focal adhesion signaling, shedding light on their contributions to hypersensitivity reactions. This interplay of mechanobiology and Type 1 hypersensitivity provides insights into potential therapeutic targets and biomarkers, paving the way for better clinical management of Type 1 hypersensitivity reactions.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100041"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000044/pdfft?md5=adfe1fafbdc05ac9316b2a18d7522f69&pid=1-s2.0-S2949907024000044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in modeling cellular mechanical perceptions and responses via the membrane-cytoskeleton-nucleus machinery 通过膜-细胞骨架-细胞核机制建立细胞机械感知和响应模型的研究进展
Pub Date : 2024-01-26 DOI: 10.1016/j.mbm.2024.100040
Hongyuan Zhu , Run Miao , Jin Wang , Min Lin

Mechanical models offer a quantitative framework for understanding scientific problems, predicting novel phenomena, and guiding experimental designs. Over the past few decades, the emerging field of cellular mechanobiology has greatly benefited from the substantial contributions of new theoretical tools grounded in mechanical models. Within the expansive realm of mechanobiology, the investigation of how cells sense and respond to their microenvironment has become a prominent research focus. There is a growing acknowledgment that cells mechanically interact with their external surroundings through an integrated machinery encompassing the cell membrane, cytoskeleton, and nucleus. This review provides a comprehensive overview of mechanical models addressing three pivotal components crucial for force transmission within cells, extending from mechanosensitive receptors on the cell membrane to the actomyosin cytoskeleton and ultimately to the nucleus. We present the existing numerical relationships that form the basis for understanding the structures, mechanical properties, and functions of these components. Additionally, we underscore the significance of developing mechanical models in advancing cellular mechanobiology and propose potential directions for the evolution of these models.

力学模型为理解科学问题、预测新现象和指导实验设计提供了一个定量框架。在过去的几十年里,以机械模型为基础的新理论工具为细胞机械生物学这一新兴领域做出了巨大贡献,使其受益匪浅。在广阔的机械生物学领域,研究细胞如何感知和响应其微环境已成为一个突出的研究重点。越来越多的人认识到,细胞通过包括细胞膜、细胞骨架和细胞核在内的综合机制与其外部环境进行机械互动。从细胞膜上的机械敏感受体到肌动蛋白细胞骨架,最终到细胞核,机械模型对细胞内力传递的三个关键部分进行了全面概述。我们介绍了现有的数值关系,这些数值关系是理解这些成分的结构、机械特性和功能的基础。此外,我们还强调了建立机械模型对推动细胞机械生物学发展的重要意义,并提出了这些模型发展的潜在方向。
{"title":"Advances in modeling cellular mechanical perceptions and responses via the membrane-cytoskeleton-nucleus machinery","authors":"Hongyuan Zhu ,&nbsp;Run Miao ,&nbsp;Jin Wang ,&nbsp;Min Lin","doi":"10.1016/j.mbm.2024.100040","DOIUrl":"10.1016/j.mbm.2024.100040","url":null,"abstract":"<div><p>Mechanical models offer a quantitative framework for understanding scientific problems, predicting novel phenomena, and guiding experimental designs. Over the past few decades, the emerging field of cellular mechanobiology has greatly benefited from the substantial contributions of new theoretical tools grounded in mechanical models. Within the expansive realm of mechanobiology, the investigation of how cells sense and respond to their microenvironment has become a prominent research focus. There is a growing acknowledgment that cells mechanically interact with their external surroundings through an integrated machinery encompassing the cell membrane, cytoskeleton, and nucleus. This review provides a comprehensive overview of mechanical models addressing three pivotal components crucial for force transmission within cells, extending from mechanosensitive receptors on the cell membrane to the actomyosin cytoskeleton and ultimately to the nucleus. We present the existing numerical relationships that form the basis for understanding the structures, mechanical properties, and functions of these components. Additionally, we underscore the significance of developing mechanical models in advancing cellular mechanobiology and propose potential directions for the evolution of these models.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100040"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000032/pdfft?md5=9cc9bc2134b458ce7ef7620179555ecf&pid=1-s2.0-S2949907024000032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139639812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substrate topography affects PC12 cell differentiation through mechanotransduction mechanisms 基底形貌通过机械传导机制影响 PC12 细胞分化
Pub Date : 2024-01-24 DOI: 10.1016/j.mbm.2024.100039
Lina Papadimitriou , Anna Karagiannaki , Emmanuel Stratakis , Anthi Ranella

Neural stem cells in vivo receive information from biochemical and biophysical cues of their microenvironment that affect their survival, proliferation and differentiation toward specific lineages. Recapitulation of these conditions in vitro is better achieved in 3D cell cultures. Especially the cells that grow in scaffold-dependent 3D cultures establish more complex cell–cell and cell–material interactions enabling the study of the various signaling pathways. The biochemical signaling from growth factors and hormones has been extensively studied over the years. More recently cumulative evidence demonstrates that cell sensing and response to mechanical stimuli is mediated through mechanotransduction pathways. Although individual signaling pathways activated by biochemical or mechanical cues in cells are well-studied, synergistic or antagonistic effects among them need further research to be fully understood. The understanding of the alteration of the cell behavior due to a microenvironmental cues would be greatly enhanced by the study of key elements that lie in the convergence of biochemical and mechanical pathways. Here we analyzed the effect of the substrate topography on the nerve growth factor (NGF) induced differentiation of PC12 cells. Our results showed that the topography interferes with NGF-induced neuronal differentiation and this is reflected in the reduced activation of the integrin-mediated mechanotransduction.

