首页 > 最新文献

Circulation research最新文献

英文 中文
Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling. 巨噬细胞表达的凝血因子 7 促进不良心脏重塑
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-05 DOI: 10.1161/CIRCRESAHA.123.324114
Venkata Garlapati, Qi Luo, Jens Posma, Melania Aluia, Than Son Nguyen, Kristin Grunz, Michael Molitor, Stefanie Finger, Gregory Harms, Tobias Bopp, Wolfram Ruf, Philip Wenzel

Background: Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood.

Methods: Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention.

Results: Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI.

Conclusions: Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.

背景:在缺血性心脏病中,过多的纤维重塑会导致心脏功能障碍,其驱动因素是骨髓细胞凝血信号的MAP(丝裂原活化蛋白)激酶依赖性TGF-ß1(转化生长因子-ß1)激活。心肌梗死(MI)后如何有针对性地针对凝血-炎症回路进行有益的巨噬细胞重编程,目前还不完全清楚:方法:用永久性结扎左前降支动脉的小鼠建立非再灌注心肌梗死模型,并通过单细胞RNA测序、蛋白质表达变化、共聚焦显微镜和纵向恢复监测进行分析。我们利用遗传小鼠模型和药物干预,探究了组织因子(TF)-因子7(F7)-整合素ß1-PAR2(蛋白酶激活受体2)信号复合体的作用:结果:与对照组相比,对裂解不敏感的PAR2R38E和骨髓细胞整合素ß1缺陷小鼠在心肌梗死后的心脏功能有所改善。单核细胞的邻近接合试验表明,缺失单核细胞/巨噬细胞 F7 的小鼠在心肌梗死后 F7 与整合素 ß1 的共定位减少。与对照组相比,F7fl/fl CX3CR1Cre小鼠的TGF-ß1和MAP激酶活化以及心肌梗死后的心脏功能障碍均有所降低,尽管髓系细胞的整体招募没有改变。心肌梗死后3天和7天,CD45(分化簇45)+细胞的单细胞mRNA测序发现了从招募的单核细胞到炎性TF+/F7+/TREM(髓样细胞上表达的触发受体)1+巨噬细胞的轨迹。早在心肌梗死后 7 天,巨噬细胞 F7 缺失就导致了修复性 Olfml(嗅探素)3+ 巨噬细胞的扩增,反之,TF+/F7+/TREM1+ 巨噬细胞的减少,PAR2R38E 小鼠的巨噬细胞也减少了。在非再灌注心肌梗死后的第1至5天,使用一种抑制巨噬细胞TF-F7-PAR2信号复合物的单克隆抗体进行短期治疗,但不具有抗凝活性,这种抗体可改善心功能障碍,减少过度纤维化,减轻血管内皮功能障碍,并提高心肌梗死后28天的存活率:结论:血管外 TF-F7-PAR2 复合物信号驱动缺血性心脏病中巨噬细胞的炎症极化。结论:血管外 TF-F7-PAR2 复合物信号驱动缺血性心脏病中的炎性巨噬细胞极化,针对这一信号复合物进行特定的治疗性巨噬细胞重编程可减轻心肌梗死后的心脏纤维化并改善心血管功能。
{"title":"Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling.","authors":"Venkata Garlapati, Qi Luo, Jens Posma, Melania Aluia, Than Son Nguyen, Kristin Grunz, Michael Molitor, Stefanie Finger, Gregory Harms, Tobias Bopp, Wolfram Ruf, Philip Wenzel","doi":"10.1161/CIRCRESAHA.123.324114","DOIUrl":"10.1161/CIRCRESAHA.123.324114","url":null,"abstract":"<p><strong>Background: </strong>Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood.</p><p><strong>Methods: </strong>Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention.</p><p><strong>Results: </strong>Cleavage-insensitive PAR2<sup>R38E</sup> and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7<sup>fl/fl</sup> CX3CR1 (CX3C motif chemokine receptor 1)<sup>Cre</sup> mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)<sup>+</sup> cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF<sup>+</sup>/TREM (triggered receptor expressed on myeloid cells) 1<sup>+</sup> macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)<sup>+</sup> macrophages and, conversely, to a reduction of TF<sup>+</sup>/TREM1<sup>+</sup> macrophages, which were also reduced in PAR2<sup>R38E</sup> mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI.</p><p><strong>Conclusions: </strong>Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"841-855"},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis. 可视化动脉粥样硬化中由免疫检查点抑制剂引发的炎症。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 DOI: 10.1161/circresaha.124.324260
Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu
BACKGROUNDImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.METHODSApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.RESULTSCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.CONCLUSIONSAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.
背景免疫检查点抑制剂(ICI)的使用导致癌症患者出现免疫相关不良事件,如加速动脉粥样硬化。在参与动脉粥样硬化的免疫细胞中,CCR2+(CC motif 趋化因子受体 2 阳性)促炎性巨噬细胞的作用已得到充分证实。然而,目前还没有非侵入性方法来确定 ICI 治疗后这些细胞在体内的变化,并探索免疫相关不良事件的潜在机制。方法用CCR2(CC motif趋化因子受体2)靶向放射性示踪剂和正电子发射断层扫描(PET)评估ICI治疗在小鼠动脉粥样硬化模型中引起的加重的炎症反应,并探索免疫相关不良事件的机制。放射性示踪剂 1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-ECL1i(细胞外环路 1 inverso)用于 CCR2+ 巨噬细胞的 PET 成像。结果CCR2 PET显示,与对照组相比,接受抗PD1治疗的载脂蛋白/-小鼠和Ldlr-/-小鼠的放射性示踪剂摄取量明显增加。免疫染色法和流式细胞术证实载脂蛋白-/-小鼠和低密度脂蛋白-/-小鼠的 CCR2+ 细胞表达增加。单细胞 RNA 测序显示髓系细胞中 CCR2 的表达升高。结论1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-ECL1i PET可以无创检测抗PD1治疗引发的动脉粥样硬化斑块炎症。斑块炎症加重具有时间和剂量依赖性,主要由 IFNγ 信号传导介导。这项研究值得进一步研究 CCR2 PET,将其作为一种非侵入性方法来观察动脉粥样硬化斑块炎症并探索 ICI 治疗后的潜在机制。
{"title":"Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis.","authors":"Lanlan Lou,Lisa Detering,Hannah Luehmann,Junedh M Amrute,Deborah Sultan,Pan Ma,Alexandria Li,Divangana Lahad,Andreas Bredemeyer,Xiuli Zhang,Gyu Seong Heo,Kory Lavine,Yongjian Liu","doi":"10.1161/circresaha.124.324260","DOIUrl":"https://doi.org/10.1161/circresaha.124.324260","url":null,"abstract":"BACKGROUNDImmune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events.METHODSApoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization.RESULTSCCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment.CONCLUSIONSAccelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-ECL1i PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"7 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake. EPAS1 通过内皮脂肪酸的摄取减轻动脉粥样硬化在紊乱血流部位的发生。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-05 DOI: 10.1161/CIRCRESAHA.123.324054
Daniela Pirri, Siyu Tian, Blanca Tardajos-Ayllon, Sophie E Irving, Francesco Donati, Scott P Allen, Tadanori Mammoto, Gemma Vilahur, Lida Kabir, Jane Bennett, Yasmin Rasool, Charis Pericleous, Guianfranco Mazzei, Liam McAllan, William R Scott, Thomas Koestler, Urs Zingg, Graeme M Birdsey, Clint L Miller, Torsten Schenkel, Emily V Chambers, Mark J Dunning, Jovana Serbanovic-Canic, Francesco Botrè, Akiko Mammoto, Suowen Xu, Elena Osto, Weiping Han, Maria Fragiadaki, Paul C Evans

