Pub Date : 2024-01-01Epub Date: 2024-07-03DOI: 10.1016/bs.acc.2024.06.001
Yonca Senem Akdeniz, Seda Özkan
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
{"title":"New markers in chronic obstructive pulmonary disease.","authors":"Yonca Senem Akdeniz, Seda Özkan","doi":"10.1016/bs.acc.2024.06.001","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.06.001","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"123 ","pages":"1-63"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-20DOI: 10.1016/bs.acc.2024.06.006
Dalma Horvat, Lucia Agoston-Coldea
The ever-increasing life expectancy of the global population introduces a critical perspective on the impact of aging as an immutable cardiovascular risk factor, particularly manifesting in the alterations observed in the pulmonary artery (PA). Mechanisms contributing to aging-induced changes in PA include endothelial dysfunction, chronic inflammation, and structural changes in the arterial wall over time. These alterations extend beyond mere elasticity, exerting profound effects on pulmonary hemodynamics. The propensity of PAs to develop atherosclerotic plaques underscores an intriguing facet of vascular aging, although the available literature is currently insufficient to comprehensively assess their true incidence. While recognizing the inherent risk of periprocedural complications, right heart catheterization (RHC) stands out as the gold standard for precise hemodynamic evaluation. Echocardiography, a widely employed method, proves valuable for screening pulmonary hypertension (PH), yet falls short of diagnostic capability. Technological advancements usher in a new era with non-invasive modalities such as cardiac magnetic resonance (CMR) imaging emerging as promising tools. These innovations demonstrate their prowess in providing accurate assessments of PA stiffness and hemodynamics, offering a glimpse into the future landscape of diagnostic methodologies. As we navigate the intersection of aging and pulmonary vascular health, this review aims to address mechanisms and techniques for assessing PA aging, highlighting the need for comprehensive assessments to guide clinical decision making in an increasingly aging population.
随着全球人口预期寿命的不断延长,老龄化作为一种不可改变的心血管风险因素,其影响尤其体现在肺动脉(PA)的变化上,这为我们提供了一个重要的视角。导致肺动脉老化引起变化的机制包括内皮功能障碍、慢性炎症和动脉壁结构的长期变化。这些变化不仅仅是弹性的变化,还会对肺血流动力学产生深远影响。肺动脉瓣有形成动脉粥样硬化斑块的倾向,这凸显了血管老化的一个耐人寻味的方面,尽管目前现有的文献还不足以全面评估其真实发生率。右心导管检查(RHC)固然存在围手术期并发症的固有风险,但却是精确评估血液动力学的黄金标准。超声心动图作为一种广泛使用的方法,被证明对肺动脉高压(PH)的筛查很有价值,但在诊断能力方面仍有不足。技术进步开创了一个新时代,心脏磁共振(CMR)成像等无创模式成为前景广阔的工具。这些创新技术在提供 PA 硬度和血流动力学的准确评估方面表现出了卓越的能力,让我们看到了诊断方法的未来前景。在我们探索老龄化与肺血管健康的交叉点时,本综述旨在探讨评估 PA 老化的机制和技术,强调在人口日益老龄化的情况下,需要进行全面评估以指导临床决策。
{"title":"A spotlight on the aged pulmonary artery.","authors":"Dalma Horvat, Lucia Agoston-Coldea","doi":"10.1016/bs.acc.2024.06.006","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.06.006","url":null,"abstract":"<p><p>The ever-increasing life expectancy of the global population introduces a critical perspective on the impact of aging as an immutable cardiovascular risk factor, particularly manifesting in the alterations observed in the pulmonary artery (PA). Mechanisms contributing to aging-induced changes in PA include endothelial dysfunction, chronic inflammation, and structural changes in the arterial wall over time. These alterations extend beyond mere elasticity, exerting profound effects on pulmonary hemodynamics. The propensity of PAs to develop atherosclerotic plaques underscores an intriguing facet of vascular aging, although the available literature is currently insufficient to comprehensively assess their true incidence. While recognizing the inherent risk of periprocedural complications, right heart catheterization (RHC) stands out as the gold standard for precise hemodynamic evaluation. Echocardiography, a widely employed method, proves valuable for screening pulmonary hypertension (PH), yet falls short of diagnostic capability. Technological advancements usher in a new era with non-invasive modalities such as cardiac magnetic resonance (CMR) imaging emerging as promising tools. These innovations demonstrate their prowess in providing accurate assessments of PA stiffness and hemodynamics, offering a glimpse into the future landscape of diagnostic methodologies. As we navigate the intersection of aging and pulmonary vascular health, this review aims to address mechanisms and techniques for assessing PA aging, highlighting the need for comprehensive assessments to guide clinical decision making in an increasingly aging population.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"123 ","pages":"157-177"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-06-07DOI: 10.1016/bs.acc.2023.05.003
