首页 > 最新文献

Chinese Physics最新文献

英文 中文
Highly Effcient Nonreciprocity based on the Four Wave Mixing in a Semiconductor Quantum Well 基于半导体量子阱中四波混频的高效非互易
Pub Date : 2023-01-01 DOI: 10.7498/aps.73.20231212
None Ge Yun-Ran, None Zheng Kang, None Ding Chun-Ling, None Hao Xiang-Ying, None Jin Rui-Bo
Optical nonreciprocity has been a popular research topic in recent years. Semiconductor quantum wells (SQWs) have a key role in many high-performance optoelectronic devices. In this paper, we propose a theoretical scheme to achieve nonmagnetic optical nonreciprocity based on the four-wave mixing effect in SQW nanostructures. Using the experimentally available parameters, the nonreciprocal behavior of the probe field in both front and back directions through this SQW is achieved, where both nonreciprocal transmission and nonreciprocal phase shift have high transmission rates. Furthermore, by embedding this SQW nanostructure into a Mach-Zender interferometer, a reconfigurable nonreciprocal device based on high transmission nonreciprocal phase shift that can be used as an isolator or a circulator is designed and analyzed. The device can be realized as a two-port optical isolator with an isolation ratio of 92.39 dB and an insertion loss of 0.25 dB, and as a four-port optical circulator with a fidelity of 0.9993, a photon survival probability of 0.9518 and a low insertion loss with suitable parameters. Semiconductor media have the advantage of easier integration and tunable parameters, and this scheme can provide theoretical guidance for the implementation of nonreciprocal and nonreciprocal photonic devices based on semiconductor solid-state media.
光学非互易性是近年来研究的热点。半导体量子阱在许多高性能光电器件中起着关键作用。本文提出了一种基于四波混合效应的非磁性光非互易的理论方案。利用实验参数,实现了探针场在前后两个方向上的非倒易行为,其中非倒易传输和非倒易相移都具有很高的传输速率。此外,通过在Mach-Zender干涉仪中嵌入这种SQW纳米结构,设计并分析了一种基于高透射率非互反相移的可重构非互反器件,该器件可以用作隔离器或环行器。该器件可实现为隔离比为92.39 dB、插入损耗为0.25 dB的双端口光隔离器,以及保真度为0.9993、光子生存概率为0.9518、参数合适的低插入损耗的四端口光环行器。半导体介质具有易于集成和参数可调的优点,该方案可为基于半导体固态介质的非互反和非互反光子器件的实现提供理论指导。
{"title":"Highly Effcient Nonreciprocity based on the Four Wave Mixing in a Semiconductor Quantum Well","authors":"None Ge Yun-Ran, None Zheng Kang, None Ding Chun-Ling, None Hao Xiang-Ying, None Jin Rui-Bo","doi":"10.7498/aps.73.20231212","DOIUrl":"https://doi.org/10.7498/aps.73.20231212","url":null,"abstract":"Optical nonreciprocity has been a popular research topic in recent years. Semiconductor quantum wells (SQWs) have a key role in many high-performance optoelectronic devices. In this paper, we propose a theoretical scheme to achieve nonmagnetic optical nonreciprocity based on the four-wave mixing effect in SQW nanostructures. Using the experimentally available parameters, the nonreciprocal behavior of the probe field in both front and back directions through this SQW is achieved, where both nonreciprocal transmission and nonreciprocal phase shift have high transmission rates. Furthermore, by embedding this SQW nanostructure into a Mach-Zender interferometer, a reconfigurable nonreciprocal device based on high transmission nonreciprocal phase shift that can be used as an isolator or a circulator is designed and analyzed. The device can be realized as a two-port optical isolator with an isolation ratio of 92.39 dB and an insertion loss of 0.25 dB, and as a four-port optical circulator with a fidelity of 0.9993, a photon survival probability of 0.9518 and a low insertion loss with suitable parameters. Semiconductor media have the advantage of easier integration and tunable parameters, and this scheme can provide theoretical guidance for the implementation of nonreciprocal and nonreciprocal photonic devices based on semiconductor solid-state media.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136203616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of photocurrent response in WS<sub>2</sub> optoelectronic devices with Li intercalation WS&lt;sub&gt;2&lt;/sub&gt的光电流响应调制具有Li嵌入的光电器件
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231000
None Song Yu-Xin, None Li Yu-Qi, None Wang Ling-Han, None Zhang Xiao-Lan, None Wang Chong, None Wang Qin-Sheng
Transition metal dichalcogenides have emerged as a prominent class of two-dimensional layered materials, capturing sustained attention from researchers due to their unique structures and properties. These distinctive characteristics render transition metal dichalcogenides highly versatile in numerous fields, including optoelectronics, nanoelectronics, energy storage devices, and electrocatalysis. In particular, the ability to modulate the doping characteristics of these materials plays a crucial role in improving the photoelectric response performance of devices, making it imperative to investigate and understand such effects.
In recent years, the electrochemical ion intercalation technique has emerged as a novel approach for precise doping control of two-dimensional materials. Building upon this advancement, this paper aims to demonstrate the effective doping control of transition metal dichalcogenides devices by utilizing the electrochemical ion intercalation method specifically on thick WS2 layers. The results reveal a remarkable enhancement in electrical conductivity, approximately 200 times higher than the original value, alongside the achievement of efficient and reversible control over the photoelectric response performance through the manipulation of gate voltage. One of the key findings of this paper is the successful demonstration of the reversible cyclic control of the photoelectric response in WS2 devices through ion intercalation, regulated by the gate voltage. This dynamic control mechanism showcases the potential for finely tuning and tailoring the performance of photoelectric devices made from two-dimensional materials. The ability to achieve reversible control is especially significant as it allows for a versatile range of applications, enabling devices to be adjusted according to specific requirements and operating conditions.
The implications of this work extend beyond the immediate findings and present a foundation for future investigations into response control of photoelectric devices constructed using two-dimensional materials through the utilization of the ion intercalation method. By establishing the feasibility and efficacy of this technique in achieving controlled doping and precise modulation of photoelectric response, researchers can explore its potential applications in various technological domains. Furthermore, this research serves as a stepping stone for the development of advanced doping strategies, enabling the design and fabrication of high-performance devices with enhanced functionalities.