Background: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis.

Methods: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet).

Results: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation.

Conclusions: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.

背景:动脉粥样硬化斑块因血流紊乱而形成不均,导致局部内皮细胞(EC)功能障碍。肥胖会加剧这一过程,但其潜在的分子机制尚不清楚。转录因子 EPAS1(HIF2A)在内皮中具有调节作用,但其在动脉粥样硬化中的参与作用仍未得到探讨。本研究探讨了 EPAS1、肥胖和动脉粥样硬化之间的潜在相互作用:方法:使用体外暴露于流动的培养猪主动脉 EC,结合代谢和分子分析,并通过对体内暴露于紊乱流动的鼠主动脉 EC 进行正面免疫染色,分析其对剪切应力的反应。通过高脂饮食或Leptin基因缺失诱导小鼠肥胖和血脂异常。通过诱导性内皮 Epas1 基因缺失和高胆固醇血症诱导(腺相关病毒-PCSK9 [proprotein convertase subtilisin/kexin type 9]; 高脂饮食)评估 Epas1 在动脉粥样硬化中的作用:正面染色显示,EPAS1富集在容易引发动脉粥样硬化的血流紊乱部位。肥胖小鼠的内皮 EPAS1 表达量大幅减少。已知具有动脉粥样硬化保护作用的化合物 Sulforaphane 可恢复 EPAS1 的表达,同时降低肥胖小鼠的血浆甘油三酯水平。同样,甘油三酯衍生物(游离脂肪酸)通过上调负调控因子 PHD2 抑制了培养 EC 中的 EPAS1。临床观察显示,血清 EPAS1 的降低与肥胖者内皮 PHD2 和 PHD3 的升高相关。从功能上讲,内皮 EPAS1 基因缺失会增加高胆固醇血症小鼠的病变形成,表明其具有动脉粥样硬化保护功能。机理研究发现,EPAS1通过正向调节脂肪酸处理分子CD36和LIPG的表达以增加脂肪酸β-氧化,从而维持内皮增殖,从而保护动脉:内皮 EPAS1 通过脂肪酸摄取和代谢维持内皮细胞增殖,从而减轻血流紊乱部位的动脉粥样硬化。这一内皮修复途径在肥胖症中受到抑制,表明一种新型甘油三酯-PHD2调节途径抑制了EPAS1的表达。这些发现对解决肥胖症血管功能障碍的治疗策略具有重要意义。
{"title":"EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake.","authors":"Daniela Pirri, Siyu Tian, Blanca Tardajos-Ayllon, Sophie E Irving, Francesco Donati, Scott P Allen, Tadanori Mammoto, Gemma Vilahur, Lida Kabir, Jane Bennett, Yasmin Rasool, Charis Pericleous, Guianfranco Mazzei, Liam McAllan, William R Scott, Thomas Koestler, Urs Zingg, Graeme M Birdsey, Clint L Miller, Torsten Schenkel, Emily V Chambers, Mark J Dunning, Jovana Serbanovic-Canic, Francesco Botrè, Akiko Mammoto, Suowen Xu, Elena Osto, Weiping Han, Maria Fragiadaki, Paul C Evans","doi":"10.1161/CIRCRESAHA.123.324054","DOIUrl":"10.1161/CIRCRESAHA.123.324054","url":null,"abstract":"<p><strong>Background: </strong>Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis.</p><p><strong>Methods: </strong>Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of <i>Epas1</i> in atherosclerosis was evaluated by inducible endothelial <i>Epas1</i> deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet).</p><p><strong>Results: </strong>En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation.</p><p><strong>Conclusions: </strong>Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"822-837"},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. 解构再生医学:从细胞疗法的机制研究到新型生物启发 RNA 药物。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-26 DOI: 10.1161/circresaha.124.323058
Eduardo Marbán
All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.
美国食品和药物管理局批准的所有非编码 RNA(ncRNA)药物(n≈20)都通过反义等机制靶向已知的致病分子通路。在再生医学工作的一次偶然演变中,我和我的同事颠倒了 RNA 药物的发现过程:首先,我们发现了可改变疾病的天然 ncRNA,然后用它们作为新合成 RNA 药物的模板。只有在生物活性得到证实后,才会对其机制进行探究。这一历程始于用于心脏再生的心肌细胞(CDCs)的开发。在首次人体试验中测试 CDC 时,我们发现它们是间接起作用的:CDC 分泌的细胞外囊泡中的 ncRNA 介导了治疗效果。绝大多数此类 ncRNA 是功能未知的片段。我们从 CDC 分泌的细胞外囊泡中选择了几种丰富的 ncRNA,对它们进行了体外和体内合成和筛选。那些具有特殊疾病调节生物活性的ncRNA激发了新的化学实体,这些实体符合食品药品管理局批准的ncRNA武器库的结构规范。细胞外囊泡衍生 RNA 生物启发药物开发"(CREDO)这一发现弧线产生了多种有前景的先导化合物,每种化合物都通过独特的、通常是新颖的机制发挥作用。这一过程依赖于新出现的见解来引导治疗开发。我们最初的研究重点--CDCs--目前已进入治疗杜氏肌营养不良症及其相关心肌病的第三阶段试验。但是,CDCs 的静脉给药策略和重复给药方案已被证明是临床成功的关键,而这两种策略和方案都源于系统的机理研究。与此同时,不断涌现的新发现也催生了多种无细胞候选疗法:CDC分泌的细胞外囊泡正处于临床前开发阶段,用于治疗室性心律失常,而CREDO构想的RNA药物正在转化中,用于治疗从心肌炎到硬皮病等各种疾病。
