首页 > 最新文献

Chinese Physics最新文献

英文 中文
The mirror buckling analysis of freestanding graphene membranes based on the coarse-grained molecular dynamics method 基于粗粒分子动力学方法的独立石墨烯膜镜像屈曲分析
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231120
None Xu Wenlong, None Kai Yue, None Zhang Kai, None Zheng Balin
For now, just few researchers have analyzed the thermal-mechanical mirror buckling behavior of freestanding graphene membranes discovered in scan tunneling microscope experiments. Ones of the potential applies of the out-of-plane deformational behavior of graphene membranes are energy harvesting systems. Whatever in the experiments, or for energy harvesting systems, the graphene membranes are micron order. According to previous researches, traditional molecular dynamics method is an appropriate approach to express mirror buckling with nano scale. However, due to the limit of algorithm, when dealing with micro size model by molecular dynamics method, the problems of low computational efficiency and too long calculational time may arise. Therefore, for analyzing the mirror buckling of micro size graphene membranes, the coarse-grained molecular dynamics method is utilized in this paper. Graphene membranes with a fan-shaped cross section and various depth-span ratios are under mechanical or thermal loads. Influences of every factor on the mirror buckling are explored. The calculations indicated that for graphene membranes with various depth-span ratios under mechanical load mirror buckling could be observed. And the critical loading increases with the depth-span ratio. Under thermal load graphene membranes only with low depth-span ratios could totally overturn. For high depth-span ratio graphene, the center height decreases with temperature rise. However, it is hard to overturn completely. Understanding the influences of various factors on the mirror buckling phenomenon of graphene membranes provides theoretical guidance for the design of energy harvesting systems.
目前,只有少数研究人员分析了扫描隧道显微镜实验中发现的独立石墨烯膜的热机械镜面屈曲行为。石墨烯膜的面外变形行为的潜在应用之一是能量收集系统。无论是在实验中,还是在能量收集系统中,石墨烯膜都是微米级的。根据以往的研究,传统的分子动力学方法是表征纳米尺度镜像屈曲的合适方法。然而,由于算法的限制,用分子动力学方法处理微尺度模型时,可能会出现计算效率低、计算时间过长的问题。因此,为了分析微尺寸石墨烯膜的镜像屈曲,本文采用了粗粒度分子动力学方法。具有扇形截面和不同深跨比的石墨烯膜承受机械或热载荷。探讨了各种因素对镜面屈曲的影响。计算结果表明,对于不同深跨比的石墨烯膜,在机械载荷作用下可以观察到镜面屈曲现象。临界荷载随深跨比增大而增大。在热负荷下,只有低深跨比的石墨烯膜才会完全倾覆。对于高深跨比石墨烯,中心高度随温度升高而降低。然而,这很难完全推翻。了解各种因素对石墨烯膜镜面屈曲现象的影响,为能量收集系统的设计提供理论指导。
{"title":"The mirror buckling analysis of freestanding graphene membranes based on the coarse-grained molecular dynamics method","authors":"None Xu Wenlong, None Kai Yue, None Zhang Kai, None Zheng Balin","doi":"10.7498/aps.72.20231120","DOIUrl":"https://doi.org/10.7498/aps.72.20231120","url":null,"abstract":"For now, just few researchers have analyzed the thermal-mechanical mirror buckling behavior of freestanding graphene membranes discovered in scan tunneling microscope experiments. Ones of the potential applies of the out-of-plane deformational behavior of graphene membranes are energy harvesting systems. Whatever in the experiments, or for energy harvesting systems, the graphene membranes are micron order. According to previous researches, traditional molecular dynamics method is an appropriate approach to express mirror buckling with nano scale. However, due to the limit of algorithm, when dealing with micro size model by molecular dynamics method, the problems of low computational efficiency and too long calculational time may arise. Therefore, for analyzing the mirror buckling of micro size graphene membranes, the coarse-grained molecular dynamics method is utilized in this paper. Graphene membranes with a fan-shaped cross section and various depth-span ratios are under mechanical or thermal loads. Influences of every factor on the mirror buckling are explored. The calculations indicated that for graphene membranes with various depth-span ratios under mechanical load mirror buckling could be observed. And the critical loading increases with the depth-span ratio. Under thermal load graphene membranes only with low depth-span ratios could totally overturn. For high depth-span ratio graphene, the center height decreases with temperature rise. However, it is hard to overturn completely. Understanding the influences of various factors on the mirror buckling phenomenon of graphene membranes provides theoretical guidance for the design of energy harvesting systems.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135495742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery 固体电解质电池中锂枝晶生长的机械应力-热力学相场模拟
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230824
None Geng Xiao-Bin, None Li Ding-Gen, None Xu Bo
Growth of lithium dendrites in solid state batteries is an important factor that disturbs their commercial applications. The growth of lithium dendrites at the interface of lithium metal anode will not only lead to the decrease of battery energy efficiency, but also cause combustion, explosion and other safety problems. In order to explore the factors and methods that inhibit the growth of lithium dendrites, the phase-field theory is used to simulate the growth of lithium dendrites in polymer solid electrolyte batteries, and a phase-field model of lithium dendrite growth coupled with mechanical stress and thermal field is established. The effects of key physical factors such as ambient temperature, solid electrolyte Young’s modulus and external stress on dendrite growth and their acting principles are discussed and analyzed. The results show that under the conditions of high temperature, high solid electrolyte Young’s modulus and external stress, the growth of lithium dendrites is slow, the number of long dendrites is small, and the electrodeposition is more uniform. In addition, the effects of Young’s modulus of solid electrolyte and ambient temperature on the growth of lithium dendrites in a common range are compared with each other. It is found that the inhibition effect of changing Young’s modulus of solid electrolyte on the maximum length of lithium dendrites is 19% higher than that caused by the change of ambient temperature.
