首页 > 最新文献

Circulation research最新文献

英文 中文
Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation. NAE1 的 Crotonylation 通过 Gelsolin Neddylation 调节心肌肥大。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-04 DOI: 10.1161/CIRCRESAHA.124.324733
Jie Ju, Kai Wang, Fang Liu, Cui-Yun Liu, Yun-Hong Wang, Shao-Cong Wang, Lu-Yu Zhou, Xin-Min Li, Yu-Qin Wang, Xin-Zhe Chen, Rui-Feng Li, Shi-Jun Xu, Chen Chen, Mei-Hua Zhang, Su-Min Yang, Jin-Wei Tian, Kun Wang
<p><strong>Background: </strong>Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy.</p><p><strong>Methods: </strong>Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation.</p><p><strong>Results: </strong>The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy.</p><p><strong>Conclusions: </strong>Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardi
背景:心脏肥大及其相关重塑是导致心力衰竭的主要原因之一。赖氨酸巴豆酰化是最近发现的一种翻译后修饰,其在心肌肥厚中的作用在很大程度上仍然未知。NAE1(NEDD8-激活酶 E1 调控亚基)主要参与蛋白质靶点的奈德基化修饰。然而,巴豆酰化的 NAE1 的功能尚未明确。本研究旨在阐明NAE1巴豆酰化对心脏肥大的影响和机制:方法:通过免疫沉淀和Western印迹检测人和小鼠心肌肥厚患者的巴豆酰化水平。在横向主动脉收缩诱导的小鼠心脏肥大模型中,进行了TMT标记的赖氨酸巴豆酰化定量分析,以确定巴豆酰化的蛋白质。我们产生了携带赖氨酸至精氨酸K238R(位点238上的赖氨酸至精氨酸突变)突变的NAE1基因敲入小鼠(NAE1 K238R)和表达模拟赖氨酸至谷氨酸突变的NAE1基因敲入小鼠(NAE1 K238R)。我们还研究了表达模拟赖氨酸至谷氨酰胺 K238Q(位点 238 上的赖氨酸至谷氨酰胺突变)突变(NAE1 K238Q)的 NAE1 基因敲入小鼠,以评估 NAE1 K238 上的巴豆酰化在病理性心肌肥厚中的功能作用。此外,我们还结合免疫沉淀、质谱分析和点印迹分析等多种分子生物学方法,鉴定了目标GSN(凝胶溶素)和导致NAE1 K238巴豆酰化功能的相应分子事件:结果:在小鼠和心肌肥厚患者体内,NAE1的巴豆酰化水平升高。定量巴豆酰组学分析表明,K238是NAE1的主要巴豆酰化位点。NAE1 K238R基因敲入小鼠的K238巴豆酰化缺失可减轻心脏肥大并恢复心脏功能,而NAE1 K238Q基因敲入小鼠的高巴豆酰化模拟可显著增强横主动脉收缩诱导的病理性肥大反应,导致心脏结构和功能受损。携带NAE1 K238R突变体的重组腺病毒载体减轻了Ang II(血管紧张素II)诱导的肥厚,而K238Q突变体则加重了Ang II诱导的肥厚。从机理上讲,我们发现GSN是NAE1的直接靶标。NAE1的K238巴豆酰化促进了GSN的尼达基化,从而增强了其蛋白的稳定性和表达。NAE1巴豆酰化依赖的GSN增加促进了肌动蛋白的分裂活性,从而导致了不良的细胞骨架重塑和病理性肥大的进展:我们的研究结果为我们提供了新的视角,使我们了解到巴豆酰化在心脏肥大过程中对非组蛋白的作用。我们发现,NAE1的K238巴豆酰化在通过GSN内酰化介导心肌肥大中起着至关重要的作用,这为病理性肥大和心脏重塑提供了潜在的新治疗靶点。
{"title":"Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation.","authors":"Jie Ju, Kai Wang, Fang Liu, Cui-Yun Liu, Yun-Hong Wang, Shao-Cong Wang, Lu-Yu Zhou, Xin-Min Li, Yu-Qin Wang, Xin-Zhe Chen, Rui-Feng Li, Shi-Jun Xu, Chen Chen, Mei-Hua Zhang, Su-Min Yang, Jin-Wei Tian, Kun Wang","doi":"10.1161/CIRCRESAHA.124.324733","DOIUrl":"10.1161/CIRCRESAHA.124.324733","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardi","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems Biology Approach Uncovers Candidates for Liver-Heart Interorgan Crosstalk in HFpEF. 系统生物学方法揭示了高频心衰患者肝-心器官间串联的候选者。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-08-29 DOI: 10.1161/CIRCRESAHA.124.324829
Stefano Strocchi, Luo Liu, Rongling Wang, Steffen P Häseli, Federico Capone, David Bode, Natasha Nambiar, Tolga Eroglu, Leandro Santiago Padilla, Catherine Farrelly, Antonio Vacca, Marianna Mascagni, Christian U Oeing, Ulrich Kintscher, Simone Jung, Saskia A Diezel, Sarah V Liévano Contreras, Mingqi Zhou, Marcus Seldin, Gabriele G Schiattarella
