Pub Date : 2025-01-17Epub Date: 2024-12-17DOI: 10.1161/CIRCRESAHA.124.324708
Maryna V Basalay, Alla Korsak, Zhenhe He, Alexander V Gourine, Sean M Davidson, Derek M Yellon
{"title":"SGLT2 Inhibition Induces Cardioprotection by Increasing Parasympathetic Activity.","authors":"Maryna V Basalay, Alla Korsak, Zhenhe He, Alexander V Gourine, Sean M Davidson, Derek M Yellon","doi":"10.1161/CIRCRESAHA.124.324708","DOIUrl":"10.1161/CIRCRESAHA.124.324708","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"229-231"},"PeriodicalIF":16.5,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-16DOI: 10.1161/CIRCRESAHA.124.324890
Ashley L Mutchler, Jianyong Zhong, Hai-Chun Yang, Shilin Zhao, Rachelle Crescenzi, Shannon Taylor, Roy L Rao, Elaine L Shelton, Annet Kirabo, Valentina Kon
Background: Lymphatic collecting vessels in the kidney are critical in clearing interstitial fluid, macromolecules, and infiltrating immune cells. Dysfunction of the lymphatic vessels can disrupt this process and exacerbate injury-associated inflammation in many disease conditions. We previously found that sodium accumulates within the kidney interstitium during proteinuric kidney injury and elevated sodium environments stimulate isolevuglandin production in antigen-presenting cells, stimulating T cells, and modulating inflammatory responses. In the present study, we investigated whether proteinuric injury increases production of isolevuglandin-adduct formation in antigen-presenting cells, their effects on lymphatic endothelial cells (LECs), and the role of the ET-3 (endothelin-3)/ETBR (endothelin type B receptor) on lymphatic vessel function.
Methods: We used a mouse model of nephrotoxin-induced proteinuric injury to show that proteinuric injury expanded the kidney lymphatic network and to immunophenotype the infiltrating immune cells. To determine mechanisms, we analyzed the interaction of migratory immune cells and LECs using an in vitro transwell migration assay, bulk RNA sequencing, and flow cytometric analysis. To determine the effect of ET-3/ETBR axis on lymphatic vessel contractility, we analyzed microdissected lymphangions utilizing a vessel perfusion chamber.
Results: We found that animals with proteinuric injury have increased kidney lymphangiogenesis, isolevuglandin-producing dendritic cells, and IFN (interferon)-γ-producing CD4+T cells. The sodium avid environment present in kidney injury enhances the interaction between LECs and migratory antigen-presenting cells and LEC production of isolevuglandin-adducts. Elevated sodium environment-induced isolevuglandin-adduct formation facilitates the ET-3/ETBR communication between LECs and dendritic cells. In addition, the ET-3/ETBR axis modulates lymphatic collecting vessel pumping dynamics.
Conclusions: These findings reveal a novel mechanism linking the isolevuglandin-mediated ET-3/ETBR axis with LECs and infiltrating dendritic cells. ET-3/ETBR signaling in lymphatic vessel dynamics is a novel pathogenic component and a possible therapeutic target in kidney disease.