固态电池中锂枝晶的生长是影响其商业应用的一个重要因素。锂金属负极界面处锂枝晶的生长不仅会导致电池能量效率的下降,还会引起燃烧、爆炸等安全问题。为了探索抑制锂枝晶生长的因素和方法,运用相场理论对聚合物固体电解质电池中锂枝晶的生长进行了模拟,建立了机械应力和热场耦合作用下锂枝晶生长的相场模型。讨论和分析了环境温度、固体电解质杨氏模量和外部应力等关键物理因素对枝晶生长的影响及其作用原理。结果表明:在高温、高固体电解质杨氏模量和外加应力条件下,锂枝晶生长缓慢,长枝晶数量少,电沉积更加均匀;此外,还比较了固体电解质杨氏模量和环境温度对锂枝晶生长的影响。研究发现,固体电解质杨氏模量变化对锂枝晶最大长度的抑制作用比环境温度变化的抑制作用高19%。
{"title":"Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery","authors":"None Geng Xiao-Bin, None Li Ding-Gen, None Xu Bo","doi":"10.7498/aps.72.20230824","DOIUrl":"https://doi.org/10.7498/aps.72.20230824","url":null,"abstract":"Growth of lithium dendrites in solid state batteries is an important factor that disturbs their commercial applications. The growth of lithium dendrites at the interface of lithium metal anode will not only lead to the decrease of battery energy efficiency, but also cause combustion, explosion and other safety problems. In order to explore the factors and methods that inhibit the growth of lithium dendrites, the phase-field theory is used to simulate the growth of lithium dendrites in polymer solid electrolyte batteries, and a phase-field model of lithium dendrite growth coupled with mechanical stress and thermal field is established. The effects of key physical factors such as ambient temperature, solid electrolyte Young’s modulus and external stress on dendrite growth and their acting principles are discussed and analyzed. The results show that under the conditions of high temperature, high solid electrolyte Young’s modulus and external stress, the growth of lithium dendrites is slow, the number of long dendrites is small, and the electrodeposition is more uniform. In addition, the effects of Young’s modulus of solid electrolyte and ambient temperature on the growth of lithium dendrites in a common range are compared with each other. It is found that the inhibition effect of changing Young’s modulus of solid electrolyte on the maximum length of lithium dendrites is 19% higher than that caused by the change of ambient temperature.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large scale and quantum accurate molecular dynamics simulation: liquid iron under extreme condition 大尺度和量子精确分子动力学模拟:极端条件下的液态铁
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231258
Qi-Yu Zeng, Bo Chen, Dong-Dong Kang, Jia-Yu Dai
Liquid iron is the major component of planetary cores. Its structure and dynamics under high pressure and temperature is of great significance in studying geophysics and planetary science. However, for experimental techniques, it is still difficult to generate and probe such a state of matter under extreme conditions, while for theoretical method like molecular dynamics simulation, the reliable estimation of dynamic properties requires both large simulation size and ab initio accuracy, resulting in unaffordable computational costs for traditional method. Owing to the technical limitation, the understanding of such matters remains limited. In this work, combining molecular dynamics simulation, we establish a neural network potential energy surface model to study the static and dynamic properties of liquid iron at its extreme thermodynamic state close to core-mantle boundary. The implementation of deep neural network extends the simulation scales from one hundred atoms to millions of atoms within quantum accuracy. The estimated static and dynamic structure factor show good consistency with all available X-ray diffraction and inelastic X-ray scattering experimental observations, while the empirical potential based on embedding-atom-method fails to give a unified description of liquid iron across a wide range of thermodynamic conditions. We also demonstrate that the transport property like diffusion coefficient exhibits a strong size effect, which requires more than at least ten thousands of atoms to give a converged value. Our results show that the combination of deep learning technology and molecular modelling provides a way to describe matter realistically under extreme conditions.