Wei-Zheng Zhang
Gout and hyperuricemia (HU) have generated immense attention due to increased prevalence. Gout is a multifactorial metabolic and inflammatory disease that occurs when increased uric acid (UA) induce HU resulting in monosodium urate (MSU) crystal deposition in joints. However, gout pathogenesis does not always involve these events and HU does not always cause a gout flare. Treatment with UA-lowering therapeutics may not prevent or reduce the incidence of gout flare or gout-associated comorbidities. UA exhibits both pro- and anti-inflammation functions in gout pathogenesis. HU and gout share mechanistic and metabolic connections at a systematic level, as shown by studies on associated comorbidities. Recent studies on the interplay between UA, HU, MSU and gout as well as the development of HU and gout in association with metabolic syndromes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular, renal and cerebrovascular diseases are discussed. This review examines current and potential therapeutic regimens and illuminates the journey from disrupted UA to gout.
{"title":"Uric acid en route to gout.","authors":"Wei-Zheng Zhang","doi":"10.1016/bs.acc.2023.05.003","DOIUrl":"10.1016/bs.acc.2023.05.003","url":null,"abstract":"<p><p>Gout and hyperuricemia (HU) have generated immense attention due to increased prevalence. Gout is a multifactorial metabolic and inflammatory disease that occurs when increased uric acid (UA) induce HU resulting in monosodium urate (MSU) crystal deposition in joints. However, gout pathogenesis does not always involve these events and HU does not always cause a gout flare. Treatment with UA-lowering therapeutics may not prevent or reduce the incidence of gout flare or gout-associated comorbidities. UA exhibits both pro- and anti-inflammation functions in gout pathogenesis. HU and gout share mechanistic and metabolic connections at a systematic level, as shown by studies on associated comorbidities. Recent studies on the interplay between UA, HU, MSU and gout as well as the development of HU and gout in association with metabolic syndromes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular, renal and cerebrovascular diseases are discussed. This review examines current and potential therapeutic regimens and illuminates the journey from disrupted UA to gout.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"116 ","pages":"209-275"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-11-01DOI: 10.1016/bs.acc.2023.08.003
Mark A Cervinski, Andreas Bietenbeck, Alex Katayev, Tze Ping Loh, Huub H van Rossum, Tony Badrick
Patient-Based Real-Time Quality Control involves monitoring an assay using patient samples rather than external material. If the patient population does not change, then a shift in the long-term assay population results represents the introduction of a change in the assay. The advantages of this approach are that the sample(s) are commutable, it is inexpensive, the rules are simple to interpret and there is virtually continuous monitoring of the assay. The disadvantages are that the laboratory needs to understand their patient population and how they may change during the day, week or year and the initial change of mindset required to adopt the system. The concept is not new, having been used since the 1960s and widely adopted on hematology analyzers in the mid-1970s. It was not widely used in clinical chemistry as there were other stable quality control materials available. However, the limitations of conventional quality control approaches have become more evident. There is a greater understanding of how to collect and use patient data in real time and a range of powerful algorithms which can identify changes in assays. There are more assays on more samples being run. There is also a greater interest in providing a theoretical basis for the validation and integration of these techniques into routine practice.