{"title":"Systems Biology Approach Uncovers Candidates for Liver-Heart Interorgan Crosstalk in HFpEF.","authors":"Stefano Strocchi, Luo Liu, Rongling Wang, Steffen P Häseli, Federico Capone, David Bode, Natasha Nambiar, Tolga Eroglu, Leandro Santiago Padilla, Catherine Farrelly, Antonio Vacca, Marianna Mascagni, Christian U Oeing, Ulrich Kintscher, Simone Jung, Saskia A Diezel, Sarah V Liévano Contreras, Mingqi Zhou, Marcus Seldin, Gabriele G Schiattarella","doi":"10.1161/CIRCRESAHA.124.324829","DOIUrl":"10.1161/CIRCRESAHA.124.324829","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF. 心脏对代谢压力的有丝分裂反应迟钝是导致高房血症的原因之一。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 DOI: 10.1161/circresaha.123.324103
Akira Yoshii,Timothy S McMillen,Yajun Wang,Bo Zhou,Hongye Chen,Durba Banerjee,Melisa Herrero,Pei Wang,Naoto Muraoka,Wang Wang,Charles E Murry,Rong Tian
BACKGROUNDMetabolic remodeling and mitochondrial dysfunction are hallmarks of heart failure with reduced ejection fraction. However, their role in the pathogenesis of HF with preserved ejection fraction (HFpEF) is poorly understood.METHODSIn a mouse model of HFpEF, induced by high-fat diet and Nω-nitrol-arginine methyl ester, cardiac energetics was measured by 31P NMR spectroscopy and substrate oxidation profile was assessed by 13C-isotopmer analysis. Mitochondrial functions were assessed in the heart tissue and human induced pluripotent stem cell-derived cardiomyocytes.RESULTSHFpEF hearts presented a lower phosphocreatine content and a reduced phosphocreatine/ATP ratio, similar to that in heart failure with reduced ejection fraction. Decreased respiratory function and increased reactive oxygen species production were observed in mitochondria isolated from HFpEF hearts suggesting mitochondrial dysfunction. Cardiac substrate oxidation profile showed a high dependency on fatty acid oxidation in HFpEF hearts, which is the opposite of heart failure with reduced ejection fraction but similar to that in high-fat diet hearts. However, phosphocreatine/ATP ratio and mitochondrial function were sustained in the high-fat diet hearts. We found that mitophagy was activated in the high-fat diet heart but not in HFpEF hearts despite similar extent of obesity suggesting that mitochondrial quality control response was impaired in HFpEF hearts. Using a human induced pluripotent stem cell-derived cardiomyocyte mitophagy reporter, we found that fatty acid loading stimulated mitophagy, which was obliterated by inhibiting fatty acid oxidation. Enhancing fatty acid oxidation by deleting ACC2 (acetyl-CoA carboxylase 2) in the heart stimulated mitophagy and improved HFpEF phenotypes.CONCLUSIONSMaladaptation to metabolic stress in HFpEF hearts impairs mitochondrial quality control and contributed to the pathogenesis, which can be improved by stimulating fatty acid oxidation.
