首页 > 最新文献

Mechanobiology in Medicine最新文献

英文 中文
In silico study unfolds inhibitory potential of epicatechin gallate against SARS-CoV-2 entry and replication within the host cell 计算机研究揭示了表儿茶素没食子酸酯抑制SARS-CoV-2进入和在宿主细胞内复制的潜力
Pub Date : 2023-08-09 DOI: 10.1016/j.mbm.2023.100015
Prem Rajak, Abhratanu Ganguly

Coronavirus disease-19 (COVID-19) is the ongoing pandemic affecting millions of people worldwide. Several vaccine candidates have been designed and developed for the causative virus, SARS-CoV-2. However high mutation rate in the viral genome and the emergence of new variants have challenged the effectiveness of these vaccines developed for previous strains. Hence, screening and identification of anti-SARS-CoV-2 agents having multi-target potency would be more impactful in the prevention of the disease. Epicatechin gallate (ECG) is a green tea polyphenol having various medicinal properties, including anti-oxidative and anti-inflammatory effects. However its role as anti-SARS-CoV-2 agent is not clear. Hence the present in silico study aims to investigate the binding potential of ECG with several proteins which are critical to SARS-CoV-2 entry and replication within the host cell. Molecular docking analyses have revealed that ECG could potentially block several amino acid residues of entry factors in host cells, spike protein, and many non-structural proteins through Hydrogen bonds and hydrophobic interactions. Such interactions with vital proteins could inhibit SARS-CoV-2 entry and its subsequent replication into the host. Therefore, ECG could be a potential therapeutic agent for the prevention of COVID-19. However, the findings of the present study demand further validation in animal models.

冠状病毒病-19 (COVID-19)是影响全球数百万人的持续大流行。针对致病病毒SARS-CoV-2,已经设计和开发了几种候选疫苗。然而,病毒基因组的高突变率和新变体的出现对这些针对以前菌株开发的疫苗的有效性提出了挑战。因此,筛选和鉴定具有多靶点效力的抗sars - cov -2药物将对疾病的预防更有意义。表儿茶素没食子酸酯(ECG)是一种绿茶多酚,具有多种药用特性,包括抗氧化和抗炎作用。然而,它作为抗sars - cov -2剂的作用尚不清楚。因此,本研究旨在研究ECG与几种对SARS-CoV-2进入和在宿主细胞内复制至关重要的蛋白质的结合潜力。分子对接分析表明,ECG可能通过氢键和疏水相互作用阻断宿主细胞中进入因子、刺突蛋白和许多非结构蛋白的氨基酸残基。这种与重要蛋白质的相互作用可以抑制SARS-CoV-2进入并随后复制到宿主体内。因此,ECG可能成为预防COVID-19的潜在治疗剂。然而,本研究的发现需要在动物模型中进一步验证。
{"title":"In silico study unfolds inhibitory potential of epicatechin gallate against SARS-CoV-2 entry and replication within the host cell","authors":"Prem Rajak,&nbsp;Abhratanu Ganguly","doi":"10.1016/j.mbm.2023.100015","DOIUrl":"https://doi.org/10.1016/j.mbm.2023.100015","url":null,"abstract":"<div><p>Coronavirus disease-19 (COVID-19) is the ongoing pandemic affecting millions of people worldwide. Several vaccine candidates have been designed and developed for the causative virus, SARS-CoV-2. However high mutation rate in the viral genome and the emergence of new variants have challenged the effectiveness of these vaccines developed for previous strains. Hence, screening and identification of anti-SARS-CoV-2 agents having multi-target potency would be more impactful in the prevention of the disease. Epicatechin gallate (ECG) is a green tea polyphenol having various medicinal properties, including anti-oxidative and anti-inflammatory effects. However its role as anti-SARS-CoV-2 agent is not clear. Hence the present in silico study aims to investigate the binding potential of ECG with several proteins which are critical to SARS-CoV-2 entry and replication within the host cell. Molecular docking analyses have revealed that ECG could potentially block several amino acid residues of entry factors in host cells, spike protein, and many non-structural proteins through Hydrogen bonds and hydrophobic interactions. Such interactions with vital proteins could inhibit SARS-CoV-2 entry and its subsequent replication into the host. Therefore, ECG could be a potential therapeutic agent for the prevention of COVID-19. However, the findings of the present study demand further validation in animal models.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"1 2","pages":"Article 100015"},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49906650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Distribution of intracellular calcium during flow-induced migration of RAW264.7 cells RAW264.7 细胞在流动诱导迁移过程中的细胞内钙分布
Pub Date : 2023-08-09 DOI: 10.1016/j.mbm.2023.100012
Shurong Wang , Qing Sun , Yang Zhao , Bo Huo

Cell migration is an important biological process regulated by mechanical stimulation, which leads to intracellular calcium response. Cell migration are dependent on the distribution and dynamic changes of intracellular calcium concentration. However, the temporal relation among mechanical stimulation, cell migration, and intracellular calcium distribution remains unclear. In this study, unidirectional flow and oscillatory flow were applied on osteoclast precursor RAW264.7 cells. The parameters of cell migration under fluid flow and intracellular calcium distribution along the migration or flow direction were calculated. Experimental results suggest the cells to adjust the [Ca2+]i distribution in the migration direction is independent of flow application or the reverse of flow direction, but the [Ca2+]i distribution in the flow direction is determined by the [Ca2+]i distribution-adjusting ability of cells and flow stimulation. Blocking calcium signaling pathways, namely, mechanosensitive cation-selective channels, phospholipase C, and endoplasmic reticulum, and removing extracellular calcium inhibited cell migration along the flow direction and the gradient distribution of intracellular calcium. This study provided insights into the mechanism of flow-induced cell migration and quantitative data for the recruitment of osteoclast precursors targeting the location of bone resorption.

细胞迁移是受机械刺激调控的一个重要生物过程,机械刺激会导致细胞内钙反应。细胞迁移依赖于细胞内钙浓度的分布和动态变化。然而,机械刺激、细胞迁移和细胞内钙分布之间的时间关系仍不清楚。本研究将单向流和振荡流应用于破骨细胞前体 RAW264.7 细胞。计算了细胞在流体流动下的迁移参数以及沿迁移或流动方向的细胞内钙分布。实验结果表明,细胞调节迁移方向上的[Ca2+]i分布与流动应用或流动方向相反无关,但流动方向上的[Ca2+]i分布由细胞的[Ca2+]i分布调节能力和流动刺激决定。阻断钙信号通路,即机械敏感性阳离子选择性通道、磷脂酶 C 和内质网,清除细胞外钙,可抑制细胞沿流动方向的迁移和细胞内钙的梯度分布。这项研究揭示了流动诱导细胞迁移的机制,并提供了针对骨吸收位置的破骨细胞前体招募的定量数据。
{"title":"Distribution of intracellular calcium during flow-induced migration of RAW264.7 cells","authors":"Shurong Wang ,&nbsp;Qing Sun ,&nbsp;Yang Zhao ,&nbsp;Bo Huo","doi":"10.1016/j.mbm.2023.100012","DOIUrl":"10.1016/j.mbm.2023.100012","url":null,"abstract":"<div><p>Cell migration is an important biological process regulated by mechanical stimulation, which leads to intracellular calcium response. Cell migration are dependent on the distribution and dynamic changes of intracellular calcium concentration. However, the temporal relation among mechanical stimulation, cell migration, and intracellular calcium distribution remains unclear. In this study, unidirectional flow and oscillatory flow were applied on osteoclast precursor RAW264.7 cells. The parameters of cell migration under fluid flow and intracellular calcium distribution along the migration or flow direction were calculated. Experimental results suggest the cells to adjust the [Ca<sup>2+</sup>]<sub>i</sub> distribution in the migration direction is independent of flow application or the reverse of flow direction, but the [Ca<sup>2+</sup>]<sub>i</sub> distribution in the flow direction is determined by the [Ca<sup>2+</sup>]<sub>i</sub> distribution-adjusting ability of cells and flow stimulation. Blocking calcium signaling pathways, namely, mechanosensitive cation-selective channels, phospholipase C, and endoplasmic reticulum, and removing extracellular calcium inhibited cell migration along the flow direction and the gradient distribution of intracellular calcium. This study provided insights into the mechanism of flow-induced cell migration and quantitative data for the recruitment of osteoclast precursors targeting the location of bone resorption.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100012"},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907023000128/pdfft?md5=7b57f22e0cac83ae0794c8da4fd1ba1d&pid=1-s2.0-S2949907023000128-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78454389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix stiffness-driven cancer progression and the targeted therapeutic strategy 基质刚度驱动的癌症进展和靶向治疗策略
Pub Date : 2023-08-03 DOI: 10.1016/j.mbm.2023.100013
Rui Liang, Guanbin Song

Increased matrix stiffness is a common phenomenon in solid tumor tissue and is regulated by both tumor and mesenchymal cells. The increase in collagen and lysyl oxidase family proteins in the extracellular matrix leads to deposition, contraction, and crosslinking of the stroma, promoting increased matrix stiffness in tumors. Matrix stiffness is critical to the progression of various solid tumors. As a mechanical factor in the tumor microenvironment, matrix stiffness is involved in tumor progression, promoting biological processes such as tumor cell proliferation, invasion, metastasis, angiogenesis, drug resistance, and immune escape. Reducing tissue stiffness can slow down tumor progression. Therefore targeting matrix stiffness is a potential option for tumor therapy. This article reviews the detailed mechanisms of matrix stiffness in different malignant tumor phenotypes and potential tumor therapies targeting matrix stiffness. Understanding the role and mechanisms of matrix stiffness in tumors could provide theoretical insights into the treatment of tumors and assist in the clinical development of new drug therapies.

基质刚度增加是实体瘤组织中常见的现象,由肿瘤细胞和间充质细胞共同调节。细胞外基质中胶原蛋白和赖氨酸氧化酶家族蛋白的增加导致基质的沉积、收缩和交联,促进肿瘤中基质硬度的增加。基质刚度对各种实体瘤的进展至关重要。基质刚度作为肿瘤微环境中的力学因素,参与肿瘤的进展,促进肿瘤细胞增殖、侵袭、转移、血管生成、耐药、免疫逃逸等生物学过程。减少组织僵硬可以减缓肿瘤的进展。因此,靶向基质硬度是肿瘤治疗的潜在选择。本文综述了基质刚度在不同恶性肿瘤表型中的具体机制以及针对基质刚度的潜在肿瘤治疗方法。了解基质刚度在肿瘤中的作用和机制可以为肿瘤的治疗提供理论见解,并有助于新药物治疗的临床开发。
{"title":"Matrix stiffness-driven cancer progression and the targeted therapeutic strategy","authors":"Rui Liang,&nbsp;Guanbin Song","doi":"10.1016/j.mbm.2023.100013","DOIUrl":"https://doi.org/10.1016/j.mbm.2023.100013","url":null,"abstract":"<div><p>Increased matrix stiffness is a common phenomenon in solid tumor tissue and is regulated by both tumor and mesenchymal cells. The increase in collagen and lysyl oxidase family proteins in the extracellular matrix leads to deposition, contraction, and crosslinking of the stroma, promoting increased matrix stiffness in tumors. Matrix stiffness is critical to the progression of various solid tumors. As a mechanical factor in the tumor microenvironment, matrix stiffness is involved in tumor progression, promoting biological processes such as tumor cell proliferation, invasion, metastasis, angiogenesis, drug resistance, and immune escape. Reducing tissue stiffness can slow down tumor progression. Therefore targeting matrix stiffness is a potential option for tumor therapy. This article reviews the detailed mechanisms of matrix stiffness in different malignant tumor phenotypes and potential tumor therapies targeting matrix stiffness. Understanding the role and mechanisms of matrix stiffness in tumors could provide theoretical insights into the treatment of tumors and assist in the clinical development of new drug therapies.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"1 2","pages":"Article 100013"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49906651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor state transitions driven by Gaussian and non-Gaussian noises 由高斯和非高斯噪声驱动的肿瘤状态转换
Pub Date : 2023-07-20 DOI: 10.1016/j.mbm.2023.100011
Mengjiao Hua , Yu Wu

Tumor state transitions between the excited (high-concentration) and nonexcited (low-concentration) basins under the Gaussian white noise and non-Gaussian colored noise are investigated via the most probable steady states (MPSS) and the first escape probability (FEP)-based stochastic basin of attraction (SBA), respectively. Reducing the non-Gaussian colored noise and then utilizing the unified colored noise approximation (UCNA), the Markov system is derived. The extremal controlling equation of stationary probability density function (SPDF) is derived to analyze the impacts of noise on transitions in terms of MPSS. The existence of the ‘color’ of the non-Gaussian colored noise induces the reappearance of the uncorrelated additive white noise parameter that had vanished from the extremal controlling equation, completely reversing the inability of the uncorrelated additive Gaussian white noise to operate on transitions. The FEP-dependent SBA characterizing the excited basin stability is performed to further analyze the role of noise on the likelihood of escaping to the nonexcited state. Results show that the cross-correlated noises play a dual role in regulating SBA. The increased SBA indicating more difficulty to escape to the nonexcited state reflects a worse therapeutic effect. Therefore, enhancing the negatively correlated noise intensities and augmenting the non-Gaussian noise correlation time is essential for destabilizing the excited basin and achieving optimal therapeutic efficacy.

