首页 > 最新文献

Circulation research最新文献

英文 中文
EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. EPHB4-RASA1 抑制 PIEZO1 Ras 激活驱动淋巴瓣膜生成
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-18 DOI: 10.1161/circresaha.124.325383
Di Chen,Yipei Tang,Philip E Lapinski,David Wiggins,Eva M Sevick,Michael J Davis,Philip D King
BACKGROUNDEPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves.METHODSWe used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo.RESULTSLV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos.CONCLUSIONSEPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
背景EPHB4(表皮生长因子受体 B4)和 RASA1(p120 Ras GTPase-激活蛋白)是淋巴管(LV)瓣膜发育所必需的。然而,EPHB4 和 RASA1 究竟如何调控 LV 瓣膜的发育尚不清楚。本研究探讨了 EPHB4 和 RASA1 调节 LV 瓣膜发育的机制。方法 我们利用 LV 特异性诱导型 EPHB4 缺失小鼠和表达一种不能与 RASA1 结合但仍保留蛋白酪氨酸激酶活性的 EPHB4 基因敲除小鼠(EPHB4 2YP)来研究 EPHB4 和 RASA1 在胚胎 LV 瓣膜发育和成人 LV 瓣膜维持中的作用。我们还利用人体真皮淋巴内皮细胞在体外研究了 EPHB4 和 RASA1 在振荡剪切应力诱导的 LV 瓣膜规格化中的调节作用,振荡剪切应力被认为是体内 LV 瓣膜规格化的触发因素。EPHB4 2YP 小鼠的左心室瓣膜规格化和维持也受到了影响。抑制Ras-MAPK(丝裂原活化蛋白激酶)信号通路可逆转左心室发育缺陷。在人真皮淋巴内皮细胞中,EPHB4或其ephrin b2配体的表达缺失、RASA1的表达缺失以及EPHB4和RASA1之间物理相互作用的抑制导致振荡剪切应力诱导的Ras-MAPK激活失调和左心室规格标志物的表达受损,而抑制Ras-MAPK通路可挽救这些受损的左心室规格标志物。用PIEZO1振荡剪切应力传感器的Yoda1激动剂刺激人真皮淋巴内皮细胞也观察到了同样的结果。结论 EPHB4 是左心室瓣膜规格化、规格化后瓣膜继续发育和瓣膜维持的必要条件。左心室瓣膜规格化需要 EPHB4 和 RASA1 之间的物理相互作用,以限制淋巴内皮细胞中 Ras-MAPK 通路的激活。具体来说,EPHB4-RASA1的物理相互作用是抑制通过PIEZO1振荡剪切应力传感器诱导的Ras-MAPK激活所必需的。这些发现揭示了EPHB4和RASA1调控左心室瓣膜发育的机制。
{"title":"EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis.","authors":"Di Chen,Yipei Tang,Philip E Lapinski,David Wiggins,Eva M Sevick,Michael J Davis,Philip D King","doi":"10.1161/circresaha.124.325383","DOIUrl":"https://doi.org/10.1161/circresaha.124.325383","url":null,"abstract":"BACKGROUNDEPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves.METHODSWe used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo.RESULTSLV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos.CONCLUSIONSEPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"193 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear-Sensing by C-Reactive Protein: Linking Aortic Stenosis and Inflammation. C-反应蛋白的剪切感应:将主动脉瓣狭窄与炎症联系起来
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-18 DOI: 10.1161/circresaha.124.324248
Johannes Zeller,Julia Loseff-Silver,Khashayar Khoshmanesh,Sara Baratchi,Austin Lai,Tracy L Nero,Abhishek Roy,Anna Watson,Nalin Dayawansa,Prerna Sharma,Anastasia Barbaro-Wahl,Yung Chih Chen,Mitchell Moon,Mark Louis P Vidallon,Angela Huang,Julia Thome,Karen S Cheung Tung Shing,Dalton Harvie,Marie N Bongiovanni,David Braig,Craig J Morton,Nay M Htun,Dion Stub,Anthony Walton,John Horowitz,Xiaowei Wang,Geoffrey Pietersz,Michael W Parker,Steffen U Eisenhardt,James D McFadyen,Karlheinz Peter
BACKGROUNDCRP (C-reactive protein) is a prototypical acute phase reactant. Upon dissociation of the pentameric isoform (pCRP [pentameric CRP]) into its monomeric subunits (mCRP [monomeric CRP]), it exhibits prothrombotic and proinflammatory activity. Pathophysiological shear rates as observed in aortic valve stenosis (AS) can influence protein conformation and function as observed with vWF (von Willebrand factor). Given the proinflammatory function of dissociated CRP and the important role of inflammation in the pathogenesis of AS, we investigated whether shear stress can modify CRP conformation and induce inflammatory effects relevant to AS.METHODSTo determine the effects of pathological shear rates on the function of human CRP, pCRP was subjected to pathophysiologically relevant shear rates and analyzed using biophysical and biochemical methods. To investigate the effect of shear on CRP conformation in vivo, we used a mouse model of arterial stenosis. Levels of mCRP and pCRP were measured in patients with severe AS pre- and post-transcatheter aortic valve implantation, and the presence of CRP was investigated on excised valves from patients undergoing aortic valve replacement surgery for severe AS. Microfluidic models of AS were then used