In summary, this work showcases the significance of doping control in transition metal dichalcogenide devices and demonstrates the potential of the electrochemical ion intercalation method for achieving precise modulation of their photoelectric response performance. The observed enhancements in electrical conductivity and the ability to reversibly control the photoelectric response highlight th
过渡金属二硫族化合物已成为一类突出的二维层状材料,由于其独特的结构和性质,引起了研究人员的持续关注。这些独特的特性使得过渡金属二硫族化合物在光电子学、纳米电子学、储能器件和电催化等许多领域具有高度的通用性。特别是,调节这些材料的掺杂特性的能力对于提高器件的光电响应性能起着至关重要的作用,因此研究和理解这种效应势在必行。近年来,电化学离子插层技术已经成为一种精确掺杂控制二维材料的新方法。在此基础上,本文旨在证明利用电化学离子插入方法在厚WS<sub>2</sub>层。结果表明,电导率显著提高,大约是原始值的200倍,同时通过操纵栅极电压实现了对光电响应性能的有效和可逆控制。本文的关键发现之一是成功地演示了WS<sub>2</sub>器件通过离子插入,由栅电压调节。这种动态控制机制展示了精细调谐和定制由二维材料制成的光电器件性能的潜力。实现可逆控制的能力尤其重要,因为它允许广泛的应用范围,使设备能够根据特定的要求和操作条件进行调整。这项工作的意义超出了直接的发现,并为未来研究利用离子嵌入方法使用二维材料构建的光电器件的响应控制奠定了基础。通过确定该技术在实现可控掺杂和精确调制光电响应方面的可行性和有效性,研究人员可以探索其在各个技术领域的潜在应用。此外,本研究为开发先进的掺杂策略奠定了基础,使设计和制造具有增强功能的高性能器件成为可能。总之,本工作展示了掺杂控制在过渡金属二硫化物器件中的重要性,并展示了电化学离子插入方法实现其光电响应性能精确调制的潜力。观察到的电导率的增强和可逆控制光电响应的能力突出了该技术的良好前景。最终,这项工作为二维材料领域的未来发展铺平了道路,并为改进功能和性能的光电器件的设计和优化开辟了新的途径。
{"title":"Modulation of photocurrent response in WS&lt;sub&gt;2&lt;/sub&gt; optoelectronic devices with Li intercalation","authors":"None Song Yu-Xin, None Li Yu-Qi, None Wang Ling-Han, None Zhang Xiao-Lan, None Wang Chong, None Wang Qin-Sheng","doi":"10.7498/aps.72.20231000","DOIUrl":"https://doi.org/10.7498/aps.72.20231000","url":null,"abstract":"Transition metal dichalcogenides have emerged as a prominent class of two-dimensional layered materials, capturing sustained attention from researchers due to their unique structures and properties. These distinctive characteristics render transition metal dichalcogenides highly versatile in numerous fields, including optoelectronics, nanoelectronics, energy storage devices, and electrocatalysis. In particular, the ability to modulate the doping characteristics of these materials plays a crucial role in improving the photoelectric response performance of devices, making it imperative to investigate and understand such effects.<br>In recent years, the electrochemical ion intercalation technique has emerged as a novel approach for precise doping control of two-dimensional materials. Building upon this advancement, this paper aims to demonstrate the effective doping control of transition metal dichalcogenides devices by utilizing the electrochemical ion intercalation method specifically on thick WS<sub>2</sub> layers. The results reveal a remarkable enhancement in electrical conductivity, approximately 200 times higher than the original value, alongside the achievement of efficient and reversible control over the photoelectric response performance through the manipulation of gate voltage. One of the key findings of this paper is the successful demonstration of the reversible cyclic control of the photoelectric response in WS<sub>2</sub> devices through ion intercalation, regulated by the gate voltage. This dynamic control mechanism showcases the potential for finely tuning and tailoring the performance of photoelectric devices made from two-dimensional materials. The ability to achieve reversible control is especially significant as it allows for a versatile range of applications, enabling devices to be adjusted according to specific requirements and operating conditions.<br>The implications of this work extend beyond the immediate findings and present a foundation for future investigations into response control of photoelectric devices constructed using two-dimensional materials through the utilization of the ion intercalation method. By establishing the feasibility and efficacy of this technique in achieving controlled doping and precise modulation of photoelectric response, researchers can explore its potential applications in various technological domains. Furthermore, this research serves as a stepping stone for the development of advanced doping strategies, enabling the design and fabrication of high-performance devices with enhanced functionalities.<br>In summary, this work showcases the significance of doping control in transition metal dichalcogenide devices and demonstrates the potential of the electrochemical ion intercalation method for achieving precise modulation of their photoelectric response performance. The observed enhancements in electrical conductivity and the ability to reversibly control the photoelectric response highlight th","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135212838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of scattering clutter in underwater LiDAR based on CEEMDAN-wavelet threshold denoising algorithm 基于ceemdan -小波阈值去噪算法的水下激光雷达散射杂波抑制
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231035
None Fan Chao-Yang, None Li Chao-Feng, None Yang Su-Hui, None Liu Xin-Yu, None Liao Ying-Qi
The echo of underwater lidar often contains a significant quantity of scattering clutters. In order to effectively suppress this scattering clutter and improve the ranging accuracy of underwater lidar, a novel denoising method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold denoising is proposed.The CEEMDAN-wavelet threshold denoising algorithm uses the correlation coefficient to select intrinsic mode function (IMF) components obtained from the CEEMDAN decomposition. The IMFs, which are more closely related to the original signal, are selected. Then, the wavelet thresholding denoising algorithm is applied to each of the selected IMFs to perform additional denoising. For each IMF component, specific threshold values are calculated based on their frequency and amplitude characteristics. Subsequently, the wavelet coefficients of the IMF components are processed by using these threshold values. Finally, the denoised IMF components are combined and reconstructed to obtain the final denoised signal. Applying the wavelet threshold denoising algorithm to IMF components can effectively remove noise components that cannot be removed by traditional CEEMDAN partial reconstruction methods. By using the threshold value calculated based on the characteristics of each IMF component, the wavelet thresholding denoising process is improved in comparison with directly using a single threshold value. This approach enhances the algorithm’s adaptability and enables more effective removal of noise from the signal.We apply the proposed method to underwater ranging experiments. A 532 nm intensity-modulated continuous wave laser is used as a light source. Ranging is performed for a target in water with varying attenuation coefficients. A white polyvinyl chloride (PVC) reflector is used as a target. When the correlation extreme value is directly used to determine the delay at a distance of 3.75 attenuation length, it results in a ranging error of 19.2 cm. However, after applying the proposed method, the ranging error is reduced to 6.2 cm, thus effectively improving the ranging accuracy. These results demonstrate that the method has a significant denoising effect in underwater lidar system.
