首页 > 最新文献

Chinese Physics最新文献

英文 中文
Theoretical calculation of CsI photocathode’s response sensitivity of soft X-ray streak camera 软x射线条纹相机CsI光电阴极响应灵敏度的理论计算
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231043
None He Xiao-An, None Yang Jia-Min, None Li Yu-Kun, None Li Jin, None Xiong gang
CsI photocathode's response sensitivity is an important parameter for the quantitative diagnosis of X-ray spectroscopy by soft X-ray streak camera, and its theoretical calculation has important guiding significance. The current theoretical analytical model are based on the one-dimensional random walking model of secondary electrons generated by thin film photocathodes, including the Henke model under the condition of normal incidence of X-rays and energy greater than 1keV, and the Fraser model under variable angle incidence and photocathode thickness greater than 100nm, which have certain limitations. In this paper, the basic expression of the probability of secondary electron transmission are introduced, and the general expression of the response sensitivity of CsI photocathode are deduced in a larger parameter range (X-ray energy 0.1-10keV, photocathode thickness 10-200nm) varies with X-ray energy E, photocathode thickness t, and the angle θ between X-ray and cathode surface. Finally, the theoretical calculation results of this paper are compare and discussed with the Henke model, Fraser model, literature data and experimental data on Beijing synchrotron radiation facility, which verifies the accuracy and universality of the computational model, and a theoretical reference is provided for the optimal design of CsI photocathode in high-time-resolution spectrometric quantitative measurement.
CsI光电阴极的响应灵敏度是软x射线条纹相机进行x射线光谱定量诊断的重要参数,其理论计算具有重要的指导意义。目前的理论分析模型是基于薄膜光电阴极产生的二次电子的一维随机游走模型,包括x射线正入射、能量大于1keV条件下的Henke模型,变角度入射、光电阴极厚度大于100nm条件下的Fraser模型,这些模型都有一定的局限性。本文介绍了二次电子透射概率的基本表达式,推导了在较大参数范围内(x射线能量0.1 ~ 10kev,光电阴极厚度10 ~ 200nm), CsI光电阴极响应灵敏度随x射线能量E、光电阴极厚度t、x射线与阴极表面夹角θ变化的一般表达式。最后,将本文的理论计算结果与Henke模型、Fraser模型、文献数据和北京同步辐射设施的实验数据进行了比较和讨论,验证了计算模型的准确性和通用性,为高时间分辨率光谱定量测量中CsI光电阴极的优化设计提供了理论参考。
{"title":"Theoretical calculation of CsI photocathode’s response sensitivity of soft X-ray streak camera","authors":"None He Xiao-An, None Yang Jia-Min, None Li Yu-Kun, None Li Jin, None Xiong gang","doi":"10.7498/aps.72.20231043","DOIUrl":"https://doi.org/10.7498/aps.72.20231043","url":null,"abstract":"CsI photocathode's response sensitivity is an important parameter for the quantitative diagnosis of X-ray spectroscopy by soft X-ray streak camera, and its theoretical calculation has important guiding significance. The current theoretical analytical model are based on the one-dimensional random walking model of secondary electrons generated by thin film photocathodes, including the Henke model under the condition of normal incidence of X-rays and energy greater than 1keV, and the Fraser model under variable angle incidence and photocathode thickness greater than 100nm, which have certain limitations. In this paper, the basic expression of the probability of secondary electron transmission are introduced, and the general expression of the response sensitivity of CsI photocathode are deduced in a larger parameter range (X-ray energy 0.1-10keV, photocathode thickness 10-200nm) varies with X-ray energy E, photocathode thickness t, and the angle θ between X-ray and cathode surface. Finally, the theoretical calculation results of this paper are compare and discussed with the Henke model, Fraser model, literature data and experimental data on Beijing synchrotron radiation facility, which verifies the accuracy and universality of the computational model, and a theoretical reference is provided for the optimal design of CsI photocathode in high-time-resolution spectrometric quantitative measurement.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136202530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jet quenching in heavy-ion collisions 重离子碰撞中的喷射淬火
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230993
None Zhang Shan-Liang, None Xing Hongxi, None Wang Enke
One of the main goals of high-energy nuclear physics is to explore the fundamental properties of quark-gluon plasma (QGP), a new state of quantum chromodynamics (QCD) matter created in relativistic heavy-ion collisions, in which the energetic quarks and gluons, known as fast partons, created prior to the formation of the QGP, traverse the hot-dense medium and experience strong interactions with the constituents of the medium, and eventually lead to the attenuation of jet energy. Such a novel phenomenon, referred to as jet quenching, plays an essential role in probing the transport properties of the QGP. The objective of this paper is to review some of the latest experimental and theoretical progress of jet quenching, such as medium modification on the large begin{document}$ p_{rm T} $end{document} hadrons, full jets, and jet substructures in heavy-ion collisions, as well as the challenges in the forefront theoretical investigations.