{"title":"Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs.","authors":"Eduardo Marbán","doi":"10.1161/circresaha.124.323058","DOIUrl":"https://doi.org/10.1161/circresaha.124.323058","url":null,"abstract":"All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"22 1","pages":"877-885"},"PeriodicalIF":20.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic and Shear Stress Regulate Endothelial Epas1 in Atherosclerosis. 代谢和剪切应力调控动脉粥样硬化中的内皮细胞 Epas1
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-26 DOI: 10.1161/circresaha.124.325131
Judith C Sluimer
{"title":"Metabolic and Shear Stress Regulate Endothelial Epas1 in Atherosclerosis.","authors":"Judith C Sluimer","doi":"10.1161/circresaha.124.325131","DOIUrl":"https://doi.org/10.1161/circresaha.124.325131","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"7 1","pages":"838-840"},"PeriodicalIF":20.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Contractile Stem Cell-Cardiomyocytes Preserve Post-Infarction Heart Function. 非收缩干细胞-心肌细胞可保护梗塞后心脏功能
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-19 DOI: 10.1161/circresaha.124.325133
Elaheh Karbassi,Dasom Yoo,Amy M Martinson,Xiulan Yang,Hans Reinecke,Michael Regnier,Charles E Murry
{"title":"Non-Contractile Stem Cell-Cardiomyocytes Preserve Post-Infarction Heart Function.","authors":"Elaheh Karbassi,Dasom Yoo,Amy M Martinson,Xiulan Yang,Hans Reinecke,Michael Regnier,Charles E Murry","doi":"10.1161/circresaha.124.325133","DOIUrl":"https://doi.org/10.1161/circresaha.124.325133","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"5 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the First Authors. 认识第一作者
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-13 Epub Date: 2024-09-12 DOI: 10.1161/RES.0000000000000692
{"title":"Meet the First Authors.","authors":"","doi":"10.1161/RES.0000000000000692","DOIUrl":"https://doi.org/10.1161/RES.0000000000000692","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"135 7","pages":"706-707"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts. 靶向心脏微环境中的嗜环素 A 可保护衰竭心脏的功能和结构
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-13 Epub Date: 2024-08-14 DOI: 10.1161/CIRCRESAHA.124.324812
Manuel Sigle, Anne-Katrin Rohlfing, Melanie Cruz Santos, Timo Kopp, Konstantin Krutzke, Vincent Gidlund, Ferdinand Kollotzek, Julia Marzi, Saskia von Ungern-Sternberg, Antti Poso, Mathias Heikenwälder, Katja Schenke-Layland, Peter Seizer, Julia Möllmann, Nikolaus Marx, Robert Feil, Susanne Feil, Robert Lukowski, Oliver Borst, Tilman E Schäffer, Karin Anne Lydia Müller, Meinrad P Gawaz, David Heinzmann