水下激光雷达的回波中往往含有大量的散射杂波。为了有效抑制这种散射杂波,提高水下激光雷达的测距精度,提出了一种基于自适应噪声的全系综经验模态分解(CEEMDAN)和小波阈值去噪的去噪方法。</sec><sec> CEEMDAN-小波阈值去噪算法,该算法利用相关系数选择由CEEMDAN分解得到的本征模态函数(IMF)分量。选择与原始信号关系更密切的imf。然后,将小波阈值去噪算法应用于每个选定的imf进行附加去噪。对于每个IMF分量,根据其频率和幅度特性计算特定的阈值。然后,利用这些阈值对IMF分量的小波系数进行处理。最后,对去噪后的IMF分量进行组合重构,得到去噪后的最终信号。对IMF分量应用小波阈值去噪算法,可以有效去除传统CEEMDAN部分重构方法无法去除的噪声分量。利用基于IMF各分量特征计算的阈值,与直接使用单一阈值相比,改进了小波阈值去噪过程。该方法增强了算法的适应性,能够更有效地去除信号中的噪声。我们将该方法应用于水下测距实验。采用532nm调强连续波激光器作为光源。对不同衰减系数的水中目标进行测距。使用白色聚氯乙烯(PVC)反射器作为目标。当直接使用相关极值确定3.75衰减长度距离上的时延时,测距误差为19.2 cm。应用该方法后,测距误差降至6.2 cm,有效提高了测距精度。结果表明,该方法在水下激光雷达系统中具有显著的去噪效果。
{"title":"Suppression of scattering clutter in underwater LiDAR based on CEEMDAN-wavelet threshold denoising algorithm","authors":"None Fan Chao-Yang, None Li Chao-Feng, None Yang Su-Hui, None Liu Xin-Yu, None Liao Ying-Qi","doi":"10.7498/aps.72.20231035","DOIUrl":"https://doi.org/10.7498/aps.72.20231035","url":null,"abstract":"<sec>The echo of underwater lidar often contains a significant quantity of scattering clutters. In order to effectively suppress this scattering clutter and improve the ranging accuracy of underwater lidar, a novel denoising method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold denoising is proposed.</sec><sec>The CEEMDAN-wavelet threshold denoising algorithm uses the correlation coefficient to select intrinsic mode function (IMF) components obtained from the CEEMDAN decomposition. The IMFs, which are more closely related to the original signal, are selected. Then, the wavelet thresholding denoising algorithm is applied to each of the selected IMFs to perform additional denoising. For each IMF component, specific threshold values are calculated based on their frequency and amplitude characteristics. Subsequently, the wavelet coefficients of the IMF components are processed by using these threshold values. Finally, the denoised IMF components are combined and reconstructed to obtain the final denoised signal. Applying the wavelet threshold denoising algorithm to IMF components can effectively remove noise components that cannot be removed by traditional CEEMDAN partial reconstruction methods. By using the threshold value calculated based on the characteristics of each IMF component, the wavelet thresholding denoising process is improved in comparison with directly using a single threshold value. This approach enhances the algorithm’s adaptability and enables more effective removal of noise from the signal.</sec><sec>We apply the proposed method to underwater ranging experiments. A 532 nm intensity-modulated continuous wave laser is used as a light source. Ranging is performed for a target in water with varying attenuation coefficients. A white polyvinyl chloride (PVC) reflector is used as a target. When the correlation extreme value is directly used to determine the delay at a distance of 3.75 attenuation length, it results in a ranging error of 19.2 cm. However, after applying the proposed method, the ranging error is reduced to 6.2 cm, thus effectively improving the ranging accuracy. These results demonstrate that the method has a significant denoising effect in underwater lidar system.</sec>","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of Germanium selenide heterojunction solar cell 硒化锗异质结太阳能电池的数值模拟
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231220
None Xiao You-Peng, None Wang Huai-Ping, None Feng Lin
One of the research hotspots in thin film solar cell technology is to seek the suitable absorber layer materials to replace cadmium telluride and copper indium gallium selenium. Recently, germanium selenide (GeSe) with excellent photoelectric property has entered the field of vision of photovoltaic researchers. The main factors affecting the performance of heterojunction solar cell are the material properties of each functional layer, the device configuration, and the interface characteristics at the heterostructure. In this study, we exploited GeSe as the absorber layer, assembled with stable TiO2 as electron transport layer and Cu2O as hole transport layer, respectively, to construct a heterojunction solar cell with the FTO/TiO2/GeSe/Cu2O/Metal structure. The TiO2 and Cu2O can form small spike-like conduction band offset and valence band offset with the absorber layer, respectively, which do not hinder majority carrier transport but can effectively suppress carrier recombination at the heterointerface. Subsequently, the wxAMPS software was used to simulate and analyze the effects of functional layer material parameters, heterointerface characteristics, and operating temperature on the performance parameters of the proposed solar cell. Considering the practical application, the relevant material parameters were selected carefully. After optimization, at 300 K, the proposed GeSe heterojunction solar cell has reached an open circuit voltage of 0.752 V, a short circuit current of 40.71 mAcm-2, a filling factor of 82.89%, and a conversion efficiency of 25.39%. The results anticipate that the GeSe based heterojunction solar cell with a structure of FTO/TiO2/GeSe/Cu2O/Au have the potential to become a high-efficiency, low toxicity, and low-cost photovoltaic device. Simulation analysis also provides some reference for the design and preparation of heterojunction solar cell.