液态铁是行星核心的主要成分。它的结构和高压高温下的动力学在地球物理和行星科学研究中具有重要意义。然而,对于实验技术来说,在极端条件下生成和探测物质的这种状态仍然是困难的,而对于分子动力学模拟等理论方法来说,对动态性质的可靠估计既需要较大的模拟规模,又需要<i>ab initio</i>精度高,导致传统方法的计算成本难以承受。由于技术上的限制,对这些事项的了解仍然有限。本文结合分子动力学模拟,建立了神经网络势能面模型,研究了铁液在接近核幔边界的极端热力学状态下的静态和动态性质。深度神经网络的实现在量子精度范围内将模拟尺度从100个原子扩展到数百万个原子。估计的静态和动态结构因子与所有可用的x射线衍射和非弹性x射线散射实验观测结果具有良好的一致性,而基于嵌入原子法的经验势不能在广泛的热力学条件下给出铁液的统一描述。我们还证明了像扩散系数一样的输运性质表现出强烈的尺寸效应,这需要至少一万多个原子才能给出收敛值。我们的研究结果表明,深度学习技术和分子建模的结合提供了一种在极端条件下真实描述物质的方法。
{"title":"Large scale and quantum accurate molecular dynamics simulation: liquid iron under extreme condition","authors":"Qi-Yu Zeng, Bo Chen, Dong-Dong Kang, Jia-Yu Dai","doi":"10.7498/aps.72.20231258","DOIUrl":"https://doi.org/10.7498/aps.72.20231258","url":null,"abstract":"Liquid iron is the major component of planetary cores. Its structure and dynamics under high pressure and temperature is of great significance in studying geophysics and planetary science. However, for experimental techniques, it is still difficult to generate and probe such a state of matter under extreme conditions, while for theoretical method like molecular dynamics simulation, the reliable estimation of dynamic properties requires both large simulation size and <i>ab initio</i> accuracy, resulting in unaffordable computational costs for traditional method. Owing to the technical limitation, the understanding of such matters remains limited. In this work, combining molecular dynamics simulation, we establish a neural network potential energy surface model to study the static and dynamic properties of liquid iron at its extreme thermodynamic state close to core-mantle boundary. The implementation of deep neural network extends the simulation scales from one hundred atoms to millions of atoms within quantum accuracy. The estimated static and dynamic structure factor show good consistency with all available X-ray diffraction and inelastic X-ray scattering experimental observations, while the empirical potential based on embedding-atom-method fails to give a unified description of liquid iron across a wide range of thermodynamic conditions. We also demonstrate that the transport property like diffusion coefficient exhibits a strong size effect, which requires more than at least ten thousands of atoms to give a converged value. Our results show that the combination of deep learning technology and molecular modelling provides a way to describe matter realistically under extreme conditions.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mott physics — one of main themes in quantum materials 莫特物理学——量子材料的主要主题之一
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231508
Dong-Lai Feng
The competition and cooperation between the itinerancy behavior and localization behavior of electrons in correlated quantum materials, known as Mott physics, is the physical mechanism behind the diverse states of many quantum materials. This article reviews the manifestation of Mott physics in various quantum materials and establishes it as one of the main themes of quantum materials. Finding and understanding its ever-changing ways of manifestation is one of the central tasks of experimental research on condensed matter physics.Specifically, the filling-control route of Mott transition is illustrated by exampling the surface K-dosed Sr2IrO4, which exhibits d-wave gap, pseudogap behavior in underdoped regime, and phase separation with inhomogeneous electronic state distribution. All of these show strong resemblances to the doped cuprate superconductors, another prototypical filling-control type of Mott transition case. On the other hand, the bandwidth-control route of Mott transition could be found in NiS2–xSex, where its bandwidth continuously decreases with Se concentration decreasing, until it becomes an insulator. In addition, the essence of various ways of doping in iron-based superconductors is to change their bandwidths. The superconductivity shows up at intermediate bandwidth with moderate correlations, and it diminishes when the bandwidth is large and the electron correlations are weak. For heavily electron-doped iron-selenides, there is even a Mott insulator phase with strong correlations.For carbon based materials, the phase transition between the antiferromagnetic insulator and superconducting state of A15 Cs3C60 as the volume of fullerene anions decreases could be understood in terms of a bandwidth-control Mott transition; the insulator-superconductor transition discovered in electrically gated twisted-angle bilayer graphene could be understood as a filling-control Mott transition.For f electron systems, the interplay between itinerancy and localization dominates the heavy fermion behavior and their ground states. The behaviors of the f electrons are demonstrated by using the angle-resolved photoemission data of CeCoIn5, whose f electron band becomes more coherent with temperature decreasing, and the c-f hybridization is thus enhanced and the band mass of conduction band continuously increases. The c-f hybridization behaviors of CeCoIn5, CeIrIn5, and CeRhIn5 are compared with each other, and the differences in hybridization strength put their ground states into different regimes of the Doniach phase diagram. Similarly, the Skutterudites 4f2 Kondo lattice system PrOs4Sb12 and its sibling 4f1 system CeOs4Sb12 also have different ground states due to a slight difference in their c-f hybridization strengths.
