首页 > 最新文献

Mitochondrial Communications最新文献

英文 中文
Powering forward: A year of discovery in mitochondrial science 前进:线粒体科学发现的一年
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.12.003
Du Feng, Quan Chen
{"title":"Powering forward: A year of discovery in mitochondrial science","authors":"Du Feng, Quan Chen","doi":"10.1016/j.mitoco.2025.12.003","DOIUrl":"10.1016/j.mitoco.2025.12.003","url":null,"abstract":"","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages A1-A2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extra-mitochondrial ATP synthesis, proton dynamics at the membrane, and mitochondria-derived vesicles: Current findings and considerations 线粒体外ATP合成,膜上的质子动力学和线粒体衍生的囊泡:目前的发现和考虑
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.06.002
Alessandro Maria Morelli , Ann Saada , Felix Scholkmann
Adenosine triphosphate (ATP) is essential for almost all life forms. In our article, we discuss (i) insights into the bioenergetics of ATP generation, including an extended view of proton currents during oxidative phosphorylation (OXPHOS), (ii) experimental work showing the ability of several biological structures to perform extra-mitochondrial OXPHOS, (iii) the role of mitochondria-derived vesicles (MDVs) in extra-mitochondrial OXPHOS, and (iv) the relevance of these aspects for the interpretation of the human brain map of mitochondrial density and ATP-synthesizing capacity. In our opinion, extra-mitochondrial OXPHOS and MDVs are important topics for future research that will significantly expand our picture of cellular bioenergetics.
三磷酸腺苷(ATP)对几乎所有生命形式都是必需的。在我们的文章中,我们讨论了(i)对ATP生成的生物能量学的见解,包括氧化磷酸化(OXPHOS)过程中质子电流的扩展视图,(ii)实验工作显示了几种生物结构执行线粒体外OXPHOS的能力,(iii)线粒体衍生囊泡(mdv)在线粒体外OXPHOS中的作用,(iv)这些方面与解释人脑线粒体密度和atp合成能力图的相关性。在我们看来,线粒体外OXPHOS和mdv是未来研究的重要课题,将大大扩展我们的细胞生物能量学图谱。
{"title":"Extra-mitochondrial ATP synthesis, proton dynamics at the membrane, and mitochondria-derived vesicles: Current findings and considerations","authors":"Alessandro Maria Morelli ,&nbsp;Ann Saada ,&nbsp;Felix Scholkmann","doi":"10.1016/j.mitoco.2025.06.002","DOIUrl":"10.1016/j.mitoco.2025.06.002","url":null,"abstract":"<div><div>Adenosine triphosphate (ATP) is essential for almost all life forms. In our article, we discuss (i) insights into the bioenergetics of ATP generation, including an extended view of proton currents during oxidative phosphorylation (OXPHOS), (ii) experimental work showing the ability of several biological structures to perform extra-mitochondrial OXPHOS, (iii) the role of mitochondria-derived vesicles (MDVs) in extra-mitochondrial OXPHOS, and (iv) the relevance of these aspects for the interpretation of the human brain map of mitochondrial density and ATP-synthesizing capacity. In our opinion, extra-mitochondrial OXPHOS and MDVs are important topics for future research that will significantly expand our picture of cellular bioenergetics.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages 47-51"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial‐derived vesicles: at the crossroads of mitochondrial functions and metabolites 线粒体来源的囊泡:在线粒体功能和代谢物的十字路口
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.06.001
Min Tang , Zhiyin Song , Da Jia
{"title":"Mitochondrial‐derived vesicles: at the crossroads of mitochondrial functions and metabolites","authors":"Min Tang ,&nbsp;Zhiyin Song ,&nbsp;Da Jia","doi":"10.1016/j.mitoco.2025.06.001","DOIUrl":"10.1016/j.mitoco.2025.06.001","url":null,"abstract":"","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages 44-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A chemical-genetic approach to target voltage-sensitive fluorophores to mitochondria 一种将电压敏感荧光团靶向线粒体的化学遗传学方法
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.12.002
Julia G. Martin , Tong Zhan , Deshka L. Neill , Ke Xu , Evan W. Miller
Mitochondria play central roles in the physiology of eukaryotic cells. Mitochondrial membrane potential, in turn, is a key driver of mitochondrial physiology. We previously developed a system to localize voltage-sensitive fluorophores to mitochondria based on the hydrolysis of labile acetoxymethyl (AM) esters. One potential problem with this system is the premature hydrolysis of the labile AM ester prior to accumulation in the mitochondria. A possible solution is to replace the AM ester with a bulky cyclopropylmethylacetoxy (CPM) ester, which resists uncatalyzed hydrolysis but can be removed by certain esterases. When paired with exogenous expression of mitochondrially-targeted esterases like porcine liver esterase (PLE), this chemical-genetic hybrid approach can improve localization to mitochondria. In this manuscript, we use superresolution microscopy to show that a variety of proteins, including esterases from pig and bacteria can be effectively localized to mitochondria. Further, we establish that a CPM-modified rhodamine voltage reporter (RhoVR-CPM) shows improved localization to mitochondria in cells expressing mitochondrially-targeted esterases. Finally, RhoVR-CPM can be paired with fluorescence lifetime imaging microscopy (FLIM) to map changes in mitochondrial membrane potential.