{"title":"Advances in clinical chemistry patient-based real-time quality control (PBRTQC).","authors":"Mark A Cervinski, Andreas Bietenbeck, Alex Katayev, Tze Ping Loh, Huub H van Rossum, Tony Badrick","doi":"10.1016/bs.acc.2023.08.003","DOIUrl":"10.1016/bs.acc.2023.08.003","url":null,"abstract":"<p><p>Patient-Based Real-Time Quality Control involves monitoring an assay using patient samples rather than external material. If the patient population does not change, then a shift in the long-term assay population results represents the introduction of a change in the assay. The advantages of this approach are that the sample(s) are commutable, it is inexpensive, the rules are simple to interpret and there is virtually continuous monitoring of the assay. The disadvantages are that the laboratory needs to understand their patient population and how they may change during the day, week or year and the initial change of mindset required to adopt the system. The concept is not new, having been used since the 1960s and widely adopted on hematology analyzers in the mid-1970s. It was not widely used in clinical chemistry as there were other stable quality control materials available. However, the limitations of conventional quality control approaches have become more evident. There is a greater understanding of how to collect and use patient data in real time and a range of powerful algorithms which can identify changes in assays. There are more assays on more samples being run. There is also a greater interest in providing a theoretical basis for the validation and integration of these techniques into routine practice.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"117 ","pages":"223-261"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-27DOI: 10.1016/bs.acc.2023.06.001
Neda Milinković, Snežana Jovičić
Over time, the metrological concept of uncertainty in measurement has been very successfully integrated into laboratory sciences. For proper implementation, an understanding of specific metrology terminology and additional concepts such as metrology traceability and commutability is necessary. Although the original thinking about measurement uncertainty in laboratory medicine suggests the complexity of the concept, it basically refers to the result as the end product of the entire laboratory process. Although the data on measurement uncertainty can be expressed quantitatively, the basis of this concept is the continuous evaluation of all phases of the laboratory process. This means that laboratory experts should keep in mind that the extra-analytical phases (on which the uncertainty of the measurement results may depend the most) must be continuously monitored. The analytical phase can be "held in check" by established internal and external quality control processes. It is the internal/external quality control data that is used to calculate the numerical value of the measurement uncertainty of the measurement results. Although over time the awareness of laboratory experts regarding the concept of measurement uncertainty has increased, there are still many challenges that need to be followed, and the last one is how to achieve a balance between understanding, evaluation process and application of measurement uncertainty data of measurement results for complete and ultimate practical use.
{"title":"Measurement uncertainty.","authors":"Neda Milinković, Snežana Jovičić","doi":"10.1016/bs.acc.2023.06.001","DOIUrl":"10.1016/bs.acc.2023.06.001","url":null,"abstract":"<p><p>Over time, the metrological concept of uncertainty in measurement has been very successfully integrated into laboratory sciences. For proper implementation, an understanding of specific metrology terminology and additional concepts such as metrology traceability and commutability is necessary. Although the original thinking about measurement uncertainty in laboratory medicine suggests the complexity of the concept, it basically refers to the result as the end product of the entire laboratory process. Although the data on measurement uncertainty can be expressed quantitatively, the basis of this concept is the continuous evaluation of all phases of the laboratory process. This means that laboratory experts should keep in mind that the extra-analytical phases (on which the uncertainty of the measurement results may depend the most) must be continuously monitored. The analytical phase can be \"held in check\" by established internal and external quality control processes. It is the internal/external quality control data that is used to calculate the numerical value of the measurement uncertainty of the measurement results. Although over time the awareness of laboratory experts regarding the concept of measurement uncertainty has increased, there are still many challenges that need to be followed, and the last one is how to achieve a balance between understanding, evaluation process and application of measurement uncertainty data of measurement results for complete and ultimate practical use.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"116 ","pages":"277-317"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-06-14DOI: 10.1016/bs.acc.2023.05.002
Onni Niemelä
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
{"title":"Predictive risk markers in alcoholism.","authors":"Onni Niemelä","doi":"10.1016/bs.acc.2023.05.002","DOIUrl":"10.1016/bs.acc.2023.05.002","url":null,"abstract":"<p><p>The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"116 ","pages":"113-181"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-26DOI: 10.1016/bs.acc.2023.08.004
Jessica J Miller, Victoria Higgins, Annie Ren, Samantha Logan, Paul M Yip, Lei Fu
Preeclampsia is a multisystem hypertensive disorder and one of the leading causes of maternal and fetal morbidity and mortality. The clinical hallmarks such as hypertension and proteinuria, and additional laboratory tests currently available including liver enzyme testing, are neither specific nor sufficiently sensitive. Therefore, biomarkers for timely and accurate identification of patients at risk of developing preeclampsia are extremely valuable to improve patient outcomes and safety. In this chapter, we will first discuss the clinical characteristics of preeclampsia and current evidence of the role of angiogenic factors, such as placental growth factor (PlGF) and soluble FMS like tyrosine kinase 1 (sFlt-1) in the pathogenesis of preeclampsia. Second, we will review the clinical practice guidelines for preeclampsia diagnostic criteria and their recommendations on laboratory testing. Third, we will review the currently available PlGF and sFlt-1 assays in terms of their methodologies, analytical performance, and clinical diagnostic values. Finally, we will discuss the future research needs from both an analytical and clinical perspective.