{"title":"ET-3/ETBR Mediates Na<sup>+</sup>-Activated Immune Signaling and Kidney Lymphatic Dynamics.","authors":"Ashley L Mutchler, Jianyong Zhong, Hai-Chun Yang, Shilin Zhao, Rachelle Crescenzi, Shannon Taylor, Roy L Rao, Elaine L Shelton, Annet Kirabo, Valentina Kon","doi":"10.1161/CIRCRESAHA.124.324890","DOIUrl":"10.1161/CIRCRESAHA.124.324890","url":null,"abstract":"<p><strong>Background: </strong>Lymphatic collecting vessels in the kidney are critical in clearing interstitial fluid, macromolecules, and infiltrating immune cells. Dysfunction of the lymphatic vessels can disrupt this process and exacerbate injury-associated inflammation in many disease conditions. We previously found that sodium accumulates within the kidney interstitium during proteinuric kidney injury and elevated sodium environments stimulate isolevuglandin production in antigen-presenting cells, stimulating T cells, and modulating inflammatory responses. In the present study, we investigated whether proteinuric injury increases production of isolevuglandin-adduct formation in antigen-presenting cells, their effects on lymphatic endothelial cells (LECs), and the role of the ET-3 (endothelin-3)/ETBR (endothelin type B receptor) on lymphatic vessel function.</p><p><strong>Methods: </strong>We used a mouse model of nephrotoxin-induced proteinuric injury to show that proteinuric injury expanded the kidney lymphatic network and to immunophenotype the infiltrating immune cells. To determine mechanisms, we analyzed the interaction of migratory immune cells and LECs using an in vitro transwell migration assay, bulk RNA sequencing, and flow cytometric analysis. To determine the effect of ET-3/ETBR axis on lymphatic vessel contractility, we analyzed microdissected lymphangions utilizing a vessel perfusion chamber.</p><p><strong>Results: </strong>We found that animals with proteinuric injury have increased kidney lymphangiogenesis, isolevuglandin-producing dendritic cells, and IFN (interferon)-γ-producing CD4+T cells. The sodium avid environment present in kidney injury enhances the interaction between LECs and migratory antigen-presenting cells and LEC production of isolevuglandin-adducts. Elevated sodium environment-induced isolevuglandin-adduct formation facilitates the ET-3/ETBR communication between LECs and dendritic cells. In addition, the ET-3/ETBR axis modulates lymphatic collecting vessel pumping dynamics.</p><p><strong>Conclusions: </strong>These findings reveal a novel mechanism linking the isolevuglandin-mediated ET-3/ETBR axis with LECs and infiltrating dendritic cells. ET-3/ETBR signaling in lymphatic vessel dynamics is a novel pathogenic component and a possible therapeutic target in kidney disease.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"194-208"},"PeriodicalIF":16.5,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2025-01-16DOI: 10.1161/RES.0000000000000707
{"title":"Meet the First Authors.","authors":"","doi":"10.1161/RES.0000000000000707","DOIUrl":"https://doi.org/10.1161/RES.0000000000000707","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"136 2","pages":"159-160"},"PeriodicalIF":16.5,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1161/circresaha.124.325503
Jessica L Faulkner,Matthew R Alexander
{"title":"Endothelial METAP1: Tipping the Angiogenic Scales in Postpartum Preeclampsia.","authors":"Jessica L Faulkner,Matthew R Alexander","doi":"10.1161/circresaha.124.325503","DOIUrl":"https://doi.org/10.1161/circresaha.124.325503","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"23 1","pages":"191-193"},"PeriodicalIF":20.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
{"title":"Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension.","authors":"Ashley L Mutchler,Alexandria Porcia Haynes,Mohammad Saleem,Sydney Jamison,Mohd Mabood Khan,Lale Ertuglu,Annet Kirabo","doi":"10.1161/circresaha.124.325439","DOIUrl":"https://doi.org/10.1161/circresaha.124.325439","url":null,"abstract":"Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"1 1","pages":"232-254"},"PeriodicalIF":20.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Myofibroblasts are primary cells involved in chronic response-induced cardiac fibrosis. Fibroblast activation protein (FAP) is a relatively specific marker of activated myofibroblasts and a potential target molecule. This study aimed to clarify whether a vaccine targeting FAP could eliminate myofibroblasts in chronic cardiac stress model mice and reduce cardiac fibrosis.
Methods: We coadministered a FAP peptide vaccine with a cytosine-phosphate-guanine (CpG) K3 oligonucleotide adjuvant to male C57/BL6J mice and confirmed an elevation in the anti-FAP antibody titer. After continuous angiotensin II and phenylephrine administration for 28 days, we evaluated the degree of cardiac fibrosis and the number of myofibroblasts in cardiac tissues.
Results: We found that cardiac fibrosis was significantly decreased in the FAP-vaccinated mice compared with the angiotensin II and phenylephrine control mice (3.45±1.11% versus 8.62±4.79%; P=4.59×10-3) and that the accumulation of FAP-positive cells was also significantly decreased, as indicated by FAP immunohistochemical staining (4077±1746 versus 7327±1741 cells/mm2; FAP vaccine versus angiotensin II and phenylephrine control; P=6.67×10-3). No systemic or organ-specific inflammation due to antibody-dependent cell cytotoxicity induced by the FAP vaccine was observed. Although the transient activation of myofibroblasts has an important role in maintaining the structural robustness in the process of tissue repair, the FAP vaccine showed no adverse effects in myocardial infarction and skin injury models.
