Deep insights into the complex cellular and molecular changes occurring during (patho-)physiological conditions are essential for understanding the interactions and regulation of proteins. This understanding is crucial for research and diagnostics. However, the effectiveness of conventional immunofluorescence and light microscope, tools for visualizing the spatial distribution of cells or proteins, are limited both in resolution and multiplexity in complex tissues. This is mainly due to challenges such as the spectral overlap of fluorophore wavelengths, a limited range of antibody types, the inherent variability of samples and the optical resolution limit. The herein demonstrated combination of multiplex immunofluorescence imaging and super resolution microscopy offers a solution to these limitations by enabling the identification of different cell types and precise subcellular localization of proteins in tissue sections. In this study, we demonstrate the cyclic staining and de-staining of paraffin kidney sections, making it suitable for routine use and compatible with super-resolution microscopy for podocyte ultrastructural studies. We have further developed a computerized workflow for data processing which is accessible through available reagents and open-access code. As a proof of principle, we identified CDH2 as a marker for cellular lesions of sclerotic glomeruli in the nephrotoxic serum nephritis mouse model and cross-validated this finding with a human Nephroseq dataset indicating its translatability. In summary, our work represents an advance in multiplex imaging, which is crucial for understanding the localization of numerous proteins in a single FFPE kidney section and the compatibility with super-resolution microscopy to study ultrastructural changes of podocytes.