{"title":"Advances in preeclampsia testing.","authors":"Jessica J Miller, Victoria Higgins, Annie Ren, Samantha Logan, Paul M Yip, Lei Fu","doi":"10.1016/bs.acc.2023.08.004","DOIUrl":"10.1016/bs.acc.2023.08.004","url":null,"abstract":"<p><p>Preeclampsia is a multisystem hypertensive disorder and one of the leading causes of maternal and fetal morbidity and mortality. The clinical hallmarks such as hypertension and proteinuria, and additional laboratory tests currently available including liver enzyme testing, are neither specific nor sufficiently sensitive. Therefore, biomarkers for timely and accurate identification of patients at risk of developing preeclampsia are extremely valuable to improve patient outcomes and safety. In this chapter, we will first discuss the clinical characteristics of preeclampsia and current evidence of the role of angiogenic factors, such as placental growth factor (PlGF) and soluble FMS like tyrosine kinase 1 (sFlt-1) in the pathogenesis of preeclampsia. Second, we will review the clinical practice guidelines for preeclampsia diagnostic criteria and their recommendations on laboratory testing. Third, we will review the currently available PlGF and sFlt-1 assays in terms of their methodologies, analytical performance, and clinical diagnostic values. Finally, we will discuss the future research needs from both an analytical and clinical perspective.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"117 ","pages":"103-161"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-19DOI: 10.1016/bs.acc.2023.08.002
NurJehan Quraishy, Suneeti Sapatnekar
The primary indication for immunohematological testing in the prenatal patient is to detect and identify maternal red cell antibodies. If there are antibodies that are expected to hemolyze the fetus' red cells, their strength of reactivity must be tested, and the fetus' antigen status determined. After delivery, testing is performed to assess the extent of fetomaternal hemorrhage, as a large hemorrhage may require other therapeutic interventions. Another major role for immunohematological testing is to select blood components appropriately when intrauterine transfusion is required for fetal anemia resulting from maternal alloimmunization or some other cause. Supplementation with molecular methods has transformed the practice of immunohematology, particularly as it applies to typing for the D antigen of the Rh blood group system. Notwithstanding the advances in testing, close coordination and communication between the transfusion service and the obstetrics service are the foundation for ensuring the finest care for prenatal patients, and for new mothers and their infants. This review describes testing and transfusion practices for prenatal patients, using case presentations to highlight the management of selected immunohematological findings. It also includes a discussion of key patient management topics that are currently unresolved.