线粒体在真核细胞的生理中起着核心作用。反过来,线粒体膜电位是线粒体生理学的关键驱动因素。我们之前开发了一种基于不稳定乙酰氧基甲基(AM)酯水解的系统,将电压敏感的荧光团定位于线粒体。该系统的一个潜在问题是不稳定的AM酯在线粒体积累之前过早水解。一种可能的解决方案是用体积较大的环丙基甲基乙酰氧基(CPM)酯代替AM酯,这种酯可以抵抗非催化水解,但可以被某些酯酶去除。当与外源表达的线粒体靶向酯酶如猪肝酯酶(PLE)配对时,这种化学-遗传杂交方法可以改善线粒体的定位。在这篇文章中,我们使用超分辨率显微镜显示,多种蛋白质,包括来自猪和细菌的酯酶,可以有效地定位到线粒体。此外,我们发现cpm修饰的罗丹明电压报告基因(RhoVR-CPM)在表达线粒体靶向酯酶的细胞中显示出更好的线粒体定位。最后,RhoVR-CPM可以与荧光寿命成像显微镜(FLIM)配对,以绘制线粒体膜电位的变化。
{"title":"A chemical-genetic approach to target voltage-sensitive fluorophores to mitochondria","authors":"Julia G. Martin ,&nbsp;Tong Zhan ,&nbsp;Deshka L. Neill ,&nbsp;Ke Xu ,&nbsp;Evan W. Miller","doi":"10.1016/j.mitoco.2025.12.002","DOIUrl":"10.1016/j.mitoco.2025.12.002","url":null,"abstract":"<div><div>Mitochondria play central roles in the physiology of eukaryotic cells. Mitochondrial membrane potential, in turn, is a key driver of mitochondrial physiology. We previously developed a system to localize voltage-sensitive fluorophores to mitochondria based on the hydrolysis of labile acetoxymethyl (AM) esters. One potential problem with this system is the premature hydrolysis of the labile AM ester prior to accumulation in the mitochondria. A possible solution is to replace the AM ester with a bulky cyclopropylmethylacetoxy (CPM) ester, which resists uncatalyzed hydrolysis but can be removed by certain esterases. When paired with exogenous expression of mitochondrially-targeted esterases like porcine liver esterase (PLE), this chemical-genetic hybrid approach can improve localization to mitochondria. In this manuscript, we use superresolution microscopy to show that a variety of proteins, including esterases from pig and bacteria can be effectively localized to mitochondria. Further, we establish that a CPM-modified rhodamine voltage reporter (RhoVR-CPM) shows improved localization to mitochondria in cells expressing mitochondrially-targeted esterases. Finally, RhoVR-CPM can be paired with fluorescence lifetime imaging microscopy (FLIM) to map changes in mitochondrial membrane potential.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages 109-115"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145789904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo imaging of neuronal mitochondrial Ca2+ transients with two-photon microscopy in awake mice 清醒小鼠神经元线粒体Ca2+瞬态的双光子显微镜在体成像
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.08.002
Shan Qiu , Haoyu Zhang , Fangxu Zhou , Haipeng Huang , Heping Cheng , Xianhua Wang
Mitochondrial Ca2+ plays important roles in shaping intracellular Ca2+ signaling and modulating energy metabolism. Dysregulated mitochondrial Ca2+ dynamics have been increasingly implicated in the pathogenesis of neurodegenerative disorders. To unravel how mitochondrial Ca2+ participates in the processes of neural activity and neurodegeneration, it is essential but challenging to monitor its dynamics in vivo. Recent advances in two-photon microscopy and genetically encoded Ca2+ indicators have enabled high-resolution imaging of mitochondrial Ca2+ in the brain. Here, we present a comprehensive protocol for in vivo imaging and analysis of mitochondrial Ca2+ dynamics in neurons of awake mice. This protocol provides detailed methodologies for indicator delivery, chronic cranial window implantation, two-photon imaging, and downstream data analysis. By offering a standardized and reproducible workflow, this protocol aims to facilitate investigation of mitochondrial Ca2+ dynamics in vivo in both physiological and pathological contexts.