电子在相关量子材料中的流动行为和局域行为之间的竞争与合作,被称为莫特物理,是许多量子材料多种状态背后的物理机制。本文综述了莫特物理在各种量子材料中的表现,并将其确立为量子材料的主要主题之一。发现和理解其不断变化的表现方式是凝聚态物理实验研究的中心任务之一。其中,以表面k -剂量Sr<sub>2</sub>IrO<sub>4</sub>为例说明了Mott跃迁的填充控制途径,该跃迁表现出d波隙、低掺杂状态下的赝隙行为和电子态分布不均匀的相分离。所有这些都显示出与掺杂铜超导体的强烈相似性,这是另一种典型的莫特跃迁填充控制类型。另一方面,Mott跃迁的带宽控制路径在NiS<sub>2 -<i>x</i></sub>Se<sub>< /i> i>x</i></sub>中,其带宽随着硒浓度的降低而不断减小,直至成为绝缘子。此外,在铁基超导体中掺杂各种方式的本质是改变其带宽。超导电性在中等带宽出现,相关系数中等;当带宽较大,电子相关系数较弱时,超导性减弱。对于重电子掺杂的铁硒化物,甚至存在具有强相关性的莫特绝缘体相。</sec><sec>对于碳基材料,A15 Cs<sub>3& gt; /sub>C<sub>60</sub>;随着富勒烯阴离子体积的减少,可以用带宽控制莫特跃迁来理解;在电门控扭角双层石墨烯中发现的绝缘体-超导体跃迁可以理解为填充控制的莫特跃迁。对于f电子系统,流动和局域化之间的相互作用主导了重费米子行为及其基态。利用CeCoIn<sub>5</sub>的角分辨光电发射数据证明了f电子的行为,其f电子带随着温度的降低变得更加相干,从而增强了c-f杂化,导带带质量不断增加。CeCoIn<sub>5,</sub>CeIrIn< sub<5</sub>和cerin< sub<5</sub>杂化强度的差异使它们的基态处于不同的Doniach相图区。同样,Skutterudites (Skutterudites) 4f<sup>2</sup>近藤格系PrOs<sub>4</sub>Sb<sub>12<和它的兄弟姐妹4f<sup>1</sup>系统CeOs< sub> 4 & lt; / sub> Sb< sub> 12 & lt; / sub>由于c-f杂化强度的微小差异,它们也具有不同的基态。
{"title":"Mott physics — one of main themes in quantum materials","authors":"Dong-Lai Feng","doi":"10.7498/aps.72.20231508","DOIUrl":"https://doi.org/10.7498/aps.72.20231508","url":null,"abstract":"<sec>The competition and cooperation between the itinerancy behavior and localization behavior of electrons in correlated quantum materials, known as Mott physics, is the physical mechanism behind the diverse states of many quantum materials. This article reviews the manifestation of Mott physics in various quantum materials and establishes it as one of the main themes of quantum materials. Finding and understanding its ever-changing ways of manifestation is one of the central tasks of experimental research on condensed matter physics.</sec><sec>Specifically, the filling-control route of Mott transition is illustrated by exampling the surface K-dosed Sr<sub>2</sub>IrO<sub>4</sub>, which exhibits d-wave gap, pseudogap behavior in underdoped regime, and phase separation with inhomogeneous electronic state distribution. All of these show strong resemblances to the doped cuprate superconductors, another prototypical filling-control type of Mott transition case. On the other hand, the bandwidth-control route of Mott transition could be found in NiS<sub>2–<i>x</i></sub>Se<sub><i>x</i></sub>, where its bandwidth continuously decreases with Se concentration decreasing, until it becomes an insulator. In addition, the essence of various ways of doping in iron-based superconductors is to change their bandwidths. The superconductivity shows up at intermediate bandwidth with moderate correlations, and it diminishes when the bandwidth is large and the electron correlations are weak. For heavily electron-doped iron-selenides, there is even a Mott insulator phase with strong correlations.</sec><sec>For carbon based materials, the phase transition between the antiferromagnetic insulator and superconducting state of A15 Cs<sub>3</sub>C<sub>60</sub> as the volume of fullerene anions decreases could be understood in terms of a bandwidth-control Mott transition; the insulator-superconductor transition discovered in electrically gated twisted-angle bilayer graphene could be understood as a filling-control Mott transition.</sec><sec>For f electron systems, the interplay between itinerancy and localization dominates the heavy fermion behavior and their ground states. The behaviors of the f electrons are demonstrated by using the angle-resolved photoemission data of CeCoIn<sub>5</sub>, whose f electron band becomes more coherent with temperature decreasing, and the c-f hybridization is thus enhanced and the band mass of conduction band continuously increases. The c-f hybridization behaviors of CeCoIn<sub>5,</sub> CeIrIn<sub>5</sub>, and CeRhIn<sub>5</sub> are compared with each other, and the differences in hybridization strength put their ground states into different regimes of the Doniach phase diagram. Similarly, the Skutterudites 4f<sup>2</sup> Kondo lattice system PrOs<sub>4</sub>Sb<sub>12</sub> and its sibling 4f<sup>1</sup> system CeOs<sub>4</sub>Sb<sub>12</sub> also have different ground states due to a slight difference in their c-f hybridization strengths.</sec","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floquet engineering in quantum materials 量子材料中的Floquet工程
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231423
None Changhua Bao, None Benshu Fan, None Peizhe Tang, None Wenhui Duan, None Shuyun Zhou
Floquet engineering based on the strong light-matter interaction is expected to drive quantum materials into nonequilibrium states on an ultrafast timescale, thereby engineering their electronic structure and physical properties, and achieving novel physical effects which has no counterpart in equilibrium states. In recent years, Floquet engineering has attracted a lot of research interest, and there have been numerous rich theoretical predictions. In addition, important experimental research progress has also been made in several representative materials such as topological insulators, graphene, and black phosphorus. Here, we briefly introduce the important theoretical and experimental progress in this field, and prospects the research future, experimental challenges, and development directions.