to recapitulate the shear rates of patients with AS and to investigate this shear-dependent dissociation of pCRP and its inflammatory function.RESULTSExposed to high shear rates, pCRP dissociates into its proinflammatory monomers (mCRP) and aggregates into large particles. Our in vitro findings were further confirmed in a mouse carotid artery stenosis model, where the administration of human pCRP led to the deposition of mCRP poststenosis. Patients undergoing transcatheter aortic valve implantation demonstrated significantly higher mCRP bound to circulating microvesicles pre-transcatheter aortic valve implantation compared with post-transcatheter aortic valve implantation. Excised human stenotic aortic valves display mCRP deposition. pCRP dissociated in a microfluidic model of AS and induces endothelial cell activation as measured by increased ICAM-1 and P-selectin expression. mCRP also induces platelet activation and TGF-β (transforming growth factor beta) expression on platelets.CONCLUSIONSWe identify a novel mechanism of shear-induced pCRP dissociation, which results in the activation of cells central to the development of AS. This novel mechanosensing mechanism of pCRP dissociation to mCRP is likely also relevant to other pathologies involving increased shear rates, such as in atherosclerotic and injured arteries.
背景CRP(C 反应蛋白)是一种典型的急性期反应物。当五聚体异构体(pCRP [五聚体 CRP])解离成单体亚基(mCRP [单体 CRP])时,它具有促血栓形成和促炎症的活性。在主动脉瓣狭窄(AS)中观察到的病理生理剪切率会影响蛋白质的构象和功能,正如在 vWF(von Willebrand 因子)中观察到的那样。为了确定病理剪切率对人类 CRP 功能的影响,我们将 pCRP 置于病理生理相关剪切率下,并使用生物物理和生物化学方法进行分析。为了研究剪切力对体内 CRP 构象的影响,我们使用了小鼠动脉狭窄模型。在经导管主动脉瓣植入术前后测量了重度强直性脊柱炎患者体内 mCRP 和 pCRP 的水平,并在因重度强直性脊柱炎而接受主动脉瓣置换手术的患者切除的瓣膜上调查了 CRP 的存在。然后使用强直性脊柱炎的微流控模型重现强直性脊柱炎患者的剪切率,并研究 pCRP 的剪切依赖性解离及其炎症功能。结果在高剪切率下,pCRP 解离成促炎单体(mCRP)并聚集成大颗粒。我们的体外研究结果在小鼠颈动脉狭窄模型中得到了进一步证实,在该模型中,服用人pCRP会导致mCRP在狭窄后沉积。接受经导管主动脉瓣植入术的患者在经导管主动脉瓣植入术前与经导管主动脉瓣植入术后相比,与循环微囊结合的mCRP明显更高。在强直性脊柱炎的微流体模型中,pCRP发生解离,并通过ICAM-1和P-选择素表达的增加诱导内皮细胞活化。这种将 pCRP 分解为 mCRP 的新型机械传感机制很可能也与其他涉及剪切率增加的病症有关,如动脉粥样硬化和损伤的动脉。
{"title":"Shear-Sensing by C-Reactive Protein: Linking Aortic Stenosis and Inflammation.","authors":"Johannes Zeller,Julia Loseff-Silver,Khashayar Khoshmanesh,Sara Baratchi,Austin Lai,Tracy L Nero,Abhishek Roy,Anna Watson,Nalin Dayawansa,Prerna Sharma,Anastasia Barbaro-Wahl,Yung Chih Chen,Mitchell Moon,Mark Louis P Vidallon,Angela Huang,Julia Thome,Karen S Cheung Tung Shing,Dalton Harvie,Marie N Bongiovanni,David Braig,Craig J Morton,Nay M Htun,Dion Stub,Anthony Walton,John Horowitz,Xiaowei Wang,Geoffrey Pietersz,Michael W Parker,Steffen U Eisenhardt,James D McFadyen,Karlheinz Peter","doi":"10.1161/circresaha.124.324248","DOIUrl":"https://doi.org/10.1161/circresaha.124.324248","url":null,"abstract":"BACKGROUNDCRP (C-reactive protein) is a prototypical acute phase reactant. Upon dissociation of the pentameric isoform (pCRP [pentameric CRP]) into its monomeric subunits (mCRP [monomeric CRP]), it exhibits prothrombotic and proinflammatory activity. Pathophysiological shear rates as observed in aortic valve stenosis (AS) can influence protein conformation and function as observed with vWF (von Willebrand factor). Given the proinflammatory function of dissociated CRP and the important role of inflammation in the pathogenesis of AS, we investigated whether shear stress can modify CRP conformation and induce inflammatory effects relevant to AS.METHODSTo determine the effects of pathological shear rates on the function of human CRP, pCRP was subjected to pathophysiologically relevant shear rates and analyzed using biophysical and biochemical methods. To investigate the effect of shear on CRP conformation in vivo, we used a mouse model of arterial stenosis. Levels of mCRP and pCRP were measured in patients with severe AS pre- and post-transcatheter aortic valve implantation, and the presence of CRP was investigated on excised valves from patients undergoing aortic valve replacement surgery for severe AS. Microfluidic models of AS were then used to recapitulate the shear rates of patients with AS and to investigate this shear-dependent dissociation of pCRP and its inflammatory function.RESULTSExposed to high shear rates, pCRP dissociates into its proinflammatory monomers (mCRP) and aggregates into large particles. Our in vitro findings were further confirmed in a mouse carotid artery stenosis model, where the administration of human pCRP led to the deposition of mCRP poststenosis. Patients undergoing transcatheter aortic valve implantation demonstrated significantly higher mCRP bound to circulating microvesicles pre-transcatheter aortic valve implantation compared with post-transcatheter aortic valve implantation. Excised human stenotic aortic valves display mCRP deposition. pCRP dissociated in a microfluidic model of AS and induces endothelial cell activation as measured by increased ICAM-1 and P-selectin expression. mCRP also induces platelet activation and TGF-β (transforming growth factor beta) expression on platelets.CONCLUSIONSWe identify a novel mechanism of shear-induced pCRP dissociation, which results in the activation of cells central to the development of AS. This novel mechanosensing mechanism of pCRP dissociation to mCRP is likely also relevant to other pathologies involving increased shear rates, such as in atherosclerotic and injured arteries.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"3 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP. 心肌细胞中 Latrophilin-2 的缺失会破坏细胞连接,导致 D-CMP 的产生。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-18 DOI: 10.1161/circresaha.124.324670
Minjun Kang,Choon-Soo Lee,HyunJu Son,Jeongha Lee,Jaewon Lee,Hyun Ju Seo,Moo-Kang Kim,Murim Choi,Hyun-Jai Cho,Hyo-Soo Kim
BACKGROUNDLatrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear.METHODSThe embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre recombinase) under the α-myosin heavy chain promoter.RESULTSTamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK, which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins.CONCLUSIONSLphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.
背景Latrophilin-2(Lphn2)是一种粘附性GPCR(G蛋白偶联受体),在我们以前的研究中发现,它是多能干细胞分化为心肌细胞或胚胎心脏发育过程中心脏祖细胞的特异性标记。方法Lphn2缺失导致的胚胎致死性要求建立心肌细胞特异性的、他莫昔芬诱导的Lphn2基因敲除小鼠,这是通过将Lphn2flox/flox小鼠与α-肌球蛋白重链启动子下的MerCreMer(他莫昔芬诱导的Cre重组酶)小鼠杂交实现的。结果连续几天的他莫昔芬治疗完全抑制了 Lphn2 的表达,特别是在心肌中,并诱导出扩张型心肌病(D-CMP)表型,在短时间内出现严重的心律失常和猝死。透射电子显微镜显示线粒体异常、Z-盘模糊和肌纤维开裂。D-CMP 表型或心力衰竭在心肌梗死期间恶化。在一项关于 D-CMP 的机理研究中,Lphn2 基因敲除抑制了 PGC-1α 和线粒体功能障碍,导致活性氧积累和连接分子(如 N-cadherin(粘连连接)、DSC-2(去绒毛粘连素-2;去绒毛体)和 connexin-43 (间隙连接))的全面抑制,从而导致心肌纤维开裂和严重的心律失常。在一项实验性治疗试验中,Lphn2 的下游信号分子 p38-MAPK 的激活剂通过恢复 PGC-1α 和线粒体功能以及恢复全局连接蛋白,显著地挽救了 Lphn2 基因敲除者心脏的 D-CMP 表型。它的缺乏会导致 D-CMP,而 p38-MAPK 通路的激活剂可以挽救 D-CMP。
{"title":"Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP.","authors":"Minjun Kang,Choon-Soo Lee,HyunJu Son,Jeongha Lee,Jaewon Lee,Hyun Ju Seo,Moo-Kang Kim,Murim Choi,Hyun-Jai Cho,Hyo-Soo Kim","doi":"10.1161/circresaha.124.324670","DOIUrl":"https://doi.org/10.1161/circresaha.124.324670","url":null,"abstract":"BACKGROUNDLatrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear.METHODSThe embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre recombinase) under the α-myosin heavy chain promoter.RESULTSTamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK, which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins.CONCLUSIONSLphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"19 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Methylation Age Mediates Effect of Metabolic Profile on Cardiovascular and General Aging. DNA 甲基化年龄介导代谢特征对心血管和全身衰老的影响
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-11 Epub Date: 2024-09-23 DOI: 10.1161/CIRCRESAHA.124.325066
Jiahui Si, Yu Ma, Canqing Yu, Dianjianyi Sun, Yuanjie Pang, Pei Pei, Ling Yang, Iona Y Millwood, Robin G Walters, Yiping Chen, Huaidong Du, Xiaoyan Zheng, Daniel Avery, Junshi Chen, Zhengming Chen, Liming Liang, Liming Li, Jun Lv

Background: Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty.

Methods: The China Kadoorie Biobank is a prospective cohort study with a baseline survey from 2004 to 2008 and a follow-up period until December 31, 2018. We used the Infinium Methylation EPIC BeadChip to measure the methylation levels of 988 participants' baseline blood leukocyte DNA. Metabolite profiles, including lipoprotein particles, lipid constituents, and various circulating metabolites, were measured using quantitative nuclear magnetic resonance. The pace of DNA methylation age acceleration (AA) was calculated using 5 widely used epigenetic clocks (the first generation: Horvath, Hannum, and Li; the second generation: Grim and Pheno). Incident ASCVD was ascertained through linkage with local death and disease registries and national health insurance databases, supplemented by active follow-up. The frailty index was constructed using medical conditions, symptoms, signs, and physical measurements collected at baseline.

Results: A total of 508 incident cases of ASCVD were documented during a median follow-up of 9.5 years. The first generation of epigenetic clocks was associated with the risk of ASCVD (P<0.05). For each SD increment in LiAA, HorvathAA, and HannumAA, the corresponding hazard ratios for ASCVD risk were 1.16 (1.05-1.28), 1.10 (1.00-1.22), and 1.17 (1.04-1.31), respectively. Only LiAA mediated the association of various metabolites (lipids, fatty acids, histidine, and inflammatory biomarkers) with ASCVD, with the mediating proportion reaching up to 15% for the diameter of low-density lipoprotein (P=1.2×10-2). Regarding general aging, a 1-SD increase in GrimAA was associated with an average increase of 0.10 in the frailty index (P=2.0×10-3), and a 33% and 63% increased risk of prefrailty and frailty at baseline (P=1.5×10-2 and 5.8×10-2), respectively; this association was not observed with other clocks. GrimAA mediated the effect of various lipids, fatty acids, glucose, lactate, and inflammatory biomarkers on the frailty index, with the mediating proportion reaching up to 22% for triglycerides in very small-sized very low-density lipoprotein (P=6.0×10-3).

Conclusions: These findings suggest that epigenomic mechanisms may play a role in the associations between circulating metabolites and the aging process. Different mechanisms underlie the first and second generations of DNA methylation age in cardiovascular and general aging.