Conclusions: Our study demonstrates the FAP vaccine can be a therapeutic tool for cardiac fibrosis.
背景:肌成纤维细胞是参与慢性反应性心脏纤维化的原代细胞。成纤维细胞活化蛋白(FAP)是一种相对特异性的肌成纤维细胞活化标志物,也是一种潜在的靶分子。本研究旨在阐明靶向FAP的疫苗是否能够消除慢性心脏应激模型小鼠的肌成纤维细胞并减少心脏纤维化。方法:将FAP肽疫苗与CpG K3寡核苷酸佐剂共同接种于雄性C57/BL6J小鼠,证实其抗FAP抗体滴度升高。连续给予血管紧张素II和苯肾上腺素28天后,我们评估心脏纤维化程度和心脏组织中肌成纤维细胞的数量。结果:我们发现,与血管紧张素II和苯肾上腺素对照小鼠相比,接种fap的小鼠心脏纤维化明显减少(3.45±1.11%比8.62±4.79%;P=4.59×10-3), FAP免疫组化染色显示,FAP阳性细胞的积累也显著减少(4077±1746 vs 7327±1741细胞/mm2;FAP疫苗与血管紧张素II和苯肾上腺素对照的比较P = 6.67×三分)。未观察到由FAP疫苗诱导的抗体依赖性细胞毒性引起的全身性或器官特异性炎症。尽管在组织修复过程中,肌成纤维细胞的短暂激活在维持结构稳健性方面起着重要作用,但FAP疫苗在心肌梗死和皮肤损伤模型中未显示出不良反应。结论:我们的研究表明FAP疫苗可以作为心脏纤维化的一种治疗工具。
{"title":"A Vaccine Against Fibroblast Activation Protein Improves Murine Cardiac Fibrosis by Preventing the Accumulation of Myofibroblasts.","authors":"Shota Yoshida, Hiroki Hayashi, Takuro Kawahara, Shunsuke Katsuki, Mitsukuni Kimura, Rissei Hino, Jiao Sun, Ryo Nakamaru, Akiko Tenma, Masayoshi Toyoura, Satoshi Baba, Munehisa Shimamura, Tomohiro Katsuya, Ryuichi Morishita, Hiromi Rakugi, Tetsuya Matoba, Hironori Nakagami","doi":"10.1161/CIRCRESAHA.124.325017","DOIUrl":"10.1161/CIRCRESAHA.124.325017","url":null,"abstract":"<p><strong>Background: </strong>Myofibroblasts are primary cells involved in chronic response-induced cardiac fibrosis. Fibroblast activation protein (FAP) is a relatively specific marker of activated myofibroblasts and a potential target molecule. This study aimed to clarify whether a vaccine targeting FAP could eliminate myofibroblasts in chronic cardiac stress model mice and reduce cardiac fibrosis.</p><p><strong>Methods: </strong>We coadministered a FAP peptide vaccine with a cytosine-phosphate-guanine (CpG) K3 oligonucleotide adjuvant to male C57/BL6J mice and confirmed an elevation in the anti-FAP antibody titer. After continuous angiotensin II and phenylephrine administration for 28 days, we evaluated the degree of cardiac fibrosis and the number of myofibroblasts in cardiac tissues.</p><p><strong>Results: </strong>We found that cardiac fibrosis was significantly decreased in the FAP-vaccinated mice compared with the angiotensin II and phenylephrine control mice (3.45±1.11% versus 8.62±4.79%; <i>P</i>=4.59×10<sup>-3</sup>) and that the accumulation of FAP-positive cells was also significantly decreased, as indicated by FAP immunohistochemical staining (4077±1746 versus 7327±1741 cells/mm<sup>2</sup>; FAP vaccine versus angiotensin II and phenylephrine control; <i>P</i>=6.67×10<sup>-3</sup>). No systemic or organ-specific inflammation due to antibody-dependent cell cytotoxicity induced by the FAP vaccine was observed. Although the transient activation of myofibroblasts has an important role in maintaining the structural robustness in the process of tissue repair, the FAP vaccine showed no adverse effects in myocardial infarction and skin injury models.</p><p><strong>Conclusions: </strong>Our study demonstrates the FAP vaccine can be a therapeutic tool for cardiac fibrosis.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"26-40"},"PeriodicalIF":16.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11692786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}