寻找合适的吸收层材料替代碲化镉和铜铟镓硒是薄膜太阳能电池技术的研究热点之一。近年来,具有优异光电性能的硒化锗(GeSe)进入了光伏研究人员的视野。影响异质结太阳能电池性能的主要因素是各功能层的材料特性、器件配置和异质结构处的界面特性。在这项研究中,我们利用GeSe作为吸收层,与稳定的TiO<sub>2</sub>分别作为电子输运层和Cu<sub>2</sub>O作为空穴输运层,构建具有FTO/TiO<sub>2</ GeSe/Cu<sub>2</sub>O/Metal结构的异质结太阳能电池。TiO< sub> 2 & lt; / sub>Cu<sub>2</sub>O分别与吸收层形成小的尖峰状导带偏移和价带偏移,既不阻碍大部分载流子输运,又能有效抑制异质界面处载流子复合。随后,利用wxAMPS软件模拟分析了功能层材料参数、异质界面特性和工作温度对太阳能电池性能参数的影响。考虑到实际应用,对相关材料参数进行了精心选择。优化后,在300 K时,GeSe异质结太阳能电池的开路电压为0.752 V,短路电流为40.71 mac<sup>-2</sup>,填充系数为82.89%,转换效率为25.39%。结果表明,具有FTO/TiO<sub>2</sub>/GeSe/Cu<sub>2</sub>O/Au结构的GeSe基异质结太阳能电池具有成为高效、低毒性、低成本光伏器件的潜力。仿真分析也为异质结太阳能电池的设计和制备提供了一定的参考。
{"title":"Numerical simulation of Germanium selenide heterojunction solar cell","authors":"None Xiao You-Peng, None Wang Huai-Ping, None Feng Lin","doi":"10.7498/aps.72.20231220","DOIUrl":"https://doi.org/10.7498/aps.72.20231220","url":null,"abstract":"One of the research hotspots in thin film solar cell technology is to seek the suitable absorber layer materials to replace cadmium telluride and copper indium gallium selenium. Recently, germanium selenide (GeSe) with excellent photoelectric property has entered the field of vision of photovoltaic researchers. The main factors affecting the performance of heterojunction solar cell are the material properties of each functional layer, the device configuration, and the interface characteristics at the heterostructure. In this study, we exploited GeSe as the absorber layer, assembled with stable TiO<sub>2</sub> as electron transport layer and Cu<sub>2</sub>O as hole transport layer, respectively, to construct a heterojunction solar cell with the FTO/TiO<sub>2</sub>/GeSe/Cu<sub>2</sub>O/Metal structure. The TiO<sub>2</sub> and Cu<sub>2</sub>O can form small spike-like conduction band offset and valence band offset with the absorber layer, respectively, which do not hinder majority carrier transport but can effectively suppress carrier recombination at the heterointerface. Subsequently, the wxAMPS software was used to simulate and analyze the effects of functional layer material parameters, heterointerface characteristics, and operating temperature on the performance parameters of the proposed solar cell. Considering the practical application, the relevant material parameters were selected carefully. After optimization, at 300 K, the proposed GeSe heterojunction solar cell has reached an open circuit voltage of 0.752 V, a short circuit current of 40.71 mAcm<sup>-2</sup>, a filling factor of 82.89%, and a conversion efficiency of 25.39%. The results anticipate that the GeSe based heterojunction solar cell with a structure of FTO/TiO<sub>2</sub>/GeSe/Cu<sub>2</sub>O/Au have the potential to become a high-efficiency, low toxicity, and low-cost photovoltaic device. Simulation analysis also provides some reference for the design and preparation of heterojunction solar cell.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr<sub>57</sub>Cu<sub>20</sub>Al<sub>10</sub>Ni<sub>8</sub>Ti<sub>5</sub> Alloy 液态五元z&lt;sub&gt;57&lt;/sub&gt;Cu&lt;sub&gt;20&lt;/sub&gt;Al&lt;sub&gt;10&lt;/sub&gt;Ni&lt;sub&gt;8&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;合金
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231169
None Xu Shan-Sen, None Chang Jian, None Zhai Bin, None Zhu Xiannian, None Wei Bing-Bo
The substantial undercooling and rapid solidification of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy are achieved by electromagnetic levitation (EML) technique. The amorphous solidification mechanism is revealed with molecular dynamics (MD) simulation. It is observed in EML experiment that the containerlessly solidified alloy is characterized by a core-shell structure, with mainly amorphous phase becoming the core and crystalline ZrCu, Zr2Cu and Zr8Cu5 phases forming the shell. The volume fraction of amorphous core structure increases with undercooling and attains a value up to 81.3% at the maximum experimental undercooling of 300 K, which indicates that the critical undercooling required for complete amorphous solidification is 334 K. TEM analyses show that the alloy microstructure is mainly composed of Zr8Cu5 phase, whereas the ZrCu phase and Zr2Cu phase are suppressed when liquid undercooling approaches this threshold. Once the critical undercooling is reached, amorphous solidification prevails over the crystallization of Zr8Cu5 phase. In addition, a small quantity of amorphous phases are found in the crystalline shell and a little trace of Zr8Cu5 nano-cluster is detected among the amorphous core. It is further verified by MD simulation that the formation of amorphous phase in the shell is caused by the microsegregation-induced solutal undercooling when liquid alloy attains the critical undercooling, while the nano-clusters within the core is mainly ascribed to the micro-thermal fluctuation effect inside highly undercooled liquid phase.
液体五元的大量过冷和快速凝固Zr<sub>57</sub> cu>20</sub> al>10</sub> ni>8</sub>Ti<sub>5</sub>采用电磁悬浮(EML)技术制备合金。通过分子动力学(MD)模拟揭示了非晶态凝固机理。在EML实验中观察到,无容器凝固合金具有核壳结构,主要为非晶相成为核心和结晶ZrCu、Zr<sub>2</sub>Cu和Zr<sub>8</sub>Cu<形成壳层的相。非晶芯组织体积分数随着过冷度的增加而增加,在最大实验过冷度为300 K时达到81.3%,表明非晶完全凝固所需的临界过冷度为334 K。TEM分析表明,合金组织主要由Zr<sub>8</sub>Cu<sub>5</sub>而当液体过冷接近该阈值时,ZrCu相和Zr<sub>2</sub>Cu相受到抑制。一旦达到临界过冷,非晶凝固就会取代Zr<sub>8</sub>Cu<sub>5</sub>阶段。此外,在晶壳中发现了少量的非晶相和少量的z<sub>8</sub>Cu<sub>5</sub>在非晶核中检测到纳米团簇。MD模拟进一步验证了合金液达到临界过冷度时,壳内非晶相的形成是由微偏析引起的溶质过冷引起的,而芯内的纳米团簇则主要是由高度过冷的液相内部的微热波动效应引起的。
{"title":"Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr&lt;sub&gt;57&lt;/sub&gt;Cu&lt;sub&gt;20&lt;/sub&gt;Al&lt;sub&gt;10&lt;/sub&gt;Ni&lt;sub&gt;8&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt; Alloy","authors":"None Xu Shan-Sen, None Chang Jian, None Zhai Bin, None Zhu Xiannian, None Wei Bing-Bo","doi":"10.7498/aps.72.20231169","DOIUrl":"https://doi.org/10.7498/aps.72.20231169","url":null,"abstract":"The substantial undercooling and rapid solidification of liquid quinary Zr<sub>57</sub>Cu<sub>20</sub>Al<sub>10</sub>Ni<sub>8</sub>Ti<sub>5</sub> alloy are achieved by electromagnetic levitation (EML) technique. The amorphous solidification mechanism is revealed with molecular dynamics (MD) simulation. It is observed in EML experiment that the containerlessly solidified alloy is characterized by a core-shell structure, with mainly amorphous phase becoming the core and crystalline ZrCu, Zr<sub>2</sub>Cu and Zr<sub>8</sub>Cu<sub>5</sub> phases forming the shell. The volume fraction of amorphous core structure increases with undercooling and attains a value up to 81.3% at the maximum experimental undercooling of 300 K, which indicates that the critical undercooling required for complete amorphous solidification is 334 K. TEM analyses show that the alloy microstructure is mainly composed of Zr<sub>8</sub>Cu<sub>5</sub> phase, whereas the ZrCu phase and Zr<sub>2</sub>Cu phase are suppressed when liquid undercooling approaches this threshold. Once the critical undercooling is reached, amorphous solidification prevails over the crystallization of Zr<sub>8</sub>Cu<sub>5</sub> phase. In addition, a small quantity of amorphous phases are found in the crystalline shell and a little trace of Zr<sub>8</sub>Cu<sub>5</sub> nano-cluster is detected among the amorphous core. It is further verified by MD simulation that the formation of amorphous phase in the shell is caused by the microsegregation-induced solutal undercooling when liquid alloy attains the critical undercooling, while the nano-clusters within the core is mainly ascribed to the micro-thermal fluctuation effect inside highly undercooled liquid phase.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135401843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
206 nm deep ultraviolet laser from fifth harmonic generation of femtosecond fiber laser 飞秒光纤激光器五次谐波产生的206nm深紫外激光器
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230877
None Shi Liang-Zhu, None Zhang Meng, None Chu Yu-Xi, None Liu Bo-Wen, None Hu Ming-Lie
Deep ultraviolet (DUV) femtosecond laser combines the advantages of high single-photon energy of DUV laser and high peak power of femtosecond laser, which is widely used in scientific research, biomedicine, material processing and so on. However, there is a problem in the process of generating DUV femtosecond laser based on nonlinear frequency conversion which the group velocity mismatch caused by dispersion will make the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, which makes the generation of the DUV femtosecond laser very difficult. In this paper,based on a Yb-doped fiber femtosecond laser, the delay line was optimized to precisely compensate the spatial and temporal walk-off, so DUV femtosecond laser with a center wavelength of 206 nm and a repetition rate of 1 MHz is obtained, whose maximum output power is 102 mW. The maximum conversion efficiency is 4.25% from near infrared to DUV. The RMS power stability is 0.88% within 3 hours, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality during the process of second harmonic generation (SHG), FHG and SFG has been systematically studied. The experiment results provide a basis for the generation of DUV femtosecond laser from femtosecond fiber lasers.