基于强光-物质相互作用的Floquet工程有望在超快时间尺度上将量子材料驱动到非平衡状态,从而对其电子结构和物理性质进行工程化,并实现在平衡状态下没有对应的新型物理效应。近年来,Floquet工程引起了广泛的研究兴趣,并产生了许多丰富的理论预测。此外,拓扑绝缘体、石墨烯、黑磷等几种具有代表性的材料也取得了重要的实验研究进展。本文简要介绍了该领域的重要理论和实验进展,展望了该领域的研究前景、实验挑战和发展方向。
{"title":"Floquet engineering in quantum materials","authors":"None Changhua Bao, None Benshu Fan, None Peizhe Tang, None Wenhui Duan, None Shuyun Zhou","doi":"10.7498/aps.72.20231423","DOIUrl":"https://doi.org/10.7498/aps.72.20231423","url":null,"abstract":"Floquet engineering based on the strong light-matter interaction is expected to drive quantum materials into nonequilibrium states on an ultrafast timescale, thereby engineering their electronic structure and physical properties, and achieving novel physical effects which has no counterpart in equilibrium states. In recent years, Floquet engineering has attracted a lot of research interest, and there have been numerous rich theoretical predictions. In addition, important experimental research progress has also been made in several representative materials such as topological insulators, graphene, and black phosphorus. Here, we briefly introduce the important theoretical and experimental progress in this field, and prospects the research future, experimental challenges, and development directions.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135758464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic phase transition driven by topological excitations and their tensor network approach 拓扑激励驱动的热力学相变及其张量网络方法
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231152
None Song Feng-Feng, None Zhang Guang-Ming
The fundamental concepts of phases and phase transitions constitute the cornerstone of our understanding of the physical universe. The historical development of the phase transition theory from Landau's spontaneous symmetry breaking paradigm to modern topological phase transition theories represents a major milestone in the evolution of numerous scientific disciplines. From the perspective of emergent philosophy, the interplay of topological excitations leads to enriched physical phenomena. One prominent prototype is the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, where unbinding of integer vortices occurs in the absence of spontaneous breaking of continuous U(1) symmetry. Using the state-of-the-art tensor network methods, we express the partition function of the two-dimensional XY-related system in terms of a product of one-dimensional transfer operators. From the singularities of the entanglement entropy of the one-dimensional transfer operator, we accurately determine the complete phase diagram. This method provides new insights into the emergent phenomenon driven by topological excitations, and sheds new light on future studies of 2D systems with continuous symmetries.
相和相变的基本概念构成了我们理解物理宇宙的基石。相变理论从朗道的自发对称性破缺范式发展到现代拓扑相变理论,是众多科学学科发展史上的一个重要里程碑。从涌现哲学的角度来看,拓扑激励的相互作用导致了丰富的物理现象。一个突出的原型是Berezinskii-Kosterlitz-Thouless (BKT)相变,在没有连续的<i>U</i>(1)对称性的自发破缺的情况下,整数涡旋的解结发生。利用最先进的张量网络方法,将二维<i>XY</i>相关系统的配分函数表示为一维传递算子的乘积。从一维传递算子的纠缠熵的奇异性出发,我们精确地确定了完整的相图。该方法为拓扑激励驱动的涌现现象提供了新的见解,并为具有连续对称性的二维系统的未来研究提供了新的思路。
{"title":"Thermodynamic phase transition driven by topological excitations and their tensor network approach","authors":"None Song Feng-Feng, None Zhang Guang-Ming","doi":"10.7498/aps.72.20231152","DOIUrl":"https://doi.org/10.7498/aps.72.20231152","url":null,"abstract":"The fundamental concepts of phases and phase transitions constitute the cornerstone of our understanding of the physical universe. The historical development of the phase transition theory from Landau's spontaneous symmetry breaking paradigm to modern topological phase transition theories represents a major milestone in the evolution of numerous scientific disciplines. From the perspective of emergent philosophy, the interplay of topological excitations leads to enriched physical phenomena. One prominent prototype is the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, where unbinding of integer vortices occurs in the absence of spontaneous breaking of continuous <i>U</i>(1) symmetry. Using the state-of-the-art tensor network methods, we express the partition function of the two-dimensional <i>XY</i>-related system in terms of a product of one-dimensional transfer operators. From the singularities of the entanglement entropy of the one-dimensional transfer operator, we accurately determine the complete phase diagram. This method provides new insights into the emergent phenomenon driven by topological excitations, and sheds new light on future studies of 2D systems with continuous symmetries.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite-key analysis of decoy model Semi-quantum key distribution based on four-state protocol 基于四态协议的诱饵模型半量子密钥分配的有限密钥分析
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230849
None Zhan Shao-Kang, None Wang Jin-Dong, None Dong Shuang, None Huang Si-Ying, None Hou Qing-Cheng, None Mo Nai-Da, None Mi Shang, None Xiang Li-Bing, None Zhao Tian-Ming, None Yu Ya-Fei, None Wei Zheng-Jun, None Zhang Zhi-Ming
Semi-quantum key distribution allows a full quantum user Alice and a classical user Bob to share a pair of security keys guaranteed by physical principles. Semi-quantum key distribution is proposed while verifying its robustness. Subsequently, its unconditional security of semi quantum key distribution system is verified theoretically. In 2021, the feasibility of semi quantum key distribution system based on mirror protocol was verified experimentally. However, the feasibility experimental system still uses the laser pulse with strong attenuation. It has been proved in the literature that the semi-quantum key distribution system still encounters the risk of secret key leakage under photon number splitting attack. Therefore, the actual security of key distribution can be further reasonably evaluated by introducing the temptation state and conducting the finite-key analysis in the key distribution process. In this work, for the model of adding one-decoy state only to Alice at the sending based on a four state semi-quantum key distribution system, the length of the security key in the case of finite-key is analyzed by using Hoeffding inequality, and then the formula of the security key rate is obtained. It is found in the numerical simulation that when the sample size is begin{document}$ {10}^{5} $end{document}, the security key rate of begin{document}$ {10}^{-4} $end{document}, which is close to the security key rate of the asymptotic limits, can be obtained in the case of close range, It is very important for the practical application of semi quantum key distribution system.