体内的神经干细胞从其微环境的生物化学和生物物理线索中接收信息,这些信息影响着它们的存活、增殖和向特定系的分化。在三维细胞培养物中可以更好地在体外重现这些条件。尤其是在依赖支架的三维培养物中生长的细胞,会建立更复杂的细胞-细胞和细胞-材料之间的相互作用,从而能够研究各种信号通路。多年来,人们对来自生长因子和激素的生化信号进行了广泛研究。最近积累的证据表明,细胞对机械刺激的感应和反应是通过机械传导途径介导的。尽管对细胞中由生化或机械线索激活的单个信号通路进行了深入研究,但它们之间的协同或拮抗作用还需要进一步研究才能充分了解。通过研究生化和机械通路交汇的关键因素,将大大加深对微环境线索导致细胞行为改变的理解。在这里,我们分析了基底地形对神经生长因子(NGF)诱导的 PC12 细胞分化的影响。我们的研究结果表明,地形会干扰 NGF 诱导的神经元分化,这反映在整合素介导的机械传导激活减少上。
{"title":"Substrate topography affects PC12 cell differentiation through mechanotransduction mechanisms","authors":"Lina Papadimitriou ,&nbsp;Anna Karagiannaki ,&nbsp;Emmanuel Stratakis ,&nbsp;Anthi Ranella","doi":"10.1016/j.mbm.2024.100039","DOIUrl":"10.1016/j.mbm.2024.100039","url":null,"abstract":"<div><p>Neural stem cells <em>in vivo</em> receive information from biochemical and biophysical cues of their microenvironment that affect their survival, proliferation and differentiation toward specific lineages. Recapitulation of these conditions <em>in vitro</em> is better achieved in 3D cell cultures. Especially the cells that grow in scaffold-dependent 3D cultures establish more complex cell–cell and cell–material interactions enabling the study of the various signaling pathways. The biochemical signaling from growth factors and hormones has been extensively studied over the years. More recently cumulative evidence demonstrates that cell sensing and response to mechanical stimuli is mediated through mechanotransduction pathways. Although individual signaling pathways activated by biochemical or mechanical cues in cells are well-studied, synergistic or antagonistic effects among them need further research to be fully understood. The understanding of the alteration of the cell behavior due to a microenvironmental cues would be greatly enhanced by the study of key elements that lie in the convergence of biochemical and mechanical pathways. Here we analyzed the effect of the substrate topography on the nerve growth factor (NGF) induced differentiation of PC12 cells. Our results showed that the topography interferes with NGF-induced neuronal differentiation and this is reflected in the reduced activation of the integrin-mediated mechanotransduction.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100039"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000020/pdfft?md5=be7ebdbcd5a269d3f2d18d7fc317d4a6&pid=1-s2.0-S2949907024000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical modeling of cell chirality and symmetry breaking of biological systems 细胞手性和生物系统对称性破坏的生物力学建模
Pub Date : 2024-01-05 DOI: 10.1016/j.mbm.2024.100038
Tasnif Rahman , Frank D. Peters , Leo Q. Wan

Accumulating evidence strongly suggests that cell chirality plays a pivotal role in driving left-right (LR) symmetry breaking, a widespread phenomenon in living organisms. Whole embryos and excised organs have historically been employed to investigate LR symmetry breaking and have yielded exciting findings. In recent years, in vitro engineered platforms have emerged as powerful tools to reveal cellular chiral biases and led to uncovering molecular and biophysical insights into chiral morphogenesis, including the significant role of the actin cytoskeleton. Establishing a link between observed in vivo tissue chiral morphogenesis and the determined chiral bias of cells in vitro has become increasingly important. In this regard, computational mathematical models hold immense value as they can explain and predict tissue morphogenic behavior based on the chiral biases of individual cells. Here, we present the formulations and discoveries achieved using various computational models spanning different biological scales, from the molecular and cellular levels to tissue and organ levels. Furthermore, we offer insights into future directions and the role of such models in advancing the study of asymmetric cellular mechanobiology.