深紫外飞秒激光结合了深紫外激光单光子能量高和飞秒激光峰值功率高的优点,广泛应用于科学研究、生物医药、材料加工等领域。然而,在基于非线性频率转换的DUV飞秒激光产生过程中存在一个问题,即色散引起的群速度失配会使非线性频率转换的时间漂移大于飞秒激光的脉冲持续时间,这使得DUV飞秒激光的产生非常困难。本文在掺镱光纤飞秒激光器的基础上,对延迟线进行优化,精确补偿时空偏移,得到了中心波长为206 nm、重复频率为1 MHz、最大输出功率为102 mW的DUV飞秒激光器。从近红外到DUV的最大转换效率为4.25%。3小时内的均方根功率稳定性为0.88%,峰间功率稳定性为3.75%。系统地研究了二次谐波产生、FHG和SFG过程中激光光谱和光束质量的演变。实验结果为飞秒光纤激光器产生DUV飞秒激光器提供了依据。
{"title":"206 nm deep ultraviolet laser from fifth harmonic generation of femtosecond fiber laser","authors":"None Shi Liang-Zhu, None Zhang Meng, None Chu Yu-Xi, None Liu Bo-Wen, None Hu Ming-Lie","doi":"10.7498/aps.72.20230877","DOIUrl":"https://doi.org/10.7498/aps.72.20230877","url":null,"abstract":"Deep ultraviolet (DUV) femtosecond laser combines the advantages of high single-photon energy of DUV laser and high peak power of femtosecond laser, which is widely used in scientific research, biomedicine, material processing and so on. However, there is a problem in the process of generating DUV femtosecond laser based on nonlinear frequency conversion which the group velocity mismatch caused by dispersion will make the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, which makes the generation of the DUV femtosecond laser very difficult. In this paper,based on a Yb-doped fiber femtosecond laser, the delay line was optimized to precisely compensate the spatial and temporal walk-off, so DUV femtosecond laser with a center wavelength of 206 nm and a repetition rate of 1 MHz is obtained, whose maximum output power is 102 mW. The maximum conversion efficiency is 4.25% from near infrared to DUV. The RMS power stability is 0.88% within 3 hours, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality during the process of second harmonic generation (SHG), FHG and SFG has been systematically studied. The experiment results provide a basis for the generation of DUV femtosecond laser from femtosecond fiber lasers.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135402172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explore Conformational Space of Proteins with Supervised Auto-Encoder 用监督自编码器探索蛋白质的构象空间
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231060
None Chen Guanglin, None Zhang Zhiyong
Protein function is related to its structure and dynamics. Molecular dynamics simulation is an important tool in the study of protein dynamics by exploring its conformational space, however, conformational sampling is a nontrivial issue, since the risk of missing key details due to under-sampling. In recent years, deep learning methods, such as auto-encoder, can couple with MD to explore conformational space of proteins. After training with the MD trajectories, auto-encoder can generate new conformations quickly by inputting random numbers in low dimension space. However, some issues still remain, such as requirements for the quality of the training set, the limitation of explorable area and the undefined sampling direction. In this work, we have built a supervised auto-encoder, in which some reaction coordinates are used to guide conformational exploration alone certain directions. We have also tried expanding the explorable area by training with the data generated by the model. Two multi-domain proteins, bacteriophage T4 lysozyme and adenylate kinase, were used to illustrate the method. In the case of the training set consisting of only under-sampled simulated trajectories, the supervised auto-encoder can still explore alone the given reaction coordinates. The explored conformational space can cover all the experimental structures of the proteins and be extended to regions far from the training sets. Having been verified by molecular dynamics and secondary structure calculations, most of the conformations explored were found to be plausible. The supervised auto-encoder provides a way to efficiently expand the conformational space of a protein with limited computational resources, although some suitable reaction coordinates is required. By integrate appropriate reaction coordinates or experimental data, the supervised auto-encoder may serve as an efficient tool for exploring conformational space of proteins.