Semi-quantum key distribution allows a full quantum user Alice and a classical user Bob to share a pair of security keys guaranteed by physical principles. Semi-quantum key distribution is proposed while verifying its robustness. Subsequently, its unconditional security of semi quantum key distribution system is verified theoretically. In 2021, the feasibility of semi quantum key distribution system based on mirror protocol was verified experimentally. However, the feasibility experimental system still uses the laser pulse with strong attenuation. It has been proved in the literature that the semi-quantum key distribution system still encounters the risk of secret key leakage under photon number splitting attack. Therefore, the actual security of key distribution can be further reasonably evaluated by introducing the temptation state and conducting the finite-key analysis in the key distribution process. In this work, for the model of adding one-decoy state only to Alice at the sending based on a four state semi-quantum key distribution system, the length of the security key in the case of finite-key is analyzed by using Hoeffding inequality, and then the formula of the security key rate is obtained. It is found in the numerical simulation that when the sample size is <inline-formula><tex-math id="M3">begin{document}$ {10}^{5} $end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20230849_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20230849_M3.png"/></alternatives></inline-formula>, the security key rate of <inline-formula><tex-math id="M4">begin{document}$ {10}^{-4} $end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20230849_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20230849_M4.png"/></alternatives></inline-formula>, which is close to the security key rate of the asymptotic limits, can be obtained in the case of close range, It is very important for the practical application of semi quantum key distribution system.
{"title":"Finite-key analysis of decoy model Semi-quantum key distribution based on four-state protocol","authors":"None Zhan Shao-Kang, None Wang Jin-Dong, None Dong Shuang, None Huang Si-Ying, None Hou Qing-Cheng, None Mo Nai-Da, None Mi Shang, None Xiang Li-Bing, None Zhao Tian-Ming, None Yu Ya-Fei, None Wei Zheng-Jun, None Zhang Zhi-Ming","doi":"10.7498/aps.72.20230849","DOIUrl":"https://doi.org/10.7498/aps.72.20230849","url":null,"abstract":"Semi-quantum key distribution allows a full quantum user Alice and a classical user Bob to share a pair of security keys guaranteed by physical principles. Semi-quantum key distribution is proposed while verifying its robustness. Subsequently, its unconditional security of semi quantum key distribution system is verified theoretically. In 2021, the feasibility of semi quantum key distribution system based on mirror protocol was verified experimentally. However, the feasibility experimental system still uses the laser pulse with strong attenuation. It has been proved in the literature that the semi-quantum key distribution system still encounters the risk of secret key leakage under photon number splitting attack. Therefore, the actual security of key distribution can be further reasonably evaluated by introducing the temptation state and conducting the finite-key analysis in the key distribution process. In this work, for the model of adding one-decoy state only to Alice at the sending based on a four state semi-quantum key distribution system, the length of the security key in the case of finite-key is analyzed by using Hoeffding inequality, and then the formula of the security key rate is obtained. It is found in the numerical simulation that when the sample size is <inline-formula><tex-math id=\"M3\">begin{document}$ {10}^{5} $end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"22-20230849_M3.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"22-20230849_M3.png\"/></alternatives></inline-formula>, the security key rate of <inline-formula><tex-math id=\"M4\">begin{document}$ {10}^{-4} $end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"22-20230849_M4.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"22-20230849_M4.png\"/></alternatives></inline-formula>, which is close to the security key rate of the asymptotic limits, can be obtained in the case of close range, It is very important for the practical application of semi quantum key distribution system.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135401836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of radial electric field on ion-temperature gradient driven mode stability 径向电场对离子温度梯度驱动模式稳定性的影响
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230798
None Chen Ning-Fei, None Wei Guang-Yu, None Qiu Zhi-Yong
To understand the effects of given radial electric field on ion-temperature gradient driven mode (ITG) stability in tokamak plasmas, the eigenmode equation for ITG including the poloidal rotation and density modulation associated with radial electric field is derived using nonlinear gyrokinetic theory. The equation is solved for eigenfrequency, growth rate and parallel mode structure of ITG both in short- and long-wavelength limit with energetic-particle-induced geodesic acoustic mode (EGAM) as a specific form. The eigenmode equation is not only solved analytically, but also solved numerically to validate the analytic solutions. It is found that, radial electric field induced poloidal rotation can significantly stabilize ITG, while the density perturbation of the radial electric field may slightly distort the ITG parallel mode structure, but has little effect on ITG stability. The result is consistent with common picture of turbulence suppression by poloidal shear flow. The general model is also applicable to the investigation of the indirect interaction of ITG and energetic particle driven Alfvén instabilities via zonal structures generation, by means of introducing poloidal rotation and density modulation associated with zonal structures spontaneously excited by Alfvén instabilities. The indirect channel is supplement to the direct interaction of microturbulences and energetic particle driven Alfvén instabilities.