Background: Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function.

Methods: Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody.

Results: We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice.

Conclusions: Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.

背景:心肌肥大的特点是心肌重塑,其中涉及 ECM(细胞外基质)和心肌细胞结构的改变。这些改变严重影响了心肌的收缩和松弛功能,最终导致心力衰竭。新的证据表明,细胞外信号分子与心肌肥厚和重塑的发病机制密切相关。免疫噬菌素 CyPA(环噬菌素 A)已被确定为潜在的罪魁祸首。在这项研究中,我们旨在揭示 eCyPA(细胞外 CyPA)与心肌功能障碍之间的相互作用,并评估抑制其细胞外积累以改善心脏功能的治疗潜力:方法:我们采用了一种多学科方法,包括硅学、体外、体内和体外实验,研究了小鼠心脏肥大模型和人类心脏标本,以在高度相关的临床前/临床环境中破解 CyPA 与心脏微环境的相互作用。在非缺血性、非炎症性充血性心力衰竭患者(187 人)的人体心脏组织中分析了 CyPA 的心肌表达(免疫组织学)和炎症转录组(NanoString)。与这些分析同时进行的还有 Ang(血管紧张素)II 诱导的心力衰竭小鼠模型,该模型通过功能(超声心动图)、结构(免疫组织学、原子力显微镜)和生物分子(拉曼光谱)分析进行了评估。使用新开发的中和性抗 eCyPA 单克隆抗体评估了抑制心脏微环境中 eCyPA 的效果:结果:我们观察到 eCyPA 在人类和小鼠衰竭心脏中都有明显积累。重要的是,较高的 eCyPA 表达与患者的不良临床预后(P=0.043)和小鼠的收缩功能障碍(皮尔逊相关系数,-0.73)有关。此外,eCyPA 在心肌中的表达与心肌肥厚、炎症、纤维化、僵硬度和体内心脏功能障碍的增加密切相关。基于抗体的 eCyPA 抑制剂可防止(Ang II)诱导的小鼠心肌重塑和功能障碍:我们的研究为 eCyPA 在心衰的重塑、心肌僵化和功能障碍中的致病作用提供了有力证据。研究结果表明,基于抗体的 eCyPA 抑制可能为非缺血性心力衰竭提供一种新的治疗策略。要评估这些干预措施在人类心肌肥厚患者中的转化潜力,还需要进一步的研究。
{"title":"Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts.","authors":"Manuel Sigle, Anne-Katrin Rohlfing, Melanie Cruz Santos, Timo Kopp, Konstantin Krutzke, Vincent Gidlund, Ferdinand Kollotzek, Julia Marzi, Saskia von Ungern-Sternberg, Antti Poso, Mathias Heikenwälder, Katja Schenke-Layland, Peter Seizer, Julia Möllmann, Nikolaus Marx, Robert Feil, Susanne Feil, Robert Lukowski, Oliver Borst, Tilman E Schäffer, Karin Anne Lydia Müller, Meinrad P Gawaz, David Heinzmann","doi":"10.1161/CIRCRESAHA.124.324812","DOIUrl":"10.1161/CIRCRESAHA.124.324812","url":null,"abstract":"<p><strong>Background: </strong>Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function.</p><p><strong>Methods: </strong>Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody.</p><p><strong>Results: </strong>We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (<i>P</i>=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice.</p><p><strong>Conclusions: </strong>Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"758-773"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice. 微粒子介导的凋亡素递送可改善心肌梗死后小鼠的心功能
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-13 Epub Date: 2024-08-15 DOI: 10.1161/CIRCRESAHA.124.324608
Ling Tang, Huiliang Qiu, Bing Xu, Yajuan Su, Verah Nyarige, Pengsheng Li, Houjia Chen, Brady Killham, Jun Liao, Henderson Adam, Aaron Yang, Alexander Yu, Michelle Jang, Michael Rubart, Jingwei Xie, Wuqiang Zhu

Background: Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI).

Methods: A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot.

Results: The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression.

Conclusions: Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.

背景:凋亡素是一种内源性前肽,可调节心脏稳态和各种生理过程。研究表明,静脉注射可改善心力衰竭患者的心脏收缩力。然而,由于其半衰期较短,因此无法研究其对左心室重塑的长期影响。在此,我们旨在研究微颗粒介导的凋亡素缓释是否能改善心肌梗死(MI)小鼠的心脏功能和左心室重塑:方法:将含凋亡素的微颗粒嵌入纤维蛋白凝胶支架中,制成心脏补片。通过永久结扎成年 C57BL/6J 小鼠的左前降支冠状动脉诱发心肌梗死,然后在心肌梗死后立即(急性心肌梗死)或 28 天(慢性心肌梗死)放置心外膜贴片。这项研究包括四组,即假性心肌梗死、心肌梗死加空微粒包埋贴片处理和心肌梗死加含凋亡素微粒包埋贴片处理。心功能通过经胸超声心动图进行评估。心肌细胞形态、凋亡和心脏纤维化通过组织学进行评估。通过 RNA 测序、定量聚合酶链式反应和 Western 印迹确定心脏保护途径:结果:内源性凋亡素的水平在诱导心肌梗死后的前 7 天大幅降低,到第 28 天已恢复正常。包裹在聚(乳酸-共聚-乙醇酸)微粒中的凋亡磷-13可持续释放长达28天。在急性和慢性心肌梗死模型中,使用含有凋亡素的微粒包埋贴片可抑制心脏肥大,缩小瘢痕大小,从而改善心脏功能。细胞和分子分析数据显示,芹菜素通过阻止转化生长因子-β介导的Smad2/3活化和下游坏死基因表达,抑制了心脏成纤维细胞的活化和增殖:结论:聚乳酸-共聚乙醇酸微粒延长了凋亡磷在小鼠心脏中的释放时间。心外膜输送含凋亡素的微颗粒包埋贴片可保护小鼠免受急性和慢性心肌梗死诱发的心功能障碍的影响,抑制心脏纤维化并改善左心室重塑。
{"title":"Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice.","authors":"Ling Tang, Huiliang Qiu, Bing Xu, Yajuan Su, Verah Nyarige, Pengsheng Li, Houjia Chen, Brady Killham, Jun Liao, Henderson Adam, Aaron Yang, Alexander Yu, Michelle Jang, Michael Rubart, Jingwei Xie, Wuqiang Zhu","doi":"10.1161/CIRCRESAHA.124.324608","DOIUrl":"10.1161/CIRCRESAHA.124.324608","url":null,"abstract":"<p><strong>Background: </strong>Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI).</p><p><strong>Methods: </strong>A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot.</p><p><strong>Results: </strong>The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression.</p><p><strong>Conclusions: </strong>Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"777-798"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxysterol Sensing Through GPR183 Triggers Endothelial Senescence in Hypertension. 通过 GPR183 感知氧杂环醇引发高血压的内皮衰老
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-13 Epub Date: 2024-08-23 DOI: 10.1161/CIRCRESAHA.124.324722
Qingqing Chu, Yujia Li, Jichao Wu, Yanjiao Gao, Xiangyun Guo, Jing Li, Hang Lv, Min Liu, Wei Tang, Peng Zhan, Tao Zhang, Huili Hu, Hong Liu, Jinpeng Sun, Xiaojie Wang, Fan Yi