One of the main goals of high-energy nuclear physics is to explore the fundamental properties of quark-gluon plasma (QGP), a new state of quantum chromodynamics (QCD) matter created in relativistic heavy-ion collisions, in which the energetic quarks and gluons, known as fast partons, created prior to the formation of the QGP, traverse the hot-dense medium and experience strong interactions with the constituents of the medium, and eventually lead to the attenuation of jet energy. Such a novel phenomenon, referred to as jet quenching, plays an essential role in probing the transport properties of the QGP. The objective of this paper is to review some of the latest experimental and theoretical progress of jet quenching, such as medium modification on the large <inline-formula><tex-math id="M11111">begin{document}$ p_{rm T} $end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230993_M11111.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230993_M11111.png"/></alternatives></inline-formula> hadrons, full jets, and jet substructures in heavy-ion collisions, as well as the challenges in the forefront theoretical investigations.
{"title":"Jet quenching in heavy-ion collisions","authors":"None Zhang Shan-Liang, None Xing Hongxi, None Wang Enke","doi":"10.7498/aps.72.20230993","DOIUrl":"https://doi.org/10.7498/aps.72.20230993","url":null,"abstract":"One of the main goals of high-energy nuclear physics is to explore the fundamental properties of quark-gluon plasma (QGP), a new state of quantum chromodynamics (QCD) matter created in relativistic heavy-ion collisions, in which the energetic quarks and gluons, known as fast partons, created prior to the formation of the QGP, traverse the hot-dense medium and experience strong interactions with the constituents of the medium, and eventually lead to the attenuation of jet energy. Such a novel phenomenon, referred to as jet quenching, plays an essential role in probing the transport properties of the QGP. The objective of this paper is to review some of the latest experimental and theoretical progress of jet quenching, such as medium modification on the large <inline-formula><tex-math id=\"M11111\">begin{document}$ p_{rm T} $end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"20-20230993_M11111.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"20-20230993_M11111.png\"/></alternatives></inline-formula> hadrons, full jets, and jet substructures in heavy-ion collisions, as well as the challenges in the forefront theoretical investigations.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136202955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thin-film lithium niobate photonic integrated devices: Progresses and opportunities 薄膜铌酸锂光子集成器件:进展与机遇
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231295
None Xiao Xiong, None Qi-Tao Cao, None Yun-Feng Xiao
Lithium niobate, known as one of the most widely used nonlinear optical crystals, has recently received significant attention from both academia and industrial circles. The surge in interest can be attributed to the commercial availability of thin-film lithium niobate (TFLN) wafers and the rapid advancements in nanofabrication techniques. A milestone was achieved in 2020 with the successful fabrication of wafer-scale TFLN photonic integrated circuits, which paved the way for mass-producible and cost-effective manufacturing of TFLN-based products.At present, the majority of research on TFLN photonic integrated devices focuses on light manipulation, i.e. field modulation and frequency conversion. The electro-optic, acousto-optic, photo-elastic and piezo-electric effects of lithium niobate are harnessed to modulate the amplitude, phase and frequency of light. The second-order and third-order nonlinearities of lithium niobate enable frequency conversion processes, which leads to the development of frequency converters, optical frequency combs, and supercontinuum generation devices. These exceptional optical properties of lithium niobate enable the electromagnetic wave to manipulate covering from radio-frequency to terahertz, infrared, and visible bands. Using the outstanding performance of TFLN photonic integrated devices, including remarkable modulation rate, wide operation bandwidth, efficient nonlinear frequency conversion, and low power consumption, diverse applications, such as spanning optical information processing, laser ranging, optical frequency combs, microwave optics, precision measurement, quantum optics, and quantum computing, are demonstrated.Additionally, it is reported that TFLN-based lasers and amplifiers have made remarkable progress, and both optical and electrical pumps are available. These achievements include combining gain materials, such as rare-earth ions or heterostructures, with III-V semiconductors. The integration of low-dimensional materials or absorptive metals with TFLN can also realize TFLN-based detectors. These significant developments expand the potential applications of TFLN photonic integrated devices, thus paving the way for monolithic TFLN chips.The versatility and high performances of TFLN photonic integrated devices have made revolutionary progress in these fields, opening up new possibilities for cutting-edge technologies and their practical implementations. In this point of view, we briefly introduce the development of TFLN nanofabricationn technology. Subsequently, we review the latest progress of TFLN photonic integrated devices, including lasers, functional nonlinear optical devices, and detectors. Finally, we discuss the future development directions and potential ways of TFLN photonics.