线粒体Ca2+在形成细胞内Ca2+信号和调节能量代谢中起重要作用。线粒体Ca2+动力学失调已越来越多地涉及神经退行性疾病的发病机制。为了揭示线粒体Ca2+如何参与神经活动和神经退行性变的过程,监测其体内动态是必要的,但具有挑战性。双光子显微镜和基因编码Ca2+指标的最新进展使线粒体Ca2+在大脑中的高分辨率成像成为可能。在这里,我们提出了一个全面的方案在体内成像和分析线粒体Ca2+动态的清醒小鼠神经元。该方案提供了详细的指示物递送、慢性颅窗植入、双光子成像和下游数据分析的方法。通过提供标准化和可重复的工作流程,该协议旨在促进线粒体Ca2+动力学在体内生理和病理背景下的研究。
{"title":"In vivo imaging of neuronal mitochondrial Ca2+ transients with two-photon microscopy in awake mice","authors":"Shan Qiu ,&nbsp;Haoyu Zhang ,&nbsp;Fangxu Zhou ,&nbsp;Haipeng Huang ,&nbsp;Heping Cheng ,&nbsp;Xianhua Wang","doi":"10.1016/j.mitoco.2025.08.002","DOIUrl":"10.1016/j.mitoco.2025.08.002","url":null,"abstract":"<div><div>Mitochondrial Ca<sup>2+</sup> plays important roles in shaping intracellular Ca<sup>2+</sup> signaling and modulating energy metabolism. Dysregulated mitochondrial Ca<sup>2+</sup> dynamics have been increasingly implicated in the pathogenesis of neurodegenerative disorders. To unravel how mitochondrial Ca<sup>2+</sup> participates in the processes of neural activity and neurodegeneration, it is essential but challenging to monitor its dynamics <em>in vivo</em>. Recent advances in two-photon microscopy and genetically encoded Ca<sup>2+</sup> indicators have enabled high-resolution imaging of mitochondrial Ca<sup>2+</sup> in the brain. Here, we present a comprehensive protocol for <em>in vivo</em> imaging and analysis of mitochondrial Ca<sup>2+</sup> dynamics in neurons of awake mice. This protocol provides detailed methodologies for indicator delivery, chronic cranial window implantation, two-photon imaging, and downstream data analysis. By offering a standardized and reproducible workflow, this protocol aims to facilitate investigation of mitochondrial Ca<sup>2+</sup> dynamics <em>in vivo</em> in both physiological and pathological contexts.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages 54-65"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145048128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PINK1-Parkin-mediated regulation of mitochondrial dynamics: A core function parallel to mitophagy control pink1 - parkin介导的线粒体动力学调节:与线粒体自噬控制平行的核心功能
Pub Date : 2025-01-01 DOI: 10.1016/j.mitoco.2025.10.002
Hui Jiang
{"title":"PINK1-Parkin-mediated regulation of mitochondrial dynamics: A core function parallel to mitophagy control","authors":"Hui Jiang","doi":"10.1016/j.mitoco.2025.10.002","DOIUrl":"10.1016/j.mitoco.2025.10.002","url":null,"abstract":"","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"3 ","pages":"Pages 87-89"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145519372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue-specific knockdown of OMM protein via GFP nanobody-mediated degradation 通过 GFP 纳米抗体介导的降解,特异性敲除组织中的 OMM 蛋白
Pub Date : 2024-01-01 DOI: 10.1016/j.mitoco.2024.07.003
Xiaojie Wang , Qiyue Zhang , Suhong Xu

Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in Caenorhabditis elegans and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated fzo-1:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type C. elegans and subsequent crossbreeding with the fzo-1:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.