背景代谢重塑和线粒体功能障碍是射血分数降低型心力衰竭的特征。方法在高脂饮食和 Nω-硝基精氨酸甲酯诱导的高射血分数心力衰竭小鼠模型中,通过 31P NMR 光谱测定心脏能量,并通过 13C 同位素分析评估底物氧化概况。结果HFpEF心脏的磷酸肌酸含量较低,磷酸肌酸/ATP比率降低,与射血分数降低的心力衰竭相似。从高频低氧血症心脏分离的线粒体中观察到呼吸功能下降,活性氧生成增加,表明线粒体功能障碍。心脏底物氧化谱显示,HFpEF 心脏高度依赖脂肪酸氧化,这与射血分数降低的心衰相反,但与高脂饮食心脏相似。然而,高脂饮食心脏的磷酸肌酸/ATP比率和线粒体功能得以维持。我们发现,尽管肥胖程度相似,但高脂饮食心脏中的有丝分裂被激活,而高密度脂蛋白EF心脏中的有丝分裂没有被激活,这表明高密度脂蛋白EF心脏中的线粒体质量控制反应受损。通过使用人类诱导多能干细胞衍生的心肌细胞有丝分裂报告物,我们发现脂肪酸负荷会刺激有丝分裂,而抑制脂肪酸氧化则会消除这种现象。结论HFpEF心脏对代谢应激的不适应会损害线粒体质量控制并导致发病,而促进脂肪酸氧化则可改善这一问题。
{"title":"Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF.","authors":"Akira Yoshii,Timothy S McMillen,Yajun Wang,Bo Zhou,Hongye Chen,Durba Banerjee,Melisa Herrero,Pei Wang,Naoto Muraoka,Wang Wang,Charles E Murry,Rong Tian","doi":"10.1161/circresaha.123.324103","DOIUrl":"https://doi.org/10.1161/circresaha.123.324103","url":null,"abstract":"BACKGROUNDMetabolic remodeling and mitochondrial dysfunction are hallmarks of heart failure with reduced ejection fraction. However, their role in the pathogenesis of HF with preserved ejection fraction (HFpEF) is poorly understood.METHODSIn a mouse model of HFpEF, induced by high-fat diet and Nω-nitrol-arginine methyl ester, cardiac energetics was measured by 31P NMR spectroscopy and substrate oxidation profile was assessed by 13C-isotopmer analysis. Mitochondrial functions were assessed in the heart tissue and human induced pluripotent stem cell-derived cardiomyocytes.RESULTSHFpEF hearts presented a lower phosphocreatine content and a reduced phosphocreatine/ATP ratio, similar to that in heart failure with reduced ejection fraction. Decreased respiratory function and increased reactive oxygen species production were observed in mitochondria isolated from HFpEF hearts suggesting mitochondrial dysfunction. Cardiac substrate oxidation profile showed a high dependency on fatty acid oxidation in HFpEF hearts, which is the opposite of heart failure with reduced ejection fraction but similar to that in high-fat diet hearts. However, phosphocreatine/ATP ratio and mitochondrial function were sustained in the high-fat diet hearts. We found that mitophagy was activated in the high-fat diet heart but not in HFpEF hearts despite similar extent of obesity suggesting that mitochondrial quality control response was impaired in HFpEF hearts. Using a human induced pluripotent stem cell-derived cardiomyocyte mitophagy reporter, we found that fatty acid loading stimulated mitophagy, which was obliterated by inhibiting fatty acid oxidation. Enhancing fatty acid oxidation by deleting ACC2 (acetyl-CoA carboxylase 2) in the heart stimulated mitophagy and improved HFpEF phenotypes.CONCLUSIONSMaladaptation to metabolic stress in HFpEF hearts impairs mitochondrial quality control and contributed to the pathogenesis, which can be improved by stimulating fatty acid oxidation.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":20.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis. 经 4-PBA 重编程的单核细胞可有效缓解炎症和动脉粥样硬化。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-03 DOI: 10.1161/CIRCRESAHA.124.325023
Shuo Geng, Ran Lu, Yao Zhang, Yajun Wu, Ling Xie, Blake A Caldwell, Kisha Pradhan, Ziyue Yi, Jacqueline Hou, Feng Xu, Xian Chen, Liwu Li