铌酸锂作为应用最广泛的非线性光学晶体之一,近年来受到了学术界和工业界的极大关注。这种兴趣的激增可归因于薄膜铌酸锂(TFLN)晶圆的商业可用性和纳米制造技术的快速发展。2020年,晶圆级TFLN光子集成电路的成功制造取得了里程碑式的成就,为大规模生产和经济高效地制造基于TFLN的产品铺平了道路。目前,TFLN光子集成器件的研究主要集中在光操纵,即场调制和频率转换。利用铌酸锂的电光、声光、光弹性和压电效应来调制光的幅度、相位和频率。铌酸锂的二阶和三阶非线性特性使频率转换过程成为可能,从而导致了变频器、光频梳和超连续介质产生装置的发展。铌酸锂的这些特殊光学特性使电磁波能够覆盖从射频到太赫兹、红外和可见光波段。利用TFLN光子集成器件卓越的调制速率、宽的工作带宽、高效的非线性频率转换和低功耗等性能,展示了跨光信息处理、激光测距、光频梳、微波光学、精密测量、量子光学和量子计算等多种应用。据报道,基于tfln的激光器和放大器已经取得了显著的进展,光泵和电泵都可以使用。这些成就包括将增益材料(如稀土离子或异质结构)与III-V半导体相结合。将低维材料或可吸收金属与TFLN集成,也可实现基于TFLN的探测器。这些重大发展扩大了TFLN光子集成器件的潜在应用,从而为单片TFLN芯片铺平了道路。TFLN光子集成器件的多功能性和高性能在这些领域取得了革命性的进展,为尖端技术及其实际应用开辟了新的可能性。在此基础上,我们简要介绍了TFLN纳米加工技术的发展。随后,我们综述了TFLN光子集成器件的最新进展,包括激光器、功能非线性光学器件和探测器。最后,讨论了TFLN光子学的未来发展方向和潜在途径。
{"title":"Thin-film lithium niobate photonic integrated devices: Progresses and opportunities","authors":"None Xiao Xiong, None Qi-Tao Cao, None Yun-Feng Xiao","doi":"10.7498/aps.72.20231295","DOIUrl":"https://doi.org/10.7498/aps.72.20231295","url":null,"abstract":"<sec>Lithium niobate, known as one of the most widely used nonlinear optical crystals, has recently received significant attention from both academia and industrial circles. The surge in interest can be attributed to the commercial availability of thin-film lithium niobate (TFLN) wafers and the rapid advancements in nanofabrication techniques. A milestone was achieved in 2020 with the successful fabrication of wafer-scale TFLN photonic integrated circuits, which paved the way for mass-producible and cost-effective manufacturing of TFLN-based products.</sec><sec>At present, the majority of research on TFLN photonic integrated devices focuses on light manipulation, i.e. field modulation and frequency conversion. The electro-optic, acousto-optic, photo-elastic and piezo-electric effects of lithium niobate are harnessed to modulate the amplitude, phase and frequency of light. The second-order and third-order nonlinearities of lithium niobate enable frequency conversion processes, which leads to the development of frequency converters, optical frequency combs, and supercontinuum generation devices. These exceptional optical properties of lithium niobate enable the electromagnetic wave to manipulate covering from radio-frequency to terahertz, infrared, and visible bands. Using the outstanding performance of TFLN photonic integrated devices, including remarkable modulation rate, wide operation bandwidth, efficient nonlinear frequency conversion, and low power consumption, diverse applications, such as spanning optical information processing, laser ranging, optical frequency combs, microwave optics, precision measurement, quantum optics, and quantum computing, are demonstrated.</sec><sec>Additionally, it is reported that TFLN-based lasers and amplifiers have made remarkable progress, and both optical and electrical pumps are available. These achievements include combining gain materials, such as rare-earth ions or heterostructures, with III-V semiconductors. The integration of low-dimensional materials or absorptive metals with TFLN can also realize TFLN-based detectors. These significant developments expand the potential applications of TFLN photonic integrated devices, thus paving the way for monolithic TFLN chips.</sec><sec>The versatility and high performances of TFLN photonic integrated devices have made revolutionary progress in these fields, opening up new possibilities for cutting-edge technologies and their practical implementations. In this point of view, we briefly introduce the development of TFLN nanofabricationn technology. Subsequently, we review the latest progress of TFLN photonic integrated devices, including lasers, functional nonlinear optical devices, and detectors. Finally, we discuss the future development directions and potential ways of TFLN photonics.</sec>","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135550689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium 能级构型对InAs/GaAs量子点电致透明介质中光孤子存储的影响
