Pub Date : 2024-01-01Epub Date: 2024-07-23DOI: 10.1016/bs.acc.2024.06.011
Shaukat A Khan, Fnu Nidhi, Andrés Felipe Leal, Betul Celik, Angelica María Herreño-Pachón, Sampurna Saikia, Eliana Benincore-Flórez, Yasuhiko Ago, Shunji Tomatsu
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
{"title":"Glycosaminoglycans in mucopolysaccharidoses and other disorders.","authors":"Shaukat A Khan, Fnu Nidhi, Andrés Felipe Leal, Betul Celik, Angelica María Herreño-Pachón, Sampurna Saikia, Eliana Benincore-Flórez, Yasuhiko Ago, Shunji Tomatsu","doi":"10.1016/bs.acc.2024.06.011","DOIUrl":"10.1016/bs.acc.2024.06.011","url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"122 ","pages":"1-52"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-18DOI: 10.1016/bs.acc.2024.06.002
Paolo Iadarola, Maura D'Amato, Maria Antonietta Grignano, Simona Viglio
Lung diseases affect pulmonary and respiratory function and are caused by bacterial viral and fungal infection as well as environmental factors. Unfortunately, symptom overlap between various pulmonary diseases often prevents clear differentiation and uncertain diagnosis. Accordingly, identification of specific markers of inflammatory activity in early disease stage could potential unveil the intrinsic molecular mechanisms of the underlying pathology. Proteomic studies aimed at understanding the genetic/environmental contributions to the development and progression of lung diseases represent a promising approach for diagnosis and treatment. The fluid phase of sputum represents a rich protein source and is frequently used in these studies. This chapter addresses causes of lung disorders, sputum composition, collection and processing as well as the clinical significance and challenges associated with the presence of interfering factors. Basics of proteomics and mass spectrometry are also described, together with the analytical approaches to investigate the sputum proteome. Finally, we explore the application of sputum proteomics in severe lung disorders including COVID-19 infection, chronic obstructive pulmonary disease, asthma, cystic fibrosis, lung cancer and tuberculosis.
{"title":"Sputum proteomics in lung disorders.","authors":"Paolo Iadarola, Maura D'Amato, Maria Antonietta Grignano, Simona Viglio","doi":"10.1016/bs.acc.2024.06.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.06.002","url":null,"abstract":"<p><p>Lung diseases affect pulmonary and respiratory function and are caused by bacterial viral and fungal infection as well as environmental factors. Unfortunately, symptom overlap between various pulmonary diseases often prevents clear differentiation and uncertain diagnosis. Accordingly, identification of specific markers of inflammatory activity in early disease stage could potential unveil the intrinsic molecular mechanisms of the underlying pathology. Proteomic studies aimed at understanding the genetic/environmental contributions to the development and progression of lung diseases represent a promising approach for diagnosis and treatment. The fluid phase of sputum represents a rich protein source and is frequently used in these studies. This chapter addresses causes of lung disorders, sputum composition, collection and processing as well as the clinical significance and challenges associated with the presence of interfering factors. Basics of proteomics and mass spectrometry are also described, together with the analytical approaches to investigate the sputum proteome. Finally, we explore the application of sputum proteomics in severe lung disorders including COVID-19 infection, chronic obstructive pulmonary disease, asthma, cystic fibrosis, lung cancer and tuberculosis.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"122 ","pages":"171-208"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-20DOI: 10.1016/bs.acc.2023.11.006
Jill Palmer, Kornelia Galior
Allowable total error (ATE) are performance specification limits predefined for a variety of laboratory analytes. These limits define the maximum amount of error that is allowed for an assay when judging acceptability of a new assay during method verification/validation, evaluating patient or instrument comparison data, or in designing a quality control strategy. There are several widely available resources and models that can serve as a guide in selecting ATE. They may be based on legal requirements or set by providers of proficiency testing (PT) and external quality assessment schemes (EQAS). ATE can be also determined by professional expert groups or be based on biological variation of an analyte. Because there are several resources to choose from, there have been several attempts in reaching consensus on which ATE resource should be given preference. This chapter reviews several of these resources in more detail and discusses the difference between allowable total error (ATE) and observed total analytical error (TAE).