Background: Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown.

Methods: Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study.

Results: Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice.

Conclusions: This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.

背景:尽管内皮功能障碍是高血压和相关心血管/肾损伤发生的第一步,但目前仍缺乏预防内皮功能障碍的有效治疗策略。GPR183(G蛋白偶联受体183)是最近发现的一种G蛋白偶联受体,用于氧化甾醇和胆固醇的羟化代谢产物,在脂质代谢和免疫反应中具有多方面的作用。然而,GPR183 在调节内皮功能方面的作用仍然未知:方法:通过建立两个独立的高血压模型:醋酸去氧皮质酮/盐诱导的高血压小鼠和血管紧张素 II(Ang II)诱导的高血压小鼠,产生了内皮特异性 GPR183 基因敲除小鼠,用于研究 GPR183 在内皮衰老中的作用。该研究进行了超声心动图、透射电子显微镜、血压测量、血管舒张反应实验、流式细胞仪分析和染色质免疫沉淀分析:结果:高血压小鼠的内皮细胞 GPR183 被显著诱导,这在高血压肾病患者的肾活检中得到了进一步证实。内皮特异性 GPR183 的缺乏明显减轻了高血压小鼠的心血管和肾脏损伤。此外,我们还发现 GPR183 可调节高血压小鼠和老龄小鼠的内皮衰老。从机制上讲,GPR183 通过抑制 PER1(周期 1)的表达破坏了昼夜节律信号传导,从而通过 cAMP/PKA(蛋白激酶 A)/CREB(cAMP-反应元件结合蛋白)信号传导途径促进了内皮衰老和功能障碍。重要的是,NIBR189或克霉唑对氧杂环醇-GPR183轴的药理抑制可改善高血压小鼠的内皮衰老和心血管/肾损伤:本研究发现了 GPR183 在促进内皮衰老中的作用,而这一作用此前尚未被认识。以 GPR183 为药理靶点可能是治疗高血压及其相关并发症的一种创新策略。
{"title":"Oxysterol Sensing Through GPR183 Triggers Endothelial Senescence in Hypertension.","authors":"Qingqing Chu, Yujia Li, Jichao Wu, Yanjiao Gao, Xiangyun Guo, Jing Li, Hang Lv, Min Liu, Wei Tang, Peng Zhan, Tao Zhang, Huili Hu, Hong Liu, Jinpeng Sun, Xiaojie Wang, Fan Yi","doi":"10.1161/CIRCRESAHA.124.324722","DOIUrl":"10.1161/CIRCRESAHA.124.324722","url":null,"abstract":"<p><strong>Background: </strong>Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown.</p><p><strong>Methods: </strong>Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study.</p><p><strong>Results: </strong>Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice.</p><p><strong>Conclusions: </strong>This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"708-721"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Circulation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1