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20221965
Yin Wang, Si-Jie Zhou, Qiao Chen, Yong-He Deng
Based on the current growth technology of quantum dot in the experiment, considering that the probe fields and control fields at different frequencies are coupled between different energy levels of the InAs/GaAs quantum dot, the ladder-type, Λ-type and V-type energy level configurations can be formed. The linear and nonlinear properties of these energy level configurations of InAs/GaAs quantum dots are studied by using semiclassical theory combined with multiple scale method. It is shown that in the linear case, electromagnetic induction transparency windows can be formed among ladder-type, Λ-type and V-type energy level configurations. And the width of the transparent window increases with the strength of the control pulse increasing. For the nonlinear case, under the current experimental condition, optical solitons can be formed and stored in ladder-type configuration and begin{document}$ {{Lambda }} $end{document}-type energy level configuration. However, optical solitons cannot be formed in the V-type energy level configurations, which is because the nonlinear effect of the system is very weak. Furthermore, it is demonstrated that the fidelity of the storage and retrieval of the optical solitons is higher than that of linear optical pulse and strongly nonlinear optical pulse. Interestingly, it is also found that the amplitude of stored optical solitons in begin{document}$ {{Lambda }} $end{document}-type energy level configuration is higher than that in ladder-type energy level configuration. This study provides a theoretical basis for semiconductor quantum dot devices to modulate the amplitude of the stored optical solitons.
Based on the current growth technology of quantum dot in the experiment, considering that the probe fields and control fields at different frequencies are coupled between different energy levels of the InAs/GaAs quantum dot, the ladder-type, Λ-type and V-type energy level configurations can be formed. The linear and nonlinear properties of these energy level configurations of InAs/GaAs quantum dots are studied by using semiclassical theory combined with multiple scale method. It is shown that in the linear case, electromagnetic induction transparency windows can be formed among ladder-type, Λ-type and V-type energy level configurations. And the width of the transparent window increases with the strength of the control pulse increasing. For the nonlinear case, under the current experimental condition, optical solitons can be formed and stored in ladder-type configuration and <inline-formula><tex-math id="M6">begin{document}$ {{Lambda }} $end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20221965_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20221965_M6.png"/></alternatives></inline-formula>-type energy level configuration. However, optical solitons cannot be formed in the V-type energy level configurations, which is because the nonlinear effect of the system is very weak. Furthermore, it is demonstrated that the fidelity of the storage and retrieval of the optical solitons is higher than that of linear optical pulse and strongly nonlinear optical pulse. Interestingly, it is also found that the amplitude of stored optical solitons in <inline-formula><tex-math id="M8">begin{document}$ {{Lambda }} $end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20221965_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20221965_M8.png"/></alternatives></inline-formula>-type energy level configuration is higher than that in ladder-type energy level configuration. This study provides a theoretical basis for semiconductor quantum dot devices to modulate the amplitude of the stored optical solitons.