为了理解给定的径向电场对托卡马克等离子体中离子温度梯度驱动模式(ITG)稳定性的影响,利用非线性陀螺动力学理论推导了包含极向旋转和与径向电场相关的密度调制的ITG本征模方程。以能量粒子诱导测地线声模式(EGAM)为具体形式,求解了ITG在短波长极限下的本征频率、生长速率和平行模式结构。本文不仅对特征模态方程进行了解析求解,而且对解析解进行了数值求解,验证了解析解的正确性。研究发现,径向电场诱导的极向旋转对ITG有明显的稳定作用,而径向电场的密度扰动对ITG平行模结构有轻微的畸变,但对ITG稳定性影响不大。结果与一般的极向剪切流抑制湍流的情况一致。一般模型也适用于通过产生纬向结构来研究ITG和高能粒子驱动的alfv录影带不稳定性的间接相互作用,方法是引入由alfv录影带不稳定性自发激发的与纬向结构相关的极向旋转和密度调制。间接通道是对微湍流和高能粒子驱动的alfv不稳定性直接相互作用的补充。
{"title":"Effects of radial electric field on ion-temperature gradient driven mode stability","authors":"None Chen Ning-Fei, None Wei Guang-Yu, None Qiu Zhi-Yong","doi":"10.7498/aps.72.20230798","DOIUrl":"https://doi.org/10.7498/aps.72.20230798","url":null,"abstract":"To understand the effects of given radial electric field on ion-temperature gradient driven mode (ITG) stability in tokamak plasmas, the eigenmode equation for ITG including the poloidal rotation and density modulation associated with radial electric field is derived using nonlinear gyrokinetic theory. The equation is solved for eigenfrequency, growth rate and parallel mode structure of ITG both in short- and long-wavelength limit with energetic-particle-induced geodesic acoustic mode (EGAM) as a specific form. The eigenmode equation is not only solved analytically, but also solved numerically to validate the analytic solutions. It is found that, radial electric field induced poloidal rotation can significantly stabilize ITG, while the density perturbation of the radial electric field may slightly distort the ITG parallel mode structure, but has little effect on ITG stability. The result is consistent with common picture of turbulence suppression by poloidal shear flow. The general model is also applicable to the investigation of the indirect interaction of ITG and energetic particle driven Alfvén instabilities via zonal structures generation, by means of introducing poloidal rotation and density modulation associated with zonal structures spontaneously excited by Alfvén instabilities. The indirect channel is supplement to the direct interaction of microturbulences and energetic particle driven Alfvén instabilities.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"242 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136259598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculation of Positron Annihilation Lifetime in Diamond Doped with B, Cr, Mo, Ti, W, Zr 掺杂B, Cr, Mo, Ti, W, Zr的金刚石中正电子湮没寿命的计算
Pub Date : 2023-01-01 DOI: 10.7498/aps.73.20231269
None Zhao Yong-Sheng, None 阎峰云, None Yan Feng-Yun
Metal-matrix diamond composites have been extensively applied and studied, but vacancies, doping, and other defects caused by the pretreatment of the diamond surface significantly impact the interface performance between the metal base and diamond. Although techniques like transmission electron microscopy and spectroscopy analysis have been utilized for defect detection, they present certain limitations. Calculating the positron annihilation lifetime in diamond provides an accurate assessment of interface defects in the diamond. This study uses first-principles calculation methods, adopting various positron annihilation algorithms and enhancement factors, to compute the positron annihilation lifetime in ideal diamond crystals, single vacancies, and when doped with B, Cr, Mo, Ti, W, and Zr. The results, obtained using local density functional in combination with Boronski & Nieminen algorithms and RPA restriction as annihilation enhancement factors, indicate that the computed positron annihilation lifetime of diamond is 119.87ps, aligning closely with literature experimental results. Furthermore, after doping B, Cr, Mo, Ti, W, and Zr atoms in diamond (doping concentration of 1.6at%), the positron annihilation lifetime changed from a single vacancy 119.87ps to 148.57, 156.82, 119.05, 116.5, 117.62, and 115.74ps respectively. This implies that defects due to doped atoms in diamond alter its positron annihilation lifetime, with the impact varying according to the different atoms doped. Based on the calculated electron density in diamond vacancies and doped atom areas, it was discovered that doping atoms did not cause severe distortion in the diamond lattice. However, after doping B and Cr atoms, a significant increase in positron annihilation lifetime was noted. The primary reason is the relatively low positron affinity of B and Cr atoms, resulting in an extended positron residence time in the vacancy, thereby increasing the annihilation lifetime. Overall, vacancies and doped atom defects in diamond will cause changes in its positron annihilation lifetime, and the above conclusions provide crucial theoretical references for detecting and identifying interface defects caused by doping treatment on the diamond surface during the preparation of metal-matrix diamond composites.