蛋白质的功能与其结构和动力学有关。分子动力学模拟是通过探索蛋白质的构象空间来研究蛋白质动力学的重要工具,然而,构象采样是一个不容忽视的问题,因为由于采样不足,有可能丢失关键细节。近年来,深度学习方法,如自编码器,可以与MD结合来探索蛋白质的构象空间。自编码器经MD轨迹训练后,通过在低维空间输入随机数,可以快速生成新的构象。但是,该方法仍然存在训练集质量要求、可探索区域的限制以及采样方向不明确等问题。在这项工作中,我们建立了一个有监督的自编码器,其中一些反应坐标用于单独指导构象探索的特定方向。我们还尝试通过使用模型生成的数据进行训练来扩展可探索区域。以噬菌体T4溶菌酶和腺苷酸激酶两种多结构域蛋白为例。在训练集仅由欠采样模拟轨迹组成的情况下,监督自编码器仍然可以单独探索给定的反应坐标。探索的构象空间可以覆盖蛋白质的所有实验结构,并扩展到远离训练集的区域。经过分子动力学和二级结构计算的验证,发现探索的大多数构象都是可信的。尽管需要一些合适的反应坐标,但监督式自编码器提供了一种在有限的计算资源下有效扩展蛋白质构象空间的方法。通过整合适当的反应坐标或实验数据,监督式自编码器可以作为探索蛋白质构象空间的有效工具。
{"title":"Explore Conformational Space of Proteins with Supervised Auto-Encoder","authors":"None Chen Guanglin, None Zhang Zhiyong","doi":"10.7498/aps.72.20231060","DOIUrl":"https://doi.org/10.7498/aps.72.20231060","url":null,"abstract":"Protein function is related to its structure and dynamics. Molecular dynamics simulation is an important tool in the study of protein dynamics by exploring its conformational space, however, conformational sampling is a nontrivial issue, since the risk of missing key details due to under-sampling. In recent years, deep learning methods, such as auto-encoder, can couple with MD to explore conformational space of proteins. After training with the MD trajectories, auto-encoder can generate new conformations quickly by inputting random numbers in low dimension space. However, some issues still remain, such as requirements for the quality of the training set, the limitation of explorable area and the undefined sampling direction. In this work, we have built a supervised auto-encoder, in which some reaction coordinates are used to guide conformational exploration alone certain directions. We have also tried expanding the explorable area by training with the data generated by the model. Two multi-domain proteins, bacteriophage T4 lysozyme and adenylate kinase, were used to illustrate the method. In the case of the training set consisting of only under-sampled simulated trajectories, the supervised auto-encoder can still explore alone the given reaction coordinates. The explored conformational space can cover all the experimental structures of the proteins and be extended to regions far from the training sets. Having been verified by molecular dynamics and secondary structure calculations, most of the conformations explored were found to be plausible. The supervised auto-encoder provides a way to efficiently expand the conformational space of a protein with limited computational resources, although some suitable reaction coordinates is required. By integrate appropriate reaction coordinates or experimental data, the supervised auto-encoder may serve as an efficient tool for exploring conformational space of proteins.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135402200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nd, Gd:SrF<sub>2</sub> crystal spectrum gain characteristic in broadband laser amplification Nd, Gd: SrF&lt; sub&gt; 2 & lt; / sub&gt;宽带激光放大中的晶体光谱增益特性
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230972
Dong-Bin Jiang, Ying Zhang, Da-Peng Jiang, Bin Zhu, Gang Li, Li Sun, Zheng Huang, Feng Lu, Na Xie, Kai-Nan Zhou, Jing-Qin Su
Spectral gain narrowing is one of the key factors affecting broadband amplification of ultrashort pulses. In this paper, the spectral gain characteristics in broadband amplification are studied theoretically and experimentally by using the characteristic of Nd,Gd:SrF2 crystal, i.e. the emission spectrum that has a certain width at the higher stimulated emission cross section. Through the numerical simulation, the evolution law of output spectrum of the laser gain medium under different spectral gain lineshapes and different gain values is studied in detail. Theoretical calculation shows that the spectral gain is narrowed obviously with the increase of gain value of the traditional Gaussian emission spectrum, and that increasing the spectral bandwidth at the maximum stimulated emission cross section can obviously suppress the spectral gain narrowing. Furthermore, the spectral gain narrowing characteristics of the Nd,Gd:SrF2 crystal are studied experimentally. A Ф 13 mm×150 mm Nd,Gd:SrF2 crystal is used as the gain medium which is pumped by flash lamps in the experimental study. The experimental results show that the output spectra of Nd,Gd:SrF2 crystals are not obviously narrowed when the full width at half maximum (FWHM) of spectral width of the input laser is 5 nm and the gain is 140 times. The experimental results are consistent with the theoretical calculation and analysis. The crystal can work normally at a repetition rate of 0.2 Hz and 1.0 Hz in the experiment, but due to the influence of thermal effect, the gain will decrease to a certain extent with the increase of pump energy and repetition rate. The research results lay the foundation for the application of fluoride crystal in broadband chirped pulse amplification.
频谱增益窄化是影响超短脉冲宽带放大的关键因素之一。本文利用Nd,Gd:SrF<sub>2</sub>晶体,即在较高受激发射截面处具有一定宽度的发射光谱。通过数值模拟,详细研究了不同光谱增益线形和不同增益值下激光增益介质输出光谱的演化规律。理论计算表明,随着传统高斯发射光谱增益值的增大,光谱增益明显收窄,增大最大受激发射截面处的光谱带宽可以明显抑制光谱增益的收窄。此外,Nd、Gd:SrF<sub>2</sub>对晶体进行了实验研究。& lt; i>Ф& lt; / i>13 mm×150 mm Nd,Gd:SrF<sub>2</sub>在实验研究中,采用晶体作为增益介质,由闪光灯抽运。实验结果表明,Nd,Gd:SrF<sub>2</sub>当输入激光光谱宽度的半宽全宽度为5 nm,增益为140倍时,晶体不会明显变窄。实验结果与理论计算分析相吻合。实验中晶体在0.2 Hz和1.0 Hz的重复频率下可以正常工作,但由于热效应的影响,随着泵浦能量和重复频率的增加,增益会有一定程度的降低。研究结果为氟化物晶体在宽带啁啾脉冲放大中的应用奠定了基础。
{"title":"Nd, Gd:SrF&lt;sub&gt;2&lt;/sub&gt; crystal spectrum gain characteristic in broadband laser amplification","authors":"Dong-Bin Jiang, Ying Zhang, Da-Peng Jiang, Bin Zhu, Gang Li, Li Sun, Zheng Huang, Feng Lu, Na Xie, Kai-Nan Zhou, Jing-Qin Su","doi":"10.7498/aps.72.20230972","DOIUrl":"https://doi.org/10.7498/aps.72.20230972","url":null,"abstract":"Spectral gain narrowing is one of the key factors affecting broadband amplification of ultrashort pulses. In this paper, the spectral gain characteristics in broadband amplification are studied theoretically and experimentally by using the characteristic of Nd,Gd:SrF<sub>2</sub> crystal, i.e. the emission spectrum that has a certain width at the higher stimulated emission cross section. Through the numerical simulation, the evolution law of output spectrum of the laser gain medium under different spectral gain lineshapes and different gain values is studied in detail. Theoretical calculation shows that the spectral gain is narrowed obviously with the increase of gain value of the traditional Gaussian emission spectrum, and that increasing the spectral bandwidth at the maximum stimulated emission cross section can obviously suppress the spectral gain narrowing. Furthermore, the spectral gain narrowing characteristics of the Nd,Gd:SrF<sub>2</sub> crystal are studied experimentally. A <i>Ф</i> 13 mm×150 mm Nd,Gd:SrF<sub>2</sub> crystal is used as the gain medium which is pumped by flash lamps in the experimental study. The experimental results show that the output spectra of Nd,Gd:SrF<sub>2</sub> crystals are not obviously narrowed when the full width at half maximum (FWHM) of spectral width of the input laser is 5 nm and the gain is 140 times. The experimental results are consistent with the theoretical calculation and analysis. The crystal can work normally at a repetition rate of 0.2 Hz and 1.0 Hz in the experiment, but due to the influence of thermal effect, the gain will decrease to a certain extent with the increase of pump energy and repetition rate. The research results lay the foundation for the application of fluoride crystal in broadband chirped pulse amplification.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135508550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure 基于FTO/Ag/FTO结构的高透明红外隐身薄膜设计