允许总误差 (ATE) 是为各种实验室分析物预先设定的性能规范限值。在方法验证/确认、评估患者或仪器对比数据或设计质量控制策略时,这些限值规定了在判断新检测方法的可接受性时所允许的最大误差。有几种广泛可用的资源和模型可作为选择 ATE 的指南。它们可能基于法律要求,或由能力验证(PT)和外部质量评估计划(EQAS)的提供者设定。ATE 也可由专业专家组确定,或基于分析物的生物变异。由于有多种资源可供选择,人们曾多次尝试就应优先选择哪种 ATE 资源达成共识。本章将更详细地回顾其中的几种资源,并讨论允许总误差 (ATE) 与观察到的总分析误差 (TAE) 之间的区别。
{"title":"Defining allowable total error limits in the clinical laboratory.","authors":"Jill Palmer, Kornelia Galior","doi":"10.1016/bs.acc.2023.11.006","DOIUrl":"https://doi.org/10.1016/bs.acc.2023.11.006","url":null,"abstract":"<p><p>Allowable total error (ATE) are performance specification limits predefined for a variety of laboratory analytes. These limits define the maximum amount of error that is allowed for an assay when judging acceptability of a new assay during method verification/validation, evaluating patient or instrument comparison data, or in designing a quality control strategy. There are several widely available resources and models that can serve as a guide in selecting ATE. They may be based on legal requirements or set by providers of proficiency testing (PT) and external quality assessment schemes (EQAS). ATE can be also determined by professional expert groups or be based on biological variation of an analyte. Because there are several resources to choose from, there have been several attempts in reaching consensus on which ATE resource should be given preference. This chapter reviews several of these resources in more detail and discusses the difference between allowable total error (ATE) and observed total analytical error (TAE).</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"118 ","pages":"205-223"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-16DOI: 10.1016/bs.acc.2024.04.001
Anne E Tebo
Idiopathic inflammatory myopathies (IIM), generally referred to as myositis is a heterogeneous group of diseases characterized by muscle inflammation and/or skin involvement, diverse extramuscular manifestations with variable risk for malignancy and response to treatment. Contemporary clinico-serologic categorization identifies 5 main clinical groups which can be further stratified based on age, specific clinical manifestations and/or risk for cancer. The serological biomarkers for this classification are generally known as myositis-specific (MSAs) and myositis-associated antibodies. Based on the use of these antibodies, IIM patients are classified into anti-synthetase syndrome, dermatomyositis, immune-mediated necrotizing myopathy, inclusion body myositis, and overlap myositis. The current classification criteria for IIM requires clinical findings, laboratory measurements, and histological findings of the muscles. However, the use MSAs and myositis-associated autoantibodies as an adjunct for disease evaluation is thought to provide a cost-effective personalized approach that may not only guide diagnosis but aid in stratification and/or prognosis of patients. This review provides a comprehensive overview of contemporary autoantibodies that are specific or associated myositis. In addition, it highlights possible pathways for the detection and interpretation of these antibodies with limitations for routine clinical use.
{"title":"Autoantibody evaluation in idiopathic inflammatory myopathies.","authors":"Anne E Tebo","doi":"10.1016/bs.acc.2024.04.001","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.04.001","url":null,"abstract":"<p><p>Idiopathic inflammatory myopathies (IIM), generally referred to as myositis is a heterogeneous group of diseases characterized by muscle inflammation and/or skin involvement, diverse extramuscular manifestations with variable risk for malignancy and response to treatment. Contemporary clinico-serologic categorization identifies 5 main clinical groups which can be further stratified based on age, specific clinical manifestations and/or risk for cancer. The serological biomarkers for this classification are generally known as myositis-specific (MSAs) and myositis-associated antibodies. Based on the use of these antibodies, IIM patients are classified into anti-synthetase syndrome, dermatomyositis, immune-mediated necrotizing myopathy, inclusion body myositis, and overlap myositis. The current classification criteria for IIM requires clinical findings, laboratory measurements, and histological findings of the muscles. However, the use MSAs and myositis-associated autoantibodies as an adjunct for disease evaluation is thought to provide a cost-effective personalized approach that may not only guide diagnosis but aid in stratification and/or prognosis of patients. This review provides a comprehensive overview of contemporary autoantibodies that are specific or associated myositis. In addition, it highlights possible pathways for the detection and interpretation of these antibodies with limitations for routine clinical use.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"45-67"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-22DOI: 10.1016/bs.acc.2024.02.005
Lucia Agoston-Coldea, Andra Negru
Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.