Background: Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis.

Methods: Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice.

Results: In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo.

Conclusions: Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.

背景:由炎症单核细胞引发的慢性炎症是动脉粥样硬化发病机制的基础。然而,目前还没有针对单核细胞有效解决慢性低度炎症的方法。小分子化合物 4-苯基丁酸(4-PBA)在减轻动脉粥样硬化方面具有广泛的抗炎作用。选择性递送 4-PBA 重编程单核细胞可能具有新的潜力,为治疗动脉粥样硬化提供靶向和精准治疗:方法:结合单细胞 RNA 测序和互补免疫学方法进行系统分析,确定了 4-PBA 训练的重编程单核细胞的关键分辨特征和定义标记。综合生化和遗传方法评估了单核细胞重编程的分子机制。通过与经 4-PBA 训练的供体单核细胞和受体天真单核细胞进行共培养实验,评估了细胞间平衡解析的传播。在高脂饮食喂养的载脂蛋白E-/-小鼠模型中,通过IP 4-PBA给药,评估了4-PBA在体内解决单核细胞问题和预防动脉粥样硬化的效果。此外,还通过向接受高脂饮食的载脂蛋白E-/-小鼠静脉注射4-PBA训练的单核细胞,检测了4-PBA训练的单核细胞的选择性功效:结果:在这项研究中,我们发现单核细胞可被 4-PBA 有效地重塑为一种以粘附性降低和抗炎介质 CD24 表达增强为特征的免疫溶解状态。从机理上讲,4-PBA 通过降低过氧化物酶体应激和减弱 SYK(脾脏酪氨酸激酶)-mTOR(哺乳动物雷帕霉素靶标)信号传导,减少了 ICAM-1(细胞间粘附分子 1)的表达。与此同时,4-PBA 通过促进由 TOLLIP(通行费互作蛋白)介导的 PPARγ(过氧化物酶体增殖激活受体γ)内酰化,增强了分解介质 CD24 的表达。经过 4-PBA 训练的单核细胞可通过 CD24 向邻近的单核细胞有效传播抗炎活性。我们的数据进一步证明,4-PBA 训练的单核细胞在体内给药时可有效减少动脉粥样硬化的发病机制:我们的研究描述了一种稳健有效的方法来生成抗动脉粥样硬化单核细胞,描述了靶向单核细胞重编程的新机制,并提供了一种基于提供重编程抗动脉粥样硬化单核细胞的精准疗法。
{"title":"Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis.","authors":"Shuo Geng, Ran Lu, Yao Zhang, Yajun Wu, Ling Xie, Blake A Caldwell, Kisha Pradhan, Ziyue Yi, Jacqueline Hou, Feng Xu, Xian Chen, Liwu Li","doi":"10.1161/CIRCRESAHA.124.325023","DOIUrl":"10.1161/CIRCRESAHA.124.325023","url":null,"abstract":"<p><strong>Background: </strong>Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis.</p><p><strong>Methods: </strong>Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed <i>ApoE</i><sup><i>-/-</i></sup> mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed <i>ApoE</i><sup><i>-/-</i></sup> mice.</p><p><strong>Results: </strong>In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo.</p><p><strong>Conclusions: </strong>Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling. 巨噬细胞表达的凝血因子 7 促进不良心脏重塑
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-05 DOI: 10.1161/CIRCRESAHA.123.324114
Venkata Garlapati, Qi Luo, Jens Posma, Melania Aluia, Than Son Nguyen, Kristin Grunz, Michael Molitor, Stefanie Finger, Gregory Harms, Tobias Bopp, Wolfram Ruf, Philip Wenzel

Background: Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood.

Methods: Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention.

Results: Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI.

Conclusions: Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.