{"title":"Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium","authors":"Yin Wang, Si-Jie Zhou, Qiao Chen, Yong-He Deng","doi":"10.7498/aps.72.20221965","DOIUrl":"https://doi.org/10.7498/aps.72.20221965","url":null,"abstract":"Based on the current growth technology of quantum dot in the experiment, considering that the probe fields and control fields at different frequencies are coupled between different energy levels of the InAs/GaAs quantum dot, the ladder-type, Λ-type and V-type energy level configurations can be formed. The linear and nonlinear properties of these energy level configurations of InAs/GaAs quantum dots are studied by using semiclassical theory combined with multiple scale method. It is shown that in the linear case, electromagnetic induction transparency windows can be formed among ladder-type, Λ-type and V-type energy level configurations. And the width of the transparent window increases with the strength of the control pulse increasing. For the nonlinear case, under the current experimental condition, optical solitons can be formed and stored in ladder-type configuration and <inline-formula><tex-math id=\"M6\">begin{document}$ {{Lambda }} $end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"8-20221965_M6.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"8-20221965_M6.png\"/></alternatives></inline-formula>-type energy level configuration. However, optical solitons cannot be formed in the V-type energy level configurations, which is because the nonlinear effect of the system is very weak. Furthermore, it is demonstrated that the fidelity of the storage and retrieval of the optical solitons is higher than that of linear optical pulse and strongly nonlinear optical pulse. Interestingly, it is also found that the amplitude of stored optical solitons in <inline-formula><tex-math id=\"M8\">begin{document}$ {{Lambda }} $end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"8-20221965_M8.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"8-20221965_M8.png\"/></alternatives></inline-formula>-type energy level configuration is higher than that in ladder-type energy level configuration. This study provides a theoretical basis for semiconductor quantum dot devices to modulate the amplitude of the stored optical solitons.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134996511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Miniaturized optical vortex mode demultiplexer: Principle, fabrication and applications 小型光学涡旋模解复用器:原理、制造与应用
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231521
None Xinyu Yang, None Huapeng Ye, None Peiyun Li, None Helin Liao, None Dong Yuan, None Guofu Zhou
Vortex beams have attracted extensive attention in recent decade due to the carried optical orbital angular momentum (OAM). Vortex beams carrying different OAM modes are orthogonal to each other, and thus have become highly promising in realizing high-capacity optical communication systems. This review is to introduce the fundamental principles of optical OAM mode demultiplexing, recent advances in the fabrication techniques and emerging applications in high-capacity optical communications. First, this review introduces the development history of the working principle of OAM mode demultiplexer. Subsequently, a variety of preparation techniques and emerging applications of OAM mode demultiplexing are discussed in detail. Finally, we provide an in-depth analysis and outlook for the future trends and prospects of the OAM mode demultiplexer.
涡旋光束由于携带光学轨道角动量(OAM)而引起了近十年来的广泛关注。携带不同OAM模式的涡旋光束彼此正交,因此在实现大容量光通信系统中具有很大的应用前景。本文介绍了光OAM模解复用的基本原理、制备技术的最新进展及其在大容量光通信中的应用。本文首先介绍了OAM模式解复用器工作原理的发展历史。随后,详细讨论了各种OAM模式解复用的制备技术和新兴应用。最后,对OAM模式解复用器的发展趋势和前景进行了深入的分析和展望。