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231084
None Wang Long, None Wang Liu-Ying, None Liu Gu, None Tang Xiu-Jian, None Ge Chao-Qun, None Wang Bin, None Xu Ke-Jun, None Wang Xin-Jun
Multi-spectral compatible stealth materials become an imperative development trend, especially visible and infrared compatible stealth materials have become a top priority in the field of optoelectronic stealth technology. However, the demands of infrared stealth and visible stealth on spectral response are different, which makes it difficult to reconcile the design of functional coupling materials. Therefore, it is crucial to develop selective control technology of optical characteristics. A visible and infrared compatible stealth superstructure thin film is proposed based on the FTO/Ag/FTO stacked film structure. A collaborative design method for high visible transmission and low infrared radiation is established, and the mechanism of microstructure characteristics affecting visible transmission and infrared reflection spectra is explained. The highly transparent infrared stealth thin film is optimized, and its compatibility stealth performance is tested and characterized through the use of visible transmission spectroscopy, infrared reflection spectroscopy, and thermal imaging characterization techniques. It has shown that visible transmission depends on the coupling and matching effect between the semiconductor dielectric layer and the metal layer, while infrared radiation suppression mainly depends on the metal layer. As the thickness of FTO film increases, the visible transmission peak undergoes a red shift, leading to a flattening of the transmission spectrum curve, the average transmission first increases and then gradually decreases. As the thickness of Ag thin film layer increases, the transmission peak of visible undergoes a blue shift, causing the transmission spectrum curve to tend a high-frequency transmission state, narrowing the frequency domain of visible transmission and gradually decreasing the average transmittance. At the same time, the infrared reflectance increases with the increase of Ag film thickness, but the change amplitude significantly decreases when the Ag film thickness is greater than 18 nm. When the thickness of the optimized FTO/Ag/FTO film structure is 40/12/40 nm, it has a high level of background perspective reproduction and high-temperature infrared radiation suppression ability. The average transmittance of 0.38~0.78 μm visible light band is 82.52%, and the average reflectance of 3~14 μm mid-far infrared band is 81.46%. The radiation temperature of the sample is 49 ℃ and 75.8 ℃ lower in mid infrared and far infrared than that of the quartz sheet at 150 ℃, respectively. The new stealth film can be attached to the camouflage coating surface of special vehicles to achieve visible and infrared compatible stealth, and can be used for cockpit windows to ensure thermal insulation, temperature control, and infrared stealth without affecting the field of view. This study can provide a new approach for the design and application of visible and infrared compatible stealth materials.
多光谱兼容隐身材料已成为势在必行的发展趋势,特别是可见光和红外兼容隐身材料已成为光电隐身技术领域的重中之重。然而,红外隐身和可见光隐身对光谱响应的要求不同,使得功能耦合材料的设计难以协调。因此,发展光特性的选择性控制技术至关重要。提出了一种基于FTO/Ag/FTO叠层结构的可见光和红外兼容隐身上层结构薄膜。建立了高可见光透过率和低红外辐射协同设计方法,并解释了微观结构特性影响可见光透过率和红外反射光谱的机理。对高透明红外隐身薄膜进行了优化,并利用可见光透射光谱、红外反射光谱和热成像表征技术对其兼容隐身性能进行了测试和表征。研究表明,可见光透射取决于半导体介电层与金属层之间的耦合匹配效应,而红外辐射抑制主要取决于金属层。随着FTO薄膜厚度的增加,可见光透射峰发生红移,导致透射光谱曲线变平坦,平均透射率先增大后逐渐减小。随着Ag薄膜层厚度的增加,可见光透射峰发生蓝移,使透射光谱曲线趋于高频透射状态,使可见光透射频域变窄,平均透射率逐渐降低。同时,红外反射率随Ag膜厚度的增加而增加,但当Ag膜厚度大于18 nm时,变化幅度显著减小。当优化后的FTO/Ag/FTO薄膜结构厚度为40/12/40 nm时,具有较高的背景透视再现能力和高温红外辐射抑制能力。0.38~0.78 μm可见光波段的平均透过率为82.52%,3~14 μm中远红外波段的平均反射率为81.46%。样品在150℃时的中红外辐射温度比石英片低49℃,远红外辐射温度比石英片低75.8℃。新型隐身膜可附着在特种车辆的伪装涂层表面,实现可见和红外兼容隐身,并可用于驾驶舱窗户,在不影响视场的情况下保证隔热、控温和红外隐身。该研究可为可见光和红外兼容隐身材料的设计和应用提供新的途径。
{"title":"Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure","authors":"None Wang Long, None Wang Liu-Ying, None Liu Gu, None Tang Xiu-Jian, None Ge Chao-Qun, None Wang Bin, None Xu Ke-Jun, None Wang Xin-Jun","doi":"10.7498/aps.72.20231084","DOIUrl":"https://doi.org/10.7498/aps.72.20231084","url":null,"abstract":"Multi-spectral compatible stealth materials become an imperative development trend, especially visible and infrared compatible stealth materials have become a top priority in the field of optoelectronic stealth technology. However, the demands of infrared stealth and visible stealth on spectral response are different, which makes it difficult to reconcile the design of functional coupling materials. Therefore, it is crucial to develop selective control technology of optical characteristics. A visible and infrared compatible stealth superstructure thin film is proposed based on the FTO/Ag/FTO stacked film structure. A collaborative design method for high visible transmission and low infrared radiation is established, and the mechanism of microstructure characteristics affecting visible transmission and infrared reflection spectra is explained. The highly transparent infrared stealth thin film is optimized, and its compatibility stealth performance is tested and characterized through the use of visible transmission spectroscopy, infrared reflection spectroscopy, and thermal imaging characterization techniques. It has shown that visible transmission depends on the coupling and matching effect between the semiconductor dielectric layer and the metal layer, while infrared radiation suppression mainly depends on the metal layer. As the thickness of FTO film increases, the visible transmission peak undergoes a red shift, leading to a flattening of the transmission spectrum curve, the average transmission first increases and then gradually decreases. As the thickness of Ag thin film layer increases, the transmission peak of visible undergoes a blue shift, causing the transmission spectrum curve to tend a high-frequency transmission state, narrowing