背景:在缺血性心脏病中,过多的纤维重塑会导致心脏功能障碍,其驱动因素是骨髓细胞凝血信号的MAP(丝裂原活化蛋白)激酶依赖性TGF-ß1(转化生长因子-ß1)激活。心肌梗死(MI)后如何有针对性地针对凝血-炎症回路进行有益的巨噬细胞重编程,目前还不完全清楚:方法:用永久性结扎左前降支动脉的小鼠建立非再灌注心肌梗死模型,并通过单细胞RNA测序、蛋白质表达变化、共聚焦显微镜和纵向恢复监测进行分析。我们利用遗传小鼠模型和药物干预,探究了组织因子(TF)-因子7(F7)-整合素ß1-PAR2(蛋白酶激活受体2)信号复合体的作用:结果:与对照组相比,对裂解不敏感的PAR2R38E和骨髓细胞整合素ß1缺陷小鼠在心肌梗死后的心脏功能有所改善。单核细胞的邻近接合试验表明,缺失单核细胞/巨噬细胞 F7 的小鼠在心肌梗死后 F7 与整合素 ß1 的共定位减少。与对照组相比,F7fl/fl CX3CR1Cre小鼠的TGF-ß1和MAP激酶活化以及心肌梗死后的心脏功能障碍均有所降低,尽管髓系细胞的整体招募没有改变。心肌梗死后3天和7天,CD45(分化簇45)+细胞的单细胞mRNA测序发现了从招募的单核细胞到炎性TF+/F7+/TREM(髓样细胞上表达的触发受体)1+巨噬细胞的轨迹。早在心肌梗死后 7 天,巨噬细胞 F7 缺失就导致了修复性 Olfml(嗅探素)3+ 巨噬细胞的扩增,反之,TF+/F7+/TREM1+ 巨噬细胞的减少,PAR2R38E 小鼠的巨噬细胞也减少了。在非再灌注心肌梗死后的第1至5天,使用一种抑制巨噬细胞TF-F7-PAR2信号复合物的单克隆抗体进行短期治疗,但不具有抗凝活性,这种抗体可改善心功能障碍,减少过度纤维化,减轻血管内皮功能障碍,并提高心肌梗死后28天的存活率:结论:血管外 TF-F7-PAR2 复合物信号驱动缺血性心脏病中巨噬细胞的炎症极化。结论:血管外 TF-F7-PAR2 复合物信号驱动缺血性心脏病中的炎性巨噬细胞极化,针对这一信号复合物进行特定的治疗性巨噬细胞重编程可减轻心肌梗死后的心脏纤维化并改善心血管功能。
{"title":"Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling.","authors":"Venkata Garlapati, Qi Luo, Jens Posma, Melania Aluia, Than Son Nguyen, Kristin Grunz, Michael Molitor, Stefanie Finger, Gregory Harms, Tobias Bopp, Wolfram Ruf, Philip Wenzel","doi":"10.1161/CIRCRESAHA.123.324114","DOIUrl":"10.1161/CIRCRESAHA.123.324114","url":null,"abstract":"<p><strong>Background: </strong>Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood.</p><p><strong>Methods: </strong>Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention.</p><p><strong>Results: </strong>Cleavage-insensitive PAR2<sup>R38E</sup> and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7<sup>fl/fl</sup> CX3CR1 (CX3C motif chemokine receptor 1)<sup>Cre</sup> mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)<sup>+</sup> cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF<sup>+</sup>/TREM (triggered receptor expressed on myeloid cells) 1<sup>+</sup> macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)<sup>+</sup> macrophages and, conversely, to a reduction of TF<sup>+</sup>/TREM1<sup>+</sup> macrophages, which were also reduced in PAR2<sup>R38E</sup> mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI.</p><p><strong>Conclusions: </strong>Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the First Authors. 认识第一作者
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-26 DOI: 10.1161/RES.0000000000000694