利用基于最可能稳态(MPSS)和基于第一逃逸概率(FEP)的随机吸引盆地(SBA)分别研究了在高斯白噪声和非高斯彩色噪声下,肿瘤在激发(高浓度)和非激发(低浓度)盆地之间的状态转换。先降低非高斯彩色噪声,然后利用统一彩色噪声近似(UCNA),推导出马尔可夫系统。推导了平稳概率密度函数(SPDF)的极值控制方程,从MPSS角度分析了噪声对过渡的影响。非高斯彩色噪声的“颜色”的存在诱导了从极值控制方程中消失的不相关加性白噪声参数的再现,完全扭转了不相关加性高斯白噪声无法作用于过渡的情况。为了进一步分析噪声对逸出到非激发态可能性的影响,对表征激发态稳定性的fep依赖SBA进行了分析。结果表明,交叉相关噪声对SBA的调节具有双重作用。增加的SBA表明更难以逃逸到非激发态,反映了较差的治疗效果。因此,增强负相关噪声强度和增加非高斯噪声相关时间是稳定兴奋盆和达到最佳治疗效果的必要条件。
{"title":"Tumor state transitions driven by Gaussian and non-Gaussian noises","authors":"Mengjiao Hua ,&nbsp;Yu Wu","doi":"10.1016/j.mbm.2023.100011","DOIUrl":"https://doi.org/10.1016/j.mbm.2023.100011","url":null,"abstract":"<div><p>Tumor state transitions between the excited (high-concentration) and nonexcited (low-concentration) basins under the Gaussian white noise and non-Gaussian colored noise are investigated via the most probable steady states (MPSS) and the first escape probability (FEP)-based stochastic basin of attraction (SBA), respectively. Reducing the non-Gaussian colored noise and then utilizing the unified colored noise approximation (UCNA), the Markov system is derived. The extremal controlling equation of stationary probability density function (SPDF) is derived to analyze the impacts of noise on transitions in terms of MPSS. The existence of the ‘color’ of the non-Gaussian colored noise induces the reappearance of the uncorrelated additive white noise parameter that had vanished from the extremal controlling equation, completely reversing the inability of the uncorrelated additive Gaussian white noise to operate on transitions. The FEP-dependent SBA characterizing the excited basin stability is performed to further analyze the role of noise on the likelihood of escaping to the nonexcited state. Results show that the cross-correlated noises play a dual role in regulating SBA. The increased SBA indicating more difficulty to escape to the nonexcited state reflects a worse therapeutic effect. Therefore, enhancing the negatively correlated noise intensities and augmenting the non-Gaussian noise correlation time is essential for destabilizing the excited basin and achieving optimal therapeutic efficacy.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"1 2","pages":"Article 100011"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49906652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanobiology: Methods and Protocols 机械生物学:方法和方案
Pub Date : 2023-01-01 DOI: 10.1007/978-1-0716-2851-5
{"title":"Mechanobiology: Methods and Protocols","authors":"","doi":"10.1007/978-1-0716-2851-5","DOIUrl":"https://doi.org/10.1007/978-1-0716-2851-5","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90969892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copyright 版权
Pub Date : 2020-01-01 DOI: 10.1016/b978-0-12-817931-4.12001-1
{"title":"Copyright","authors":"","doi":"10.1016/b978-0-12-817931-4.12001-1","DOIUrl":"https://doi.org/10.1016/b978-0-12-817931-4.12001-1","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83325334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dedication 奉献
Pub Date : 2020-01-01 DOI: 10.1016/b978-0-12-817931-4.03001-6
{"title":"Dedication","authors":"","doi":"10.1016/b978-0-12-817931-4.03001-6","DOIUrl":"https://doi.org/10.1016/b978-0-12-817931-4.03001-6","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83756715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glossary 术语表
Pub Date : 2020-01-01 DOI: 10.1016/b978-0-12-817931-4.17001-3
{"title":"Glossary","authors":"","doi":"10.1016/b978-0-12-817931-4.17001-3","DOIUrl":"https://doi.org/10.1016/b978-0-12-817931-4.17001-3","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84010019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front matter 前页
Pub Date : 2020-01-01 DOI: 10.1016/b978-0-12-817931-4.01001-3
{"title":"Front matter","authors":"","doi":"10.1016/b978-0-12-817931-4.01001-3","DOIUrl":"https://doi.org/10.1016/b978-0-12-817931-4.01001-3","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"217 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79679565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
Pub Date : 2020-01-01 DOI: 10.1016/b978-0-12-817931-4.20001-0
{"title":"Index","authors":"","doi":"10.1016/b978-0-12-817931-4.20001-0","DOIUrl":"https://doi.org/10.1016/b978-0-12-817931-4.20001-0","url":null,"abstract":"","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"683 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76873323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanobiology in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1