线粒体在不同组织中的形态各异,暗示着不同位置的线粒体具有独特的功能。例如,线粒体外膜(OMM)蛋白对线粒体的各种活动至关重要,包括调节线粒体动力学、离子平衡和蛋白质转运。本研究介绍了一种绿色荧光蛋白(GFP)纳米抗体介导的蛋白质降解(G-DEG)系统,用于研究线粒体在秀丽隐杆线虫和其他潜在模型系统中的组织特异性功能。G-DEG 将 CRISPR-Cas9 GFP 基因敲入与 ZIF-1 介导的蛋白降解相结合,利用抗原-抗体识别的高度特异性进行跨物种精确操作。我们通过靶向 FZO-1 演示了 G-DEG 系统,FZO-1 是哺乳动物 MAN1/2 的同源物,对线粒体融合至关重要。我们的方案包括 CRISPR-Cas9 介导的 fzo-1:GFP 基因敲入,以及为表皮、肌肉和神经元构建组织特异性 GFP 纳米抗体降解质粒。将这些质粒注射到野生型秀丽隐杆线虫中,然后与 fzo-1:GFP 基因敲入株杂交,就能实现有效的 FZO-1 靶向,从而提供线粒体蛋白功能的组织特异性洞察。总之,G-DEG 是组织特异性敲除 OMM 蛋白的一种功能强大、用途广泛的工具,为深入研究它们的各种生物功能铺平了道路。
{"title":"Tissue-specific knockdown of OMM protein via GFP nanobody-mediated degradation","authors":"Xiaojie Wang ,&nbsp;Qiyue Zhang ,&nbsp;Suhong Xu","doi":"10.1016/j.mitoco.2024.07.003","DOIUrl":"10.1016/j.mitoco.2024.07.003","url":null,"abstract":"<div><p>Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in <em>Caenorhabditis elegans</em> and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated <em>fzo-1</em>:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type <em>C. elegans</em> and subsequent crossbreeding with the <em>fzo-1</em>:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.</p></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 85-89"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590279224000087/pdfft?md5=f5d2d52b3e5d9bb6460686031c07f0e6&pid=1-s2.0-S2590279224000087-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell mitochondrial DNA sequencing: Methodologies and applications 单细胞线粒体 DNA 测序:方法与应用
Pub Date : 2024-01-01 DOI: 10.1016/j.mitoco.2024.10.001
Guoqiang Zhou , Zhenglong Gu , Jin Xu
Mitochondria play a pivotal role in cellular energetics, metabolism, and various regulatory processes. Their dysregulation is implicated in numerous diseases. Traditional population-level mitochondrial DNA (mtDNA) sequencing often obscures crucial information from individual cells, leading to a limited understanding of mitochondrial genetics. In contrast, single-cell mtDNA sequencing enables the precise detection and characterization of mtDNA mutations at the individual cell level, providing a nuanced view of mitochondrial heteroplasmy and its dynamics. This review aims to provide a comprehensive overview of current single-cell mtDNA sequencing methodologies and their applications in advancing our understanding of mitochondrial genetics.