the frequency domain of visible transmission and gradually decreasing the average transmittance. At the same time, the infrared reflectance increases with the increase of Ag film thickness, but the change amplitude significantly decreases when the Ag film thickness is greater than 18 nm. When the thickness of the optimized FTO/Ag/FTO film structure is 40/12/40 nm, it has a high level of background perspective reproduction and high-temperature infrared radiation suppression ability. The average transmittance of 0.38~0.78 μm visible light band is 82.52%, and the average reflectance of 3~14 μm mid-far infrared band is 81.46%. The radiation temperature of the sample is 49 ℃ and 75.8 ℃ lower in mid infrared and far infrared than that of the quartz sheet at 150 ℃, respectively. The new stealth film can be attached to the camouflage coating surface of special vehicles to achieve visible and infrared compatible stealth, and can be used for cockpit windows to ensure thermal insulation, temperature control, and infrared stealth without affecting the field of view. This study can provide a new approach for the design and application of visible and infrared compatible stealth materials.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135550323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iodine Electron Cyclotron Resonance Plasma Source for Electric Propulsion 电力推进用碘电子回旋共振等离子体源
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230785
None Li Xin, None Zeng Ming, None Liu Hui, None Ning Zhong-Xi, None Yu Da-Ren
With the rapid development of commercial space in recent years, the low-power and low-cost propulsion systems are needed more and more urgently. Compared with conventional chemical propulsion, electric propulsion has a higher specific impulse. Compared with the conventional xenon propellant, iodine propellant that does not require high pressure storage, is cheap and close to the relative atomic mass and ionization energy of xenon. Electron cyclotron resonance source has the advantages of no internal electrode, low pressure ionization, high plasma density and compact structure, which is suitable for low power electric propulsion. Therefore, the study of low power iodine propellant electron cyclotron resonance plasma source is of great significance. In this study, a set of corrosion-resistant feed system with balanced and stable output of iodine vapor is designed. Then the iodine-corrosion-resistant electron cyclotron resonance thruster is designed completely. A corrosion-resistant coaxial cavity structure is used to feed the microwave to the thruster, and the channel magnetic field is changed into a cusped field to generate more electron cyclotron resonance (ECR) layers. Finally, the combined ignition experiment is successfully conducted, showing the first plasma source using electron cyclotron resonance to ionize iodine propellant that can be used for electric propulsion in the world. The analyses of experiments, static magnetic field, microwave electric field distribution show that the unstable plasma plume scintillation at low power and low flow is caused by the conversion between ordinary wave electron plasmon resonance heating mode and extraordinary wave electron cyclotron resonance heating mode. The decrease of ionization rate at a high flow rate is caused by electron loss, wall loss and electronegativity of iodine propellant. Based on this principle, an improvement scheme is proposed. The plasma source has no obvious damage after discharge, which indicates that it has the potential of long life. This work preliminarily proves that the low power electron cyclotron resonance electric propulsion scheme of low power iodine propellant is feasible.
近年来,随着商业航天事业的飞速发展,对低功率、低成本推进系统的需求越来越迫切。与常规化学推进相比,电力推进具有更高的比冲。与传统的氙推进剂相比,碘推进剂不需要高压储存,价格便宜,且接近氙的相对原子质量和电离能。电子回旋共振源具有无内部电极、低压电离、等离子体密度高、结构紧凑等优点,适用于低功率电力推进。因此,研究低功率碘推进剂电子回旋共振等离子体源具有重要意义。本研究设计了一套具有平衡稳定的碘蒸气输出的耐腐蚀进料系统。然后对耐碘腐蚀电子回旋共振推力器进行了完整的设计。采用耐腐蚀的同轴腔结构将微波送入推力器,并将通道磁场转变为尖角场,以产生更多的电子回旋共振层。最后,成功地进行了联合点火实验,展示了世界上第一个利用电子回旋共振电离碘推进剂的等离子体源,可用于电力推进。实验、静磁场、微波电场分布分析表明,低功率、低流量下的不稳定等离子体羽流闪烁是由普通波电子等离激元共振加热模式与非普通波电子回旋共振加热模式转换引起的。高流速下电离速率的降低是由碘推进剂的电子损失、壁损失和电负性引起的。在此基础上,提出了改进方案。等离子体源放电后无明显损伤,具有长寿命的潜力。初步证明了低功率碘推进剂的低功率电子回旋共振电推进方案是可行的。
{"title":"Iodine Electron Cyclotron Resonance Plasma Source for Electric Propulsion","authors":"None Li Xin, None Zeng Ming, None Liu Hui, None Ning Zhong-Xi, None Yu Da-Ren","doi":"10.7498/aps.72.20230785","DOIUrl":"https://doi.org/10.7498/aps.72.20230785","url":null,"abstract":"With the rapid development of commercial space in recent years, the low-power and low-cost propulsion systems are needed more and more urgently. Compared with conventional chemical propulsion, electric propulsion has a higher specific impulse. Compared with the conventional xenon propellant, iodine propellant that does not require high pressure storage, is cheap and close to the relative atomic mass and ionization energy of xenon. Electron cyclotron resonance source has the advantages of no internal electrode, low pressure ionization, high plasma density and compact structure, which is suitable for low power electric propulsion. Therefore, the study of low power iodine propellant electron cyclotron resonance plasma source is of great significance. In this study, a set of corrosion-resistant feed system with balanced and stable output of iodine vapor is designed. Then the iodine-corrosion-resistant electron cyclotron resonance thruster is designed completely. A corrosion-resistant coaxial cavity structure is used to feed the microwave to the thruster, and the channel magnetic field is changed into a cusped field to generate more electron cyclotron resonance (ECR) layers. Finally, the combined ignition experiment is successfully conducted, showing the first plasma source using electron cyclotron resonance to ionize iodine propellant that can be used for electric propulsion in the world. The analyses of experiments, static magnetic field, microwave electric field distribution show that the unstable plasma plume scintillation at low power and low flow is caused by the conversion between ordinary wave electron plasmon resonance heating mode and extraordinary wave electron cyclotron resonance heating mode. The decrease of ionization rate at a high flow rate is caused by electron loss, wall loss and electronegativity of iodine propellant. Based on this principle, an improvement scheme is proposed. The plasma source has no obvious damage after discharge, which indicates that it has the potential of long life. This work preliminarily proves that the low power electron cyclotron resonance electric propulsion scheme of low power iodine propellant is feasible.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135401004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1