{"title":"Meet the First Authors.","authors":"","doi":"10.1161/RES.0000000000000694","DOIUrl":"https://doi.org/10.1161/RES.0000000000000694","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis. 可视化动脉粥样硬化中由免疫检查点抑制剂引发的炎症。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 DOI: 10.1161/circresaha.124.324260
Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu
BACKGROUNDImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.METHODSApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.RESULTSCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.CONCLUSIONSAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.
背景免疫检查点抑制剂(ICI)的使用导致癌症患者出现免疫相关不良事件,如加速动脉粥样硬化。在参与动脉粥样硬化的免疫细胞中,CCR2+(CC motif 趋化因子受体 2 阳性)促炎性巨噬细胞的作用已得到充分证实。然而,目前还没有非侵入性方法来确定 ICI 治疗后这些细胞在体内的变化,并探索免疫相关不良事件的潜在机制。方法用CCR2(CC motif趋化因子受体2)靶向放射性示踪剂和正电子发射断层扫描(PET)评估ICI治疗在小鼠动脉粥样硬化模型中引起的加重的炎症反应,并探索免疫相关不良事件的机制。放射性示踪剂 1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-ECL1i(细胞外环路 1 inverso)用于 CCR2+ 巨噬细胞的 PET 成像。结果CCR2 PET显示,与对照组相比,接受抗PD1治疗的载脂蛋白/-小鼠和Ldlr-/-小鼠的放射性示踪剂摄取量明显增加。免疫染色法和流式细胞术证实载脂蛋白-/-小鼠和低密度脂蛋白-/-小鼠的 CCR2+ 细胞表达增加。单细胞 RNA 测序显示髓系细胞中 CCR2 的表达升高。结论1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-ECL1i PET可以无创检测抗PD1治疗引发的动脉粥样硬化斑块炎症。斑块炎症加重具有时间和剂量依赖性,主要由 IFNγ 信号传导介导。这项研究值得进一步研究 CCR2 PET,将其作为一种非侵入性方法来观察动脉粥样硬化斑块炎症并探索 ICI 治疗后的潜在机制。
{"title":"Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis.","authors":"Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu","doi":"10.1161/circresaha.124.324260","DOIUrl":"https://doi.org/10.1161/circresaha.124.324260","url":null,"abstract":"BACKGROUNDImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.METHODSApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.RESULTSCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.CONCLUSIONSAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":20.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake. EPAS1 通过内皮脂肪酸的摄取减轻动脉粥样硬化在紊乱血流部位的发生。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-05 DOI: 10.1161/CIRCRESAHA.123.324054
Daniela Pirri, Siyu Tian, Blanca Tardajos-Ayllon, Sophie E Irving, Francesco Donati, Scott P Allen, Tadanori Mammoto, Gemma Vilahur, Lida Kabir, Jane Bennett, Yasmin Rasool, Charis Pericleous, Guianfranco Mazzei, Liam McAllan, William R Scott, Thomas Koestler, Urs Zingg, Graeme M Birdsey, Clint L Miller, Torsten Schenkel, Emily V Chambers, Mark J Dunning, Jovana Serbanovic-Canic, Francesco Botrè, Akiko Mammoto, Suowen Xu, Elena Osto, Weiping Han, Maria Fragiadaki, Paul C Evans