{"title":"Miniaturized optical vortex mode demultiplexer: Principle, fabrication and applications","authors":"None Xinyu Yang, None Huapeng Ye, None Peiyun Li, None Helin Liao, None Dong Yuan, None Guofu Zhou","doi":"10.7498/aps.72.20231521","DOIUrl":"https://doi.org/10.7498/aps.72.20231521","url":null,"abstract":"Vortex beams have attracted extensive attention in recent decade due to the carried optical orbital angular momentum (OAM). Vortex beams carrying different OAM modes are orthogonal to each other, and thus have become highly promising in realizing high-capacity optical communication systems. This review is to introduce the fundamental principles of optical OAM mode demultiplexing, recent advances in the fabrication techniques and emerging applications in high-capacity optical communications. First, this review introduces the development history of the working principle of OAM mode demultiplexer. Subsequently, a variety of preparation techniques and emerging applications of OAM mode demultiplexing are discussed in detail. Finally, we provide an in-depth analysis and outlook for the future trends and prospects of the OAM mode demultiplexer.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136260017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density effect on electronic structure of warm dense matter based on x-ray fluorescence spectroscopy 基于x射线荧光光谱的热致密物质电子结构的密度效应
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231215
None Zhang Zhi-Yu, None Zhao Yang, None Qing Bo, None Zhang Ji-Yan, None Ma Jian-Yi, None Lin Cheng-Liang, None Yang Guo-Hong, None Wei Min-Xi, None Xiong Gang, None Lv Min, None Huang Cheng-Wu, None Zhu Tuo, None Song Tian-Ming, None Zhao Yan, None Zhang Yu-Xue, None Zhang Lu, None Li Li-Ling, None Du Hua-Bing, None Che Xing-Sen, None Li Yu-Kun, None Zan Xia-Yu, None Yang Jia-Min
Warm dense matter (WDM), a state of matter which lies at the frontiers between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Compared to the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Since WDM is always strongly coupled and partially degenerated, the precise theoretical description is very complex and accurate experimental studies are also very challenging. In this paper, a study of the density effect on the warm dense matter electron structure based on the x-ray fluorescence spectroscopy is presented. In the experiment, warm dense titanium with density larger than solid density is created based on a special designed hohlraum. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as pump source, the titanium will emit fluorescence. The x-ray fluorescence spectroscopy of titanium with different states is diagnosed by changing the delay time between the pump laser and drive laser. The experimental fluorescence spectrum indicates that the energy difference between Kβ and Kα (Kβ-Kα) of the compressed titanium (7.2~9.2 g/cm3, 1.6~2.4 eV) is about 2 eV smaller than that of cold titanium. Two theoretical methods, finite-temperature relativistic density functional theory (FTRDFT) and two-step Hartree-Fock-Slater (TSHFS), are used to calculate the fluorescence spectrum of warm dense titanium. The calculated results indicate that the energy difference (Kβ-Kα) will decrease with density but change slowly with temperature during the calculated state (4.5~13.5 g/cm3、 0.03~5 eV). FTRDFT overestimates the density effect on the line shift, while TSHFS underestimates the density effect. The future work will focus on optimizing the experimental method of x-ray fluorescence spectroscopy, obtaining x-ray fluorescence spectrum of titanium with more state, and then testing the theoretical method for warm dense matter.
热致密物质(WDM)是高能密度物理(HEDP)的主要研究对象之一,处于凝聚态和等离子体之间的一种物质状态。与孤立原子相比,WDM的电子结构会受到密度和温度效应的影响而发生变化。由于波分复用总是强耦合和部分简并的,精确的理论描述非常复杂,精确的实验研究也非常具有挑战性。本文基于x射线荧光光谱研究了密度对热致密物质电子结构的影响。在实验中,利用特殊设计的热腔制备了密度大于固体密度的热致密钛。然后,利用激光照射泵浦材料(钒)所发出的特征谱线作为泵浦源,使钛发出荧光。通过改变泵浦激光器与驱动激光器之间的延时时间,诊断不同状态钛的x射线荧光光谱。实验荧光光谱表明,压缩钛的Kβ和Kα之间的能量差(Kβ-Kα) (7.2~9.2 g/cm<sup>3</sup>, 1.6~2.4 eV)比冷钛的能量差小约2 eV。采用有限温度相对论密度泛函理论(FTRDFT)和两步Hartree-Fock-Slater (TSHFS)两种理论方法计算了热致密钛的荧光光谱。计算结果表明,在计算态(4.5~13.5 g/cm<sup>3</sup> 0.03~5 eV)中,能量差(Kβ-Kα)随密度减小而减小,随温度变化缓慢。FTRDFT高估了密度效应对线移的影响,而TSHFS低估了密度效应。未来的工作重点将是优化x射线荧光光谱的实验方法,获得具有更多状态的钛的x射线荧光光谱,然后对热致密物质的理论方法进行测试。
{"title":"Density effect on electronic structure of warm dense matter based on x-ray fluorescence spectroscopy","authors":"None Zhang Zhi-Yu, None Zhao Yang, None Qing Bo, None Zhang Ