首页 > 最新文献

Proceedings of the IEEE symposium on Parallel rendering最新文献

英文 中文
Interactive parallel rendering on a multiprocessor system with intelligent communication controllers 基于智能通信控制器的多处理器系统交互式并行绘制
Pub Date : 1995-12-01 DOI: 10.1145/218327.218342
B. Bäumle, P. Kohler, A. Gunzinger
Most data-parallel rendering algorithms (on multiprocessot systems with distributed memory) spend a substantial amount of time composing (merging or assembling) the partial images of all the processors. This paper shows how "intelligent communication controllers" (ICCs) help to reduce the immense communication overhead and accumulated latencies to an absolute minimum. Three examples of "intelligent" communication schemes are presented: the fully automatic redistribution of multi-dimensional data sets, depthmerge and bucket-sort. We show that these (and other) "intelligent communication schemes" can be implemented in hardware with a reasonable effort and that the communication bandwidth is used most efficiently. This results in a good speed-up, good scalability and the maximum utilizable performance for parallel rendering and many other data-parallel algorithms running on our multiprocessor system "MUSIC". As an example, we present a simple objectparallel renderer running at interactive frame rates.
大多数数据并行呈现算法(在具有分布式内存的多进程系统上)花费大量时间组合(合并或组装)所有处理器的部分图像。本文展示了“智能通信控制器”(ICCs)如何帮助将巨大的通信开销和累积延迟减少到绝对最小。提出了三种“智能”通信方案:多维数据集的全自动再分配、深度合并和桶排序。我们展示了这些(和其他)“智能通信方案”可以通过合理的努力在硬件中实现,并且通信带宽得到最有效的利用。这为并行渲染和许多其他数据并行算法在我们的多处理器系统“MUSIC”上运行带来了良好的加速、良好的可扩展性和最大的可用性能。作为一个例子,我们提出了一个简单的对象并行渲染器在交互式帧速率下运行。
{"title":"Interactive parallel rendering on a multiprocessor system with intelligent communication controllers","authors":"B. Bäumle, P. Kohler, A. Gunzinger","doi":"10.1145/218327.218342","DOIUrl":"https://doi.org/10.1145/218327.218342","url":null,"abstract":"Most data-parallel rendering algorithms (on multiprocessot systems with distributed memory) spend a substantial amount of time composing (merging or assembling) the partial images of all the processors. This paper shows how \"intelligent communication controllers\" (ICCs) help to reduce the immense communication overhead and accumulated latencies to an absolute minimum. Three examples of \"intelligent\" communication schemes are presented: the fully automatic redistribution of multi-dimensional data sets, depthmerge and bucket-sort. We show that these (and other) \"intelligent communication schemes\" can be implemented in hardware with a reasonable effort and that the communication bandwidth is used most efficiently. This results in a good speed-up, good scalability and the maximum utilizable performance for parallel rendering and many other data-parallel algorithms running on our multiprocessor system \"MUSIC\". As an example, we present a simple objectparallel renderer running at interactive frame rates.","PeriodicalId":101947,"journal":{"name":"Proceedings of the IEEE symposium on Parallel rendering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128991118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures 分布式存储体系结构上非结构化网格数据的并行体光线投射
Pub Date : 1995-08-01 DOI: 10.1145/218327.218333
K. Ma
Abstract : As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image compositing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
摘要:随着计算技术的不断进步,科学和工程问题的计算建模产生的数据越来越复杂,数据规模大,形状非结构化。这类数据的体可视化是一个具有挑战性的问题。本文提出了一种分布式并行解决方案,使非结构化网格数据的光线投射体绘制成为可能。数据和呈现过程都分布在处理器之间。在每个处理器上,本地数据的光线投射是独立于其他处理器执行的。需要处理器间通信的全局图像合成过程与局部光线投射过程重叠,以达到最大的并行效率。该算法与以前的算法有四个不同之处:它是完全分布式的,较少依赖于视图,合理的可扩展性和灵活性。在不使用动态负载平衡的情况下,使用2到128个处理器的Intel Paragon上的测试结果显示,平均并行效率约为60%。
{"title":"Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures","authors":"K. Ma","doi":"10.1145/218327.218333","DOIUrl":"https://doi.org/10.1145/218327.218333","url":null,"abstract":"Abstract : As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image compositing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.","PeriodicalId":101947,"journal":{"name":"Proceedings of the IEEE symposium on Parallel rendering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116536944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 91
期刊
Proceedings of the IEEE symposium on Parallel rendering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1