Background: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis.

Methods: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet).

Results: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation.

Conclusions: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.

背景:动脉粥样硬化斑块因血流紊乱而形成不均,导致局部内皮细胞(EC)功能障碍。肥胖会加剧这一过程,但其潜在的分子机制尚不清楚。转录因子 EPAS1(HIF2A)在内皮中具有调节作用,但其在动脉粥样硬化中的参与作用仍未得到探讨。本研究探讨了 EPAS1、肥胖和动脉粥样硬化之间的潜在相互作用:方法:使用体外暴露于流动的培养猪主动脉 EC,结合代谢和分子分析,并通过对体内暴露于紊乱流动的鼠主动脉 EC 进行正面免疫染色,分析其对剪切应力的反应。通过高脂饮食或Leptin基因缺失诱导小鼠肥胖和血脂异常。通过诱导性内皮 Epas1 基因缺失和高胆固醇血症诱导(腺相关病毒-PCSK9 [proprotein convertase subtilisin/kexin type 9]; 高脂饮食)评估 Epas1 在动脉粥样硬化中的作用:正面染色显示,EPAS1富集在容易引发动脉粥样硬化的血流紊乱部位。肥胖小鼠的内皮 EPAS1 表达量大幅减少。已知具有动脉粥样硬化保护作用的化合物 Sulforaphane 可恢复 EPAS1 的表达,同时降低肥胖小鼠的血浆甘油三酯水平。同样,甘油三酯衍生物(游离脂肪酸)通过上调负调控因子 PHD2 抑制了培养 EC 中的 EPAS1。临床观察显示,血清 EPAS1 的降低与肥胖者内皮 PHD2 和 PHD3 的升高相关。从功能上讲,内皮 EPAS1 基因缺失会增加高胆固醇血症小鼠的病变形成,表明其具有动脉粥样硬化保护功能。机理研究发现,EPAS1通过正向调节脂肪酸处理分子CD36和LIPG的表达以增加脂肪酸β-氧化,从而维持内皮增殖,从而保护动脉:内皮 EPAS1 通过脂肪酸摄取和代谢维持内皮细胞增殖,从而减轻血流紊乱部位的动脉粥样硬化。这一内皮修复途径在肥胖症中受到抑制,表明一种新型甘油三酯-PHD2调节途径抑制了EPAS1的表达。这些发现对解决肥胖症血管功能障碍的治疗策略具有重要意义。
{"title":"EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake.","authors":"Daniela Pirri, Siyu Tian, Blanca Tardajos-Ayllon, Sophie E Irving, Francesco Donati, Scott P Allen, Tadanori Mammoto, Gemma Vilahur, Lida Kabir, Jane Bennett, Yasmin Rasool, Charis Pericleous, Guianfranco Mazzei, Liam McAllan, William R Scott, Thomas Koestler, Urs Zingg, Graeme M Birdsey, Clint L Miller, Torsten Schenkel, Emily V Chambers, Mark J Dunning, Jovana Serbanovic-Canic, Francesco Botrè, Akiko Mammoto, Suowen Xu, Elena Osto, Weiping Han, Maria Fragiadaki, Paul C Evans","doi":"10.1161/CIRCRESAHA.123.324054","DOIUrl":"10.1161/CIRCRESAHA.123.324054","url":null,"abstract":"<p><strong>Background: </strong>Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis.</p><p><strong>Methods: </strong>Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of <i>Epas1</i> in atherosclerosis was evaluated by inducible endothelial <i>Epas1</i> deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet).</p><p><strong>Results: </strong>En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation.</p><p><strong>Conclusions: </strong>Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. 解构再生医学:从细胞疗法的机制研究到新型生物启发 RNA 药物。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-26 DOI: 10.1161/circresaha.124.323058
Eduardo Marbán
All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.
美国食品和药物管理局批准的所有非编码 RNA(ncRNA)药物(n≈20)都通过反义等机制靶向已知的致病分子通路。在再生医学工作的一次偶然演变中,我和我的同事颠倒了 RNA 药物的发现过程:首先,我们发现了可改变疾病的天然 ncRNA,然后用它们作为新合成 RNA 药物的模板。只有在生物活性得到证实后,才会对其机制进行探究。这一历程始于用于心脏再生的心肌细胞(CDCs)的开发。在首次人体试验中测试 CDC 时,我们发现它们是间接起作用的:CDC 分泌的细胞外囊泡中的 ncRNA 介导了治疗效果。绝大多数此类 ncRNA 是功能未知的片段。我们从 CDC 分泌的细胞外囊泡中选择了几种丰富的 ncRNA,对它们进行了体外和体内合成和筛选。那些具有特殊疾病调节生物活性的ncRNA激发了新的化学实体,这些实体符合食品药品管理局批准的ncRNA武器库的结构规范。细胞外囊泡衍生 RNA 生物启发药物开发"(CREDO)这一发现弧线产生了多种有前景的先导化合物,每种化合物都通过独特的、通常是新颖的机制发挥作用。这一过程依赖于新出现的见解来引导治疗开发。我们最初的研究重点--CDCs--目前已进入治疗杜氏肌营养不良症及其相关心肌病的第三阶段试验。但是,CDCs 的静脉给药策略和重复给药方案已被证明是临床成功的关键,而这两种策略和方案都源于系统的机理研究。与此同时,不断涌现的新发现也催生了多种无细胞候选疗法:CDC分泌的细胞外囊泡正处于临床前开发阶段,用于治疗室性心律失常,而CREDO构想的RNA药物正在转化中,用于治疗从心肌炎到硬皮病等各种疾病。
{"title":"Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs.","authors":"Eduardo Marbán","doi":"10.1161/circresaha.124.323058","DOIUrl":"https://doi.org/10.1161/circresaha.124.323058","url":null,"abstract":"All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":20.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic and Shear Stress Regulate Endothelial Epas1 in Atherosclerosis. 代谢和剪切应力调控动脉粥样硬化中的内皮细胞 Epas1
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-26 DOI: 10.1161/circresaha.124.325131
Judith C Sluimer
{"title":"Metabolic and Shear Stress Regulate Endothelial Epas1 in Atherosclerosis.","authors":"Judith C Sluimer","doi":"10.1161/circresaha.124.325131","DOIUrl":"https://doi.org/10.1161/circresaha.124.325131","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":20.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Circulation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1