心脏纤维化与右心功能障碍有关,会导致严重的发病率和死亡率。在各种细胞和体液刺激下,心脏成纤维细胞、巨噬细胞、CD4+ 和 CD8+ T 细胞、肥大细胞和内皮细胞通过合成多种促纤维化因子,直接或间接地促进纤维化。包括转化生长因子-β 和肾素-血管紧张素系统在内的多个系统可产生 I 型和 III 型胶原蛋白、纤连蛋白和 α 平滑肌肌动蛋白,从而改变细胞外基质。尽管带钆增强的磁共振成像仍是金标准,但使用循环生物标记物是促进检测和监测心血管纤维化的一种廉价而有吸引力的方法。本综述探讨了如何利用蛋白质和核酸(miRNA)标记物来更好地了解潜在的病理生理学,以及它们在开发抑制和可能逆转心脏纤维化的疗法中的作用。
{"title":"Myocardial fibrosis in right heart dysfunction.","authors":"Lucia Agoston-Coldea, Andra Negru","doi":"10.1016/bs.acc.2024.02.005","DOIUrl":"10.1016/bs.acc.2024.02.005","url":null,"abstract":"<p><p>Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"119 ","pages":"71-116"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to technologic advancements, periodontology has witnessed a boost in biomarker research over the past three decades. Indeed, with the aid of omics, our understanding of the healthy periodontium, pathogenesis of periodontal diseases, and healing after periodontal treatment has improved significantly. Yet, the traditional methods, periodontal probing and radiographies, remain the most common methods to diagnose periodontal disease and monitor treatment. Although these approaches can produce reliable diagnostic outcomes, they generally detect disease only after significant tissue degradation thus making treatment outcome highly uncertain. Accordingly, laboratories worldwide have collaborated with clinicians to design accurate, rapid and cost-effective biomarkers for periodontal disease diagnosis. Despite these efforts, biomarkers that can be widely used in early disease diagnosis and for treatment outcome prediction are far from daily use. The aim of this chapter is to give a general overview on periodontal health and diseases, and review recent advancements in periodontal biomarker research. A second aim will discuss the strengths and limitations of translating periodontal biomarker research to clinical practice. Genetic biomarkers of periodontitis are not discussed as the available confirmatory data is scarce.
{"title":"Advances in periodontal biomarkers.","authors":"Ulvi Kahraman Gürsoy, Meltem Özdemir Kabalak, Mervi Gürsoy","doi":"10.1016/bs.acc.2024.03.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.03.003","url":null,"abstract":"<p><p>Due to technologic advancements, periodontology has witnessed a boost in biomarker research over the past three decades. Indeed, with the aid of omics, our understanding of the healthy periodontium, pathogenesis of periodontal diseases, and healing after periodontal treatment has improved significantly. Yet, the traditional methods, periodontal probing and radiographies, remain the most common methods to diagnose periodontal disease and monitor treatment. Although these approaches can produce reliable diagnostic outcomes, they generally detect disease only after significant tissue degradation thus making treatment outcome highly uncertain. Accordingly, laboratories worldwide have collaborated with clinicians to design accurate, rapid and cost-effective biomarkers for periodontal disease diagnosis. Despite these efforts, biomarkers that can be widely used in early disease diagnosis and for treatment outcome prediction are far from daily use. The aim of this chapter is to give a general overview on periodontal health and diseases, and review recent advancements in periodontal biomarker research. A second aim will discuss the strengths and limitations of translating periodontal biomarker research to clinical practice. Genetic biomarkers of periodontitis are not discussed as the available confirmatory data is scarce.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"145-168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-11DOI: 10.1016/bs.acc.2024.03.002
Erika Ponzini
An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.
{"title":"Tear biomarkers.","authors":"Erika Ponzini","doi":"10.1016/bs.acc.2024.03.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.03.002","url":null,"abstract":"<p><p>An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"69-115"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-03DOI: 10.1016/bs.acc.2024.04.008
Lays Adrianne M Trajano-Silva, Simon Ngao Mule, Giuseppe Palmisano
Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.
{"title":"Molecular tools to regulate gene expression in Trypanosoma cruzi.","authors":"Lays Adrianne M Trajano-Silva, Simon Ngao Mule, Giuseppe Palmisano","doi":"10.1016/bs.acc.2024.04.008","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.04.008","url":null,"abstract":"<p><p>Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"169-190"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-30DOI: 10.1016/bs.acc.2024.04.002
Sumit Kinger, Yuvraj Anandrao Jagtap, Prashant Kumar, Akash Choudhary, Amit Prasad, Vijay Kumar Prajapati, Amit Kumar, Gunjan Mehta, Amit Mishra
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
{"title":"Proteostasis in neurodegenerative diseases.","authors":"Sumit Kinger, Yuvraj Anandrao Jagtap, Prashant Kumar, Akash Choudhary, Amit Prasad, Vijay Kumar Prajapati, Amit Kumar, Gunjan Mehta, Amit Mishra","doi":"10.1016/bs.acc.2024.04.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.04.002","url":null,"abstract":"<p><p>Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the \"life\" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"121 ","pages":"270-333"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1016/bs.acc.2024.02.003
Maximo J Marin, Xander M R van Wijk, Allison B Chambliss
Sepsis, a dysregulated host immune response to an infectious agent, significantly increases morbidity and mortality for hospitalized patients worldwide. This chapter reviews (1) the basic principles of infectious diseases, pathophysiology and current definition of sepsis, (2) established sepsis biomarkers such lactate, procalcitonin and C-reactive protein, (3) novel, newly regulatory-cleared/approved biomarkers, such as assays that evaluate white blood cell properties and immune response molecules, and (4) emerging biomarkers and biomarker panels to highlight future directions and opportunities in the diagnosis and management of sepsis.
败血症是宿主对感染性病原体的一种失调免疫反应,它大大增加了全球住院病人的发病率和死亡率。本章回顾了:(1) 感染性疾病的基本原理、病理生理学和脓毒症的当前定义;(2) 已确立的脓毒症生物标志物,如乳酸、降钙素原和 C 反应蛋白;(3) 新近获得监管部门批准/认可的新型生物标志物,如评估白细胞特性和免疫反应分子的检测方法;(4) 新出现的生物标志物和生物标志物面板,以突出脓毒症诊断和管理的未来方向和机遇。
{"title":"Advances in sepsis biomarkers.","authors":"Maximo J Marin, Xander M R van Wijk, Allison B Chambliss","doi":"10.1016/bs.acc.2024.02.003","DOIUrl":"10.1016/bs.acc.2024.02.003","url":null,"abstract":"<p><p>Sepsis, a dysregulated host immune response to an infectious agent, significantly increases morbidity and mortality for hospitalized patients worldwide. This chapter reviews (1) the basic principles of infectious diseases, pathophysiology and current definition of sepsis, (2) established sepsis biomarkers such lactate, procalcitonin and C-reactive protein, (3) novel, newly regulatory-cleared/approved biomarkers, such as assays that evaluate white blood cell properties and immune response molecules, and (4) emerging biomarkers and biomarker panels to highlight future directions and opportunities in the diagnosis and management of sepsis.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"119 ","pages":"117-166"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}