越来越多的证据有力地表明,细胞手性在驱动左右对称破缺(LR)方面起着关键作用,而左右对称破缺是生物体内的一种普遍现象。整个胚胎和切除的器官历来被用来研究左右对称破缺,并取得了令人兴奋的发现。近年来,体外工程平台已成为揭示细胞手性偏向的有力工具,并揭示了手性形态发生的分子和生物物理观点,包括肌动蛋白细胞骨架的重要作用。在观察到的体内组织手性形态发生与确定的体外细胞手性偏向之间建立联系变得越来越重要。在这方面,计算数学模型具有巨大的价值,因为它们可以根据单个细胞的手性偏向来解释和预测组织的形态发生行为。在此,我们将介绍从分子和细胞水平到组织和器官水平等不同生物尺度的各种计算模型的建立和发现。此外,我们还深入探讨了此类模型在推进非对称细胞机械生物学研究中的未来方向和作用。
{"title":"Biomechanical modeling of cell chirality and symmetry breaking of biological systems","authors":"Tasnif Rahman ,&nbsp;Frank D. Peters ,&nbsp;Leo Q. Wan","doi":"10.1016/j.mbm.2024.100038","DOIUrl":"10.1016/j.mbm.2024.100038","url":null,"abstract":"<div><p>Accumulating evidence strongly suggests that cell chirality plays a pivotal role in driving left-right (LR) symmetry breaking, a widespread phenomenon in living organisms. Whole embryos and excised organs have historically been employed to investigate LR symmetry breaking and have yielded exciting findings. In recent years, <em>in vitro</em> engineered platforms have emerged as powerful tools to reveal cellular chiral biases and led to uncovering molecular and biophysical insights into chiral morphogenesis, including the significant role of the actin cytoskeleton. Establishing a link between observed <em>in vivo</em> tissue chiral morphogenesis and the determined chiral bias of cells <em>in vitro</em> has become increasingly important. In this regard, computational mathematical models hold immense value as they can explain and predict tissue morphogenic behavior based on the chiral biases of individual cells. Here, we present the formulations and discoveries achieved using various computational models spanning different biological scales, from the molecular and cellular levels to tissue and organ levels. Furthermore, we offer insights into future directions and the role of such models in advancing the study of asymmetric cellular mechanobiology.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100038"},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000019/pdfft?md5=f838dfd35608eeaeb7fe4453dd63f3b3&pid=1-s2.0-S2949907024000019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role and potential therapeutic strategies of matrix mechanics for optimizing tumor radiotherapy 基质力学对优化肿瘤放疗的作用和潜在治疗策略
Pub Date : 2023-12-19 DOI: 10.1016/j.mbm.2023.100037
Yaxin Deng , Guobao Chen , Jiali Xiao , Hong Deng

Radiation therapy is one of the most effective therapeutic modalities for tumors. The changes in matrix stiffness of tumors and associated tissues are important consequences of side effects after radiotherapy. They are documented to induce the radio-resistance of cancer cells and promote the recurrence and metastasis of tumors, resulting in poor patient prognosis. Identifying the relationship between radiation and matrix stiffness is beneficial to optimize clinical treatment schemes and ultimately improve the patient prognosis. Herein, this review includes knowledge regarding the specific cellular, molecular processes and relevant clinical factors of the changes in matrix stiffness of tumors or associated tissues induced by radiation. The effects of altered matrix stiffness on the behaviors of cancer cells and associated normal cells are further detailed. It also reviews literatures to elucidate the mechanical signal transduction mechanism in radiotherapy and proposes some strategies to enhance the efficacy of radiotherapy based on matrix mechanics.

放射治疗是治疗肿瘤最有效的方法之一。肿瘤及相关组织基质硬度的变化是放疗副作用的重要后果。有资料表明,基质硬度的变化会诱导癌细胞产生放射抗性,促进肿瘤的复发和转移,从而导致患者预后不良。明确辐射与基质僵化之间的关系有利于优化临床治疗方案,最终改善患者预后。在此,本综述包括有关辐射诱导肿瘤或相关组织基质硬度变化的特定细胞、分子过程和相关临床因素的知识。基质硬度的改变对癌细胞和相关正常细胞行为的影响也被进一步详细阐述。报告还回顾了阐明放疗中机械信号转导机制的文献,并提出了一些基于基质力学提高放疗疗效的策略。
{"title":"Role and potential therapeutic strategies of matrix mechanics for optimizing tumor radiotherapy","authors":"Yaxin Deng ,&nbsp;Guobao Chen ,&nbsp;Jiali Xiao ,&nbsp;Hong Deng","doi":"10.1016/j.mbm.2023.100037","DOIUrl":"10.1016/j.mbm.2023.100037","url":null,"abstract":"<div><p>Radiation therapy is one of the most effective therapeutic modalities for tumors. The changes in matrix stiffness of tumors and associated tissues are important consequences of side effects after radiotherapy. They are documented to induce the radio-resistance of cancer cells and promote the recurrence and metastasis of tumors, resulting in poor patient prognosis. Identifying the relationship between radiation and matrix stiffness is beneficial to optimize clinical treatment schemes and ultimately improve the patient prognosis. Herein, this review includes knowledge regarding the specific cellular, molecular processes and relevant clinical factors of the changes in matrix stiffness of tumors or associated tissues induced by radiation. The effects of altered matrix stiffness on the behaviors of cancer cells and associated normal cells are further detailed. It also reviews literatures to elucidate the mechanical signal transduction mechanism in radiotherapy and proposes some strategies to enhance the efficacy of radiotherapy based on matrix mechanics.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907023000372/pdfft?md5=a7bfabed7a16a217dbd63f6b782d4d68&pid=1-s2.0-S2949907023000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139019662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanobiology in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1