{"title":"Immunohematological testing and transfusion management of the prenatal patient.","authors":"NurJehan Quraishy, Suneeti Sapatnekar","doi":"10.1016/bs.acc.2023.08.002","DOIUrl":"10.1016/bs.acc.2023.08.002","url":null,"abstract":"<p><p>The primary indication for immunohematological testing in the prenatal patient is to detect and identify maternal red cell antibodies. If there are antibodies that are expected to hemolyze the fetus' red cells, their strength of reactivity must be tested, and the fetus' antigen status determined. After delivery, testing is performed to assess the extent of fetomaternal hemorrhage, as a large hemorrhage may require other therapeutic interventions. Another major role for immunohematological testing is to select blood components appropriately when intrauterine transfusion is required for fetal anemia resulting from maternal alloimmunization or some other cause. Supplementation with molecular methods has transformed the practice of immunohematology, particularly as it applies to typing for the D antigen of the Rh blood group system. Notwithstanding the advances in testing, close coordination and communication between the transfusion service and the obstetrics service are the foundation for ensuring the finest care for prenatal patients, and for new mothers and their infants. This review describes testing and transfusion practices for prenatal patients, using case presentations to highlight the management of selected immunohematological findings. It also includes a discussion of key patient management topics that are currently unresolved.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"117 ","pages":"163-208"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-26DOI: 10.1016/bs.acc.2023.05.005
Jemmyson Romário de Jesus, Tatianny de Araujo Andrade, Eduardo Costa de Figueiredo
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
{"title":"Biomarkers in psychiatric disorders.","authors":"Jemmyson Romário de Jesus, Tatianny de Araujo Andrade, Eduardo Costa de Figueiredo","doi":"10.1016/bs.acc.2023.05.005","DOIUrl":"10.1016/bs.acc.2023.05.005","url":null,"abstract":"<p><p>Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"116 ","pages":"183-208"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-06-09DOI: 10.1016/bs.acc.2023.05.001
Julia Telser, Kirsten Grossmann, Niklas Wohlwend, Lorenz Risch, Christoph H Saely, Philipp Werner
There is a need for blood biomarkers to detect individuals at different Alzheimer's disease (AD) stages because obtaining cerebrospinal fluid-based biomarkers is invasive and costly. Plasma phosphorylated tau proteins (p-tau) have shown potential as such biomarkers. This systematic review was conducted according to the PRISMA guidelines and aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181), threonine 217 (p-tau217) and threonine 231 (p-tau231) is informative in the diagnosis of AD. All p-tau isoforms increase as a function of Aβ-accumulation and discriminate healthy individuals from those at preclinical AD stages with high accuracy. P-tau231 increases earliest, followed by p-tau181 and p-tau217. In advanced stages, all p-tau isoforms are associated with the clinical classification of AD and increase with disease severity, with the greatest increase seen for p-tau217. This is also reflected by a better correlation of p-tau217 with Aβ scans, whereas both, p-tau217 and p-tau181 correlated equally with tau scans. However, at the very advanced stages, p-tau181 begins to plateau, which may mirror the trajectory of the Aβ pathology and indicate an association with a more intermediate risk of AD. Across the AD continuum, the incremental increase in all biomarkers is associated with structural changes in widespread brain regions and underlying cognitive decline. Furthermore, all isoforms differentiate AD from non-AD neurodegenerative disorders, making them specific for AD. Incorporating p-tau181, p-tau217 and p-tau231 in clinical use requires further studies to examine ideal cut-points and harmonize assays.
{"title":"Phosphorylated tau in Alzheimer's disease.","authors":"Julia Telser, Kirsten Grossmann, Niklas Wohlwend, Lorenz Risch, Christoph H Saely, Philipp Werner","doi":"10.1016/bs.acc.2023.05.001","DOIUrl":"10.1016/bs.acc.2023.05.001","url":null,"abstract":"<p><p>There is a need for blood biomarkers to detect individuals at different Alzheimer's disease (AD) stages because obtaining cerebrospinal fluid-based biomarkers is invasive and costly. Plasma phosphorylated tau proteins (p-tau) have shown potential as such biomarkers. This systematic review was conducted according to the PRISMA guidelines and aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181), threonine 217 (p-tau217) and threonine 231 (p-tau231) is informative in the diagnosis of AD. All p-tau isoforms increase as a function of Aβ-accumulation and discriminate healthy individuals from those at preclinical AD stages with high accuracy. P-tau231 increases earliest, followed by p-tau181 and p-tau217. In advanced stages, all p-tau isoforms are associated with the clinical classification of AD and increase with disease severity, with the greatest increase seen for p-tau217. This is also reflected by a better correlation of p-tau217 with Aβ scans, whereas both, p-tau217 and p-tau181 correlated equally with tau scans. However, at the very advanced stages, p-tau181 begins to plateau, which may mirror the trajectory of the Aβ pathology and indicate an association with a more intermediate risk of AD. Across the AD continuum, the incremental increase in all biomarkers is associated with structural changes in widespread brain regions and underlying cognitive decline. Furthermore, all isoforms differentiate AD from non-AD neurodegenerative disorders, making them specific for AD. Incorporating p-tau181, p-tau217 and p-tau231 in clinical use requires further studies to examine ideal cut-points and harmonize assays.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"116 ","pages":"31-111"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}