金属基金刚石复合材料已经得到了广泛的应用和研究,但由于金刚石表面预处理导致的空位、掺杂等缺陷会严重影响金属基与金刚石的界面性能。虽然诸如透射电子显微镜和光谱分析等技术已被用于缺陷检测,但它们存在一定的局限性。计算金刚石中的正电子湮灭寿命可以准确地评估金刚石中的界面缺陷。本研究采用第一性原理计算方法,采用各种正电子湮灭算法和增强因子,计算了理想金刚石晶体、单空缺以及掺杂B、Cr、Mo、Ti、W和Zr时的正电子湮灭寿命。结合Boronski &Nieminen算法和RPA约束作为湮灭增强因子,计算得出金刚石正电子湮灭寿命为119.87ps,与文献实验结果吻合较好。此外,在掺杂浓度为1.6at%的金刚石中掺杂B、Cr、Mo、Ti、W和Zr原子后,正电子湮灭寿命分别从单空位119.87ps变为148.57、156.82、119.05、116.5、117.62和115.74ps。这表明,金刚石中掺杂原子的缺陷改变了其正电子湮灭寿命,其影响随掺杂原子的不同而不同。根据计算得到的金刚石空位和掺杂原子区域的电子密度,发现掺杂原子并没有引起金刚石晶格的严重畸变。然而,掺杂B和Cr原子后,正电子湮灭寿命显著增加。主要原因是B和Cr原子的正电子亲和力相对较低,导致正电子在空位中的停留时间延长,从而增加了湮灭寿命。综上所述,金刚石中的空位和掺杂原子缺陷会引起其正电子湮灭寿命的变化,上述结论为金属基金刚石复合材料制备过程中检测和识别金刚石表面掺杂处理引起的界面缺陷提供了重要的理论参考。
{"title":"Calculation of Positron Annihilation Lifetime in Diamond Doped with B, Cr, Mo, Ti, W, Zr","authors":"None Zhao Yong-Sheng, None 阎峰云, None Yan Feng-Yun","doi":"10.7498/aps.73.20231269","DOIUrl":"https://doi.org/10.7498/aps.73.20231269","url":null,"abstract":"Metal-matrix diamond composites have been extensively applied and studied, but vacancies, doping, and other defects caused by the pretreatment of the diamond surface significantly impact the interface performance between the metal base and diamond. Although techniques like transmission electron microscopy and spectroscopy analysis have been utilized for defect detection, they present certain limitations. Calculating the positron annihilation lifetime in diamond provides an accurate assessment of interface defects in the diamond. This study uses first-principles calculation methods, adopting various positron annihilation algorithms and enhancement factors, to compute the positron annihilation lifetime in ideal diamond crystals, single vacancies, and when doped with B, Cr, Mo, Ti, W, and Zr. The results, obtained using local density functional in combination with Boronski &amp; Nieminen algorithms and RPA restriction as annihilation enhancement factors, indicate that the computed positron annihilation lifetime of diamond is 119.87ps, aligning closely with literature experimental results. Furthermore, after doping B, Cr, Mo, Ti, W, and Zr atoms in diamond (doping concentration of 1.6at%), the positron annihilation lifetime changed from a single vacancy 119.87ps to 148.57, 156.82, 119.05, 116.5, 117.62, and 115.74ps respectively. This implies that defects due to doped atoms in diamond alter its positron annihilation lifetime, with the impact varying according to the different atoms doped. Based on the calculated electron density in diamond vacancies and doped atom areas, it was discovered that doping atoms did not cause severe distortion in the diamond lattice. However, after doping B and Cr atoms, a significant increase in positron annihilation lifetime was noted. The primary reason is the relatively low positron affinity of B and Cr atoms, resulting in an extended positron residence time in the vacancy, thereby increasing the annihilation lifetime. Overall, vacancies and doped atom defects in diamond will cause changes in its positron annihilation lifetime, and the above conclusions provide crucial theoretical references for detecting and identifying interface defects caused by doping treatment on the diamond surface during the preparation of metal-matrix diamond composites.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136202185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact parameter dependence of photon-photon interactions in relativistic heavy-ion collisions 相对论重离子碰撞中光子-光子相互作用的冲击参数依赖性
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230948
None Yang Shuai, None Tang Zebo, None Yang Chi, None Zha Wangmei
The Lorentz-boosted electromagnetic fields surrounding relativistic heavy ions with large charges can be treated as a flux of linearly polarized quasireal photons, which can interact via the photon-photon scattering to produce lepton antilepton pairs. Those photon-photon interactions can happen even in heavy-ion collisions with hadronic overlap, making an opportunity to probe the electromagnetic properties of the produced deconfined quark-gluon plasma. In this paper, we review the recent experimental progress of the impact parameter dependent photon-photon interactions in heavy-ion collisions, and discuss their essential role in probing the possible electromagnetic properties of quark-gluon plasma produced in hadronic heavy-ion collisions.
围绕着带大电荷的相对论性重离子的洛伦兹增强电磁场可以看作是线极化准实光子的通量,它们可以通过光子-光子散射相互作用产生轻子-反轻子对。这些光子-光子相互作用甚至可以发生在强子重叠的重离子碰撞中,这为探测产生的限定夸克-胶子等离子体的电磁特性提供了机会。本文综述了重离子碰撞中与碰撞参数相关的光子-光子相互作用的最新实验进展,并讨论了它们在探测强子重离子碰撞中产生的夸克-胶子等离子体可能的电磁特性方面的重要作用。
{"title":"Impact parameter dependence of photon-photon interactions in relativistic heavy-ion collisions","authors":"None Yang Shuai, None Tang Zebo, None Yang Chi, None Zha Wangmei","doi":"10.7498/aps.72.20230948","DOIUrl":"https://doi.org/10.7498/aps.72.20230948","url":null,"abstract":"The Lorentz-boosted electromagnetic fields surrounding relativistic heavy ions with large charges can be treated as a flux of linearly polarized quasireal photons, which can interact via the photon-photon scattering to produce lepton antilepton pairs. Those photon-photon interactions can happen even in heavy-ion collisions with hadronic overlap, making an opportunity to probe the electromagnetic properties of the produced deconfined quark-gluon plasma. In this paper, we review the recent experimental progress of the impact parameter dependent photon-photon interactions in heavy-ion collisions, and discuss their essential role in probing the possible electromagnetic properties of quark-gluon plasma produced in hadronic heavy-ion collisions.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136203262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1