背景:脂质代谢和 DNA 甲基化的改变是衰老的两大标志。将代谢组学、表观基因组学和衰老结果联系起来有助于揭示衰老的复杂机制。我们旨在评估DNA甲基化钟是否介导循环代谢物与动脉粥样硬化性心血管疾病(ASCVD)和虚弱的关联:中国嘉道理生物库是一项前瞻性队列研究,基线调查时间为2004年至2008年,随访期至2018年12月31日。我们使用 Infinium Methylation EPIC BeadChip 芯片测量了 988 名参与者基线血液白细胞 DNA 的甲基化水平。使用定量核磁共振测量了代谢物谱,包括脂蛋白颗粒、脂质成分和各种循环代谢物。DNA 甲基化年龄加速度(AA)是通过 5 种广泛使用的表观遗传时钟(第一代:Horvath、Hannum 和 S. M. K. 等)计算得出的:Horvath、Hannum 和 Li;第二代:Grim和Pheno)。通过与当地死亡和疾病登记处以及国家医疗保险数据库的连接,并辅以积极的随访,确定了心血管疾病的发病情况。虚弱指数是根据基线收集的医疗条件、症状、体征和身体测量结果构建的:结果:在中位 9.5 年的随访期间,共记录了 508 例急性心血管疾病病例。第一代表观遗传时钟与 ASCVD 风险相关(PP=1.2×10-2)。在总体衰老方面,GrimAA每增加1个标准差,虚弱指数就会平均增加0.10(P=2.0×10-3),虚弱前和虚弱基线风险分别增加33%和63%(P=1.5×10-2和5.8×10-2);其他时钟没有观察到这种关联。GrimAA介导了各种血脂、脂肪酸、葡萄糖、乳酸和炎症生物标志物对虚弱指数的影响,在极小尺寸的极低密度脂蛋白中,甘油三酯的介导比例高达22%(P=6.0×10-3):这些研究结果表明,表观基因组机制可能在循环代谢物与衰老过程之间的关联中发挥作用。在心血管衰老和一般衰老过程中,第一代和第二代 DNA 甲基化年龄的机制不同。
{"title":"DNA Methylation Age Mediates Effect of Metabolic Profile on Cardiovascular and General Aging.","authors":"Jiahui Si, Yu Ma, Canqing Yu, Dianjianyi Sun, Yuanjie Pang, Pei Pei, Ling Yang, Iona Y Millwood, Robin G Walters, Yiping Chen, Huaidong Du, Xiaoyan Zheng, Daniel Avery, Junshi Chen, Zhengming Chen, Liming Liang, Liming Li, Jun Lv","doi":"10.1161/CIRCRESAHA.124.325066","DOIUrl":"10.1161/CIRCRESAHA.124.325066","url":null,"abstract":"<p><strong>Background: </strong>Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty.</p><p><strong>Methods: </strong>The China Kadoorie Biobank is a prospective cohort study with a baseline survey from 2004 to 2008 and a follow-up period until December 31, 2018. We used the Infinium Methylation EPIC BeadChip to measure the methylation levels of 988 participants' baseline blood leukocyte DNA. Metabolite profiles, including lipoprotein particles, lipid constituents, and various circulating metabolites, were measured using quantitative nuclear magnetic resonance. The pace of DNA methylation age acceleration (AA) was calculated using 5 widely used epigenetic clocks (the first generation: Horvath, Hannum, and Li; the second generation: Grim and Pheno). Incident ASCVD was ascertained through linkage with local death and disease registries and national health insurance databases, supplemented by active follow-up. The frailty index was constructed using medical conditions, symptoms, signs, and physical measurements collected at baseline.</p><p><strong>Results: </strong>A total of 508 incident cases of ASCVD were documented during a median follow-up of 9.5 years. The first generation of epigenetic clocks was associated with the risk of ASCVD (<i>P</i><0.05). For each SD increment in LiAA, HorvathAA, and HannumAA, the corresponding hazard ratios for ASCVD risk were 1.16 (1.05-1.28), 1.10 (1.00-1.22), and 1.17 (1.04-1.31), respectively. Only LiAA mediated the association of various metabolites (lipids, fatty acids, histidine, and inflammatory biomarkers) with ASCVD, with the mediating proportion reaching up to 15% for the diameter of low-density lipoprotein (<i>P</i>=1.2×10<sup>-2</sup>). Regarding general aging, a 1-SD increase in GrimAA was associated with an average increase of 0.10 in the frailty index (<i>P</i>=2.0×10<sup>-3</sup>), and a 33% and 63% increased risk of prefrailty and frailty at baseline (<i>P</i>=1.5×10<sup>-2</sup> and 5.8×10<sup>-2</sup>), respectively; this association was not observed with other clocks. GrimAA mediated the effect of various lipids, fatty acids, glucose, lactate, and inflammatory biomarkers on the frailty index, with the mediating proportion reaching up to 22% for triglycerides in very small-sized very low-density lipoprotein (<i>P</i>=6.0×10<sup>-3</sup>).</p><p><strong>Conclusions: </strong>These findings suggest that epigenomic mechanisms may play a role in the associations between circulating metabolites and the aging process. Different mechanisms underlie the first and second generations of DNA methylation age in cardiovascular and general aging.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"954-966"},"PeriodicalIF":16.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental TET2 Clonal Hematopoiesis Predisposes to Renal Hypertension Through an Inflammasome-Mediated Mechanism. 实验性 TET2 克隆造血通过炎症体介导的机制易导致肾性高血压
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-11 Epub Date: 2024-09-05 DOI: 10.1161/CIRCRESAHA.124.324492
Ariel H Polizio, Lucila Marino, Kyung-Duk Min, Yoshimitsu Yura, Luca Rolauer, Jesse D Cochran, Megan A Evans, Eunbee Park, Heather Doviak, Emiri Miura-Yura, Miranda E Good, Abigail G Wolpe, Maria Grandoch, Brant E Isakson, Kenneth Walsh

Background: Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features.

Methods: A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) clonal hematopoiesis and hypertension.

Results: In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2 deficiency promoted renal CCL5 (C-C motif ligand 5) chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2 deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1β and IL-18. Analysis of the sodium transporters indicated NCC (sodium-chloride symporter) and NKCC2 (Na+-K+-Cl- cotransporter 2) activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation.

Conclusions: Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.

背景:高血压发病率随年龄增长而增加,是心血管疾病最普遍的危险因素之一。在没有明显血液病的老年人中,由于驱动基因的体细胞突变而导致的造血系统克隆事件非常普遍。这种情况被称为与年龄相关的克隆性造血(CH),是一种新近被确认的心血管疾病风险因素。目前尚不清楚老年克隆性造血和高血压是否有因果关系,如果有,其机理特征是什么:方法和结果:我们采用了一种小鼠收养性骨髓移植模型来研究 Tet2(十-十一易位甲基胞嘧啶二氧酶 2)CH 与高血压之间的相互作用。在该模型中,亚压剂量的 Ang II(血管紧张素 II)导致收缩压和舒张压升高,最早出现在挑战后 1 天。这些条件导致 Tet2 缺陷的促炎单核细胞和骨髓祖细胞扩增。Tet2缺陷促进了肾脏CCL5趋化因子的表达和巨噬细胞向肾脏的浸润。与巨噬细胞的参与相一致,当小鼠接受亚抑制剂量的 Ang II 治疗时,骨髓细胞中的 Tet2 缺失会促进高血压。造血Tet2-/-条件导致钠潴留、肾脏炎症小体激活以及IL(白细胞介素)-1β和IL-18水平升高。对钠转运体的分析表明,NCC(Na+-Cl- 共转运体)和 NKCC2 分别在 Thr53 和 Ser105 残基处被激活。服用 NLRP3 炎性体抑制剂 MCC950 逆转了高血压状态、钠潴留和肾转运体激活:结论:Tet2 介导的 CH 使小鼠对高血压刺激敏感。从机理上讲,造血Tet2缺陷细胞的扩增会促进肾脏免疫细胞浸润和NLRP3炎性体的激活,从而导致高血压,并对钠潴留产生影响。这些数据表明,TET2 CH携带者罹患高血压的风险可能会升高,免疫调节剂可能有助于治疗这类患者的高血压。
{"title":"Experimental TET2 Clonal Hematopoiesis Predisposes to Renal Hypertension Through an Inflammasome-Mediated Mechanism.","authors":"Ariel H Polizio, Lucila Marino, Kyung-Duk Min, Yoshimitsu Yura, Luca Rolauer, Jesse D Cochran, Megan A Evans, Eunbee Park, Heather Doviak, Emiri Miura-Yura, Miranda E Good, Abigail G Wolpe, Maria Grandoch, Brant E Isakson, Kenneth Walsh","doi":"10.1161/CIRCRESAHA.124.324492","DOIUrl":"10.1161/CIRCRESAHA.124.324492","url":null,"abstract":"<p><strong>Background: </strong>Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features.</p><p><strong>Methods: </strong>A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) clonal hematopoiesis and hypertension.</p><p><strong>Results: </strong>In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2 deficiency promoted renal CCL5 (C-C motif ligand 5) chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2 deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2<sup>-/-</sup> condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1β and IL-18. Analysis of the sodium transporters indicated NCC (sodium-chloride symporter) and NKCC2 (Na<sup>+</sup>-K<sup>+</sup>-Cl<sup>-</sup> cotransporter 2) activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation.</p><p><strong>Conclusions: </strong>Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"933-950"},"PeriodicalIF":16.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the First Authors. 认识第一作者
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-11 Epub Date: 2024-10-10 DOI: 10.1161/RES.0000000000000696
{"title":"Meet the First Authors.","authors":"","doi":"10.1161/RES.0000000000000696","DOIUrl":"https://doi.org/10.1161/RES.0000000000000696","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"135 9","pages":"888-889"},"PeriodicalIF":16.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salt and CHIP: Tet2-CH Aggravates Salt-Sensitive Hypertension in Mice. 盐与 CHIP:Tet2-CH 会加重小鼠对盐敏感的高血压。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-11 Epub Date: 2024-10-10 DOI: 10.1161/CIRCRESAHA.124.325364
Caitlyn Vlasschaert, Steven D Crowley, Alexander G Bick
{"title":"Salt and CHIP: <i>Tet2</i>-CH Aggravates Salt-Sensitive Hypertension in Mice.","authors":"Caitlyn Vlasschaert, Steven D Crowley, Alexander G Bick","doi":"10.1161/CIRCRESAHA.124.325364","DOIUrl":"10.1161/CIRCRESAHA.124.325364","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"135 9","pages":"951-953"},"PeriodicalIF":16.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Activation of Tubulin Tyrosination Improves Heart Function. 管蛋白酪氨酸化的慢性激活可改善心脏功能
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-11 Epub Date: 2024-09-16 DOI: 10.1161/CIRCRESAHA.124.324387
Niels Pietsch, Christina Y Chen, Svenja Kupsch, Lucas Bacmeister, Birgit Geertz, Marisol Herrera-Rivero, Bente Siebels, Hannah Voß, Elisabeth Krämer, Ingke Braren, Dirk Westermann, Hartmut Schlüter, Giulia Mearini, Saskia Schlossarek, Jolanda van der Velden, Matthew A Caporizzo, Diana Lindner, Benjamin L Prosser, Lucie Carrier

Background: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (Mybpc3 knock-in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs).

Methods: Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes.

Results: We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs.

Conclusions: This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.

理由:肥厚型心肌病(HCM)是由肉瘤基因变异引起的最常见的心脏遗传疾病,与左心室肥大和舒张功能障碍有关。最近,随着微管脱酪氨酸化(dTyr-MT)在心力衰竭中明显升高的发现,微管网络的作用引起了人们的兴趣。通过抑制脱酪氨酸酶(VASH[血管抑制素]/SVBP[小 VASH 结合蛋白]复合物)或激活酪氨酸酶(TTL[微管蛋白酪氨酸连接酶])来急性减少 dTyr-MT,可明显改善人类衰竭心肌细胞的收缩能力并降低僵硬度,从而为 HCM 治疗提供了新的视角:在这项研究中,我们测试了慢性小管蛋白酪氨酸化对 HCM 小鼠模型(Mybpc3 基因敲入)、人类 HCM 心肌细胞以及 SVBP 缺陷人类工程心脏组织(EHTs)的影响:在新生野生型啮齿类动物、3 周大的基因敲入小鼠和 HCM 人类诱导多能干细胞衍生心肌细胞中应用了腺相关病毒血清型 9 介导的 TTL 转移。我们发现:(1)TTL 6 周剂量依赖性地减少了野生型心肌细胞中的 dTyr-MT,并改善了收缩力,而不影响细胞钙瞬态;(2)TTL 12 周减少了基因敲入小鼠心肌中 dTyr-MT 的丰度,改善了舒张充盈、顺应性、心输出量和搏出量;(3) TTL 10 天能使 HCM 人诱导多能干细胞衍生心肌细胞的细胞面积正常化;(4) TTL 过表达能激活小管蛋白和其他细胞骨架成分的转录,但不会对基因敲入小鼠的蛋白质组产生显著影响;(5) 与 TTL 缺失型和野生型 EHT 相比,SVBP 缺失型 EHT 的 dTyr-MT 含量降低,力更大,松弛更快。RNA测序和质谱分析表明,SVBP缺陷型和TTL缺陷型EHT的心肌细胞成分和通路截然不同:这项研究首次证明了在 HCM 小鼠和人类 EHTs 中慢性激活微管蛋白酪氨酸化能改善心脏功能的概念,并为针对心脏病的非星形细胞骨架带来了希望。
{"title":"Chronic Activation of Tubulin Tyrosination Improves Heart Function.","authors":"Niels Pietsch, Christina Y Chen, Svenja Kupsch, Lucas Bacmeister, Birgit Geertz, Marisol Herrera-Rivero, Bente Siebels, Hannah Voß, Elisabeth Krämer, Ingke Braren, Dirk Westermann, Hartmut Schlüter, Giulia Mearini, Saskia Schlossarek, Jolanda van der Velden, Matthew A Caporizzo, Diana Lindner, Benjamin L Prosser, Lucie Carrier","doi":"10.1161/CIRCRESAHA.124.324387","DOIUrl":"10.1161/CIRCRESAHA.124.324387","url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (<i>Mybpc3</i> knock-in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs).</p><p><strong>Methods: </strong>Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes.</p><p><strong>Results: </strong>We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs.</p><p><strong>Conclusions: </strong>This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"910-932"},"PeriodicalIF":16.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Arg92Leu-cTnT 改变了 cTnC-cTnI 接口,破坏了 PKA 介导的松弛。
IF 20.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 DOI: 10.1161/circresaha.124.325223
Melissa L Lynn,Jesus Jimenez,Romi L Castillo,Catherine Vasquez,Matthew M Klass,Anthony Baldo,Andrew Kim,Cyonna Gibson,Anne M Murphy,Jil C Tardiff
BACKGROUNDImpaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI.METHODSHCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations.RESULTSThe HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence.CONCLUSIONSThese data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
背景左心室松弛功能受损、充盈压过高以及 Ca2+ 平衡失调是肥厚型心肌病 (HCM) 导致舒张功能障碍的常见原因。研究表明,在临床前 HCM 患者群中,肌节基因阳性的患者很早就发现松弛功能受损,这表明肌丝调节因子可能参与了松弛功能。目前还缺乏对肌丝水平机制的分子水平的了解。我们假设,由突变特异性异构体介导的 cTnC(心肌肌钙蛋白 C)-cTnI(心肌肌钙蛋白 I)界面变化可通过降低 PKA 对 cTnI 的可及性而导致早发舒张功能障碍。方法通过二维超声心动图、Western 印迹、体外血流动力学、停流动力学、时间分辨荧光共振能量转移和分子动力学模拟,对 HCM 基因突变 R92L-cTnT(心肌肌钙蛋白 T;Arg92Leu)和 Δ160E-cTnT(Glu160 缺失)进行了体内、体外和硅学研究。结果HCM致病突变 R92L-cTnT 和 Δ160E-cTnT导致舒张功能障碍的发病时间不同。R92L-cTnT 表现出早发性舒张功能障碍,并伴有局部 cTnI 磷酸化的降低。只有 R92L-cTnT 的 cTnI(cTnI-D23D24)持续磷酸化足以使舒张功能恢复到非 Tg 水平。与 cTnI-D23D24 重组的 R92L-cTnT 相关的 Ca2+ 解离率的突变特异性变化促使我们研究 cTnC-cTnI 界面结构变化的潜在参与,以解释这些观察结果。我们通过时间分辨荧光共振能量转移对界面进行了探测,发现 cTnI 的 N 端重新定位,更靠近 cTnC,同时 PKA 共识序列侧翼位点的距离分布减少。这些数据表明,在 HCM 亚群中观察到的早期舒张功能障碍可归因于 cTnC-cTnI 接口上异位介导的结构变化,这种变化损害了 PKA 的可及性,从而削弱了 β 肾上腺素能的反应性,并确定了一个潜在的治疗干预分子靶点。
{"title":"Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation.","authors":"Melissa L Lynn,Jesus Jimenez,Romi L Castillo,Catherine Vasquez,Matthew M Klass,Anthony Baldo,Andrew Kim,Cyonna Gibson,Anne M Murphy,Jil C Tardiff","doi":"10.1161/circresaha.124.325223","DOIUrl":"https://doi.org/10.1161/circresaha.124.325223","url":null,"abstract":"BACKGROUNDImpaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI.METHODSHCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations.RESULTSThe HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence.CONCLUSIONSThese data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"249 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation. NAE1 的 Crotonylation 通过 Gelsolin Neddylation 调节心肌肥大。
IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-27 Epub Date: 2024-09-04 DOI: 10.1161/CIRCRESAHA.124.324733
Jie Ju, Kai Wang, Fang Liu, Cui-Yun Liu, Yun-Hong Wang, Shao-Cong Wang, Lu-Yu Zhou, Xin-Min Li, Yu-Qin Wang, Xin-Zhe Chen, Rui-Feng Li, Shi-Jun Xu, Chen Chen, Mei-Hua Zhang, Su-Min Yang, Jin-Wei Tian, Kun Wang
<p><strong>Background: </strong>Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy.</p><p><strong>Methods: </strong>Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation.</p><p><strong>Results: </strong>The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy.</p><p><strong>Conclusions: </strong>Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardi
背景:心脏肥大及其相关重塑是导致心力衰竭的主要原因之一。赖氨酸巴豆酰化是最近发现的一种翻译后修饰,其在心肌肥厚中的作用在很大程度上仍然未知。NAE1(NEDD8-激活酶 E1 调控亚基)主要参与蛋白质靶点的奈德基化修饰。然而,巴豆酰化的 NAE1 的功能尚未明确。本研究旨在阐明NAE1巴豆酰化对心脏肥大的影响和机制:方法:通过免疫沉淀和Western印迹检测人和小鼠心肌肥厚患者的巴豆酰化水平。在横向主动脉收缩诱导的小鼠心脏肥大模型中,进行了TMT标记的赖氨酸巴豆酰化定量分析,以确定巴豆酰化的蛋白质。我们产生了携带赖氨酸至精氨酸K238R(位点238上的赖氨酸至精氨酸突变)突变的NAE1基因敲入小鼠(NAE1 K238R)和表达模拟赖氨酸至谷氨酸突变的NAE1基因敲入小鼠(NAE1 K238R)。我们还研究了表达模拟赖氨酸至谷氨酰胺 K238Q(位点 238 上的赖氨酸至谷氨酰胺突变)突变(NAE1 K238Q)的 NAE1 基因敲入小鼠,以评估 NAE1 K238 上的巴豆酰化在病理性心肌肥厚中的功能作用。此外,我们还结合免疫沉淀、质谱分析和点印迹分析等多种分子生物学方法,鉴定了目标GSN(凝胶溶素)和导致NAE1 K238巴豆酰化功能的相应分子事件:结果:在小鼠和心肌肥厚患者体内,NAE1的巴豆酰化水平升高。定量巴豆酰组学分析表明,K238是NAE1的主要巴豆酰化位点。NAE1 K238R基因敲入小鼠的K238巴豆酰化缺失可减轻心脏肥大并恢复心脏功能,而NAE1 K238Q基因敲入小鼠的高巴豆酰化模拟可显著增强横主动脉收缩诱导的病理性肥大反应,导致心脏结构和功能受损。携带NAE1 K238R突变体的重组腺病毒载体减轻了Ang II(血管紧张素II)诱导的肥厚,而K238Q突变体则加重了Ang II诱导的肥厚。从机理上讲,我们发现GSN是NAE1的直接靶标。NAE1的K238巴豆酰化促进了GSN的尼达基化,从而增强了其蛋白的稳定性和表达。NAE1巴豆酰化依赖的GSN增加促进了肌动蛋白的分裂活性,从而导致了不良的细胞骨架重塑和病理性肥大的进展:我们的研究结果为我们提供了新的视角,使我们了解到巴豆酰化在心脏肥大过程中对非组蛋白的作用。我们发现,NAE1的K238巴豆酰化在通过GSN内酰化介导心肌肥大中起着至关重要的作用,这为病理性肥大和心脏重塑提供了潜在的新治疗靶点。
{"title":"Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation.","authors":"Jie Ju, Kai Wang, Fang Liu, Cui-Yun Liu, Yun-Hong Wang, Shao-Cong Wang, Lu-Yu Zhou, Xin-Min Li, Yu-Qin Wang, Xin-Zhe Chen, Rui-Feng Li, Shi-Jun Xu, Chen Chen, Mei-Hua Zhang, Su-Min Yang, Jin-Wei Tian, Kun Wang","doi":"10.1161/CIRCRESAHA.124.324733","DOIUrl":"10.1161/CIRCRESAHA.124.324733","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardi","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"806-821"},"PeriodicalIF":16.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Circulation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1