线粒体在细胞能量、新陈代谢和各种调节过程中发挥着关键作用。许多疾病都与线粒体失调有关。传统的群体水平线粒体 DNA(mtDNA)测序往往会掩盖单个细胞的关键信息,导致对线粒体遗传学的了解有限。相比之下,单细胞 mtDNA 测序能在单个细胞水平上精确检测和鉴定 mtDNA 突变,提供线粒体异质性及其动态的细致观察。本综述旨在全面概述当前的单细胞 mtDNA 测序方法及其在促进我们对线粒体遗传学的了解方面的应用。
{"title":"Single-cell mitochondrial DNA sequencing: Methodologies and applications","authors":"Guoqiang Zhou ,&nbsp;Zhenglong Gu ,&nbsp;Jin Xu","doi":"10.1016/j.mitoco.2024.10.001","DOIUrl":"10.1016/j.mitoco.2024.10.001","url":null,"abstract":"<div><div>Mitochondria play a pivotal role in cellular energetics, metabolism, and various regulatory processes. Their dysregulation is implicated in numerous diseases. Traditional population-level mitochondrial DNA (mtDNA) sequencing often obscures crucial information from individual cells, leading to a limited understanding of mitochondrial genetics. In contrast, single-cell mtDNA sequencing enables the precise detection and characterization of mtDNA mutations at the individual cell level, providing a nuanced view of mitochondrial heteroplasmy and its dynamics. This review aims to provide a comprehensive overview of current single-cell mtDNA sequencing methodologies and their applications in advancing our understanding of mitochondrial genetics.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 107-113"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature conference on mitochondria and immunity: Uncovering Mitochondria–Immunity crosstalk and fostering global scientific exchanges 线粒体与免疫自然会议:揭示线粒体-免疫串扰,促进全球科学交流
Pub Date : 2024-01-01 DOI: 10.1016/j.mitoco.2024.12.002
Juan Liu, Yanjun Li, Yushan Zhu, Quan Chen
{"title":"Nature conference on mitochondria and immunity: Uncovering Mitochondria–Immunity crosstalk and fostering global scientific exchanges","authors":"Juan Liu,&nbsp;Yanjun Li,&nbsp;Yushan Zhu,&nbsp;Quan Chen","doi":"10.1016/j.mitoco.2024.12.002","DOIUrl":"10.1016/j.mitoco.2024.12.002","url":null,"abstract":"","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages A1-A6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid transfer at mitochondrial membrane contact sites 线粒体膜接触部位的脂质转移
Pub Date : 2024-01-01 DOI: 10.1016/j.mitoco.2024.11.002
Qingzhu Chu , Wei-Ke Ji
Mitochondria are semiautonomous organelles that are actively shaped into an extended reticular network that is not connected to the endomembrane system via vesicular transport. Instead, active lipid exchange occurs between mitochondria and other organelles, such as the endoplasmic reticulum (ER) and lipid droplets (LDs), at mitochondrial membrane contact sites (MCSs), where the two organelles are juxtaposed with each other at a distance of 10–30 nm. Recent advances have led to an increasing understanding of the molecular mechanism that mediates the transfer of different lipid species between these organelles. Here, we highlight advances that demonstrate the role of lipid transfer proteins at ER–mitochondrial and LD–mitochondrial MCSs. Importantly, we summarize the fundamental questions on this topic that remain unanswered.
线粒体是半自主的细胞器,主动形成一个扩展的网状网络,不通过囊泡运输与内膜系统相连。相反,活跃的脂质交换发生在线粒体和其他细胞器之间,如内质网(ER)和脂滴(ld),在线粒体膜接触位点(mcs),两个细胞器彼此并置在10-30 nm的距离上。最近的进展已经导致越来越多的分子机制,介导这些细胞器之间的不同脂质转移的理解。在这里,我们强调了证明脂质转移蛋白在er线粒体和ld线粒体mcs中的作用的进展。重要的是,我们总结了关于这一主题仍未得到解答的基本问题。
{"title":"Lipid transfer at mitochondrial membrane contact sites","authors":"Qingzhu Chu ,&nbsp;Wei-Ke Ji","doi":"10.1016/j.mitoco.2024.11.002","DOIUrl":"10.1016/j.mitoco.2024.11.002","url":null,"abstract":"<div><div>Mitochondria are semiautonomous organelles that are actively shaped into an extended reticular network that is not connected to the endomembrane system via vesicular transport. Instead, active lipid exchange occurs between mitochondria and other organelles, such as the endoplasmic reticulum (ER) and lipid droplets (LDs), at mitochondrial membrane contact sites (MCSs), where the two organelles are juxtaposed with each other at a distance of 10–30 nm. Recent advances have led to an increasing understanding of the molecular mechanism that mediates the transfer of different lipid species between these organelles. Here, we highlight advances that demonstrate the role of lipid transfer proteins at ER–mitochondrial and LD–mitochondrial MCSs. Importantly, we summarize the fundamental questions on this topic that remain unanswered.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 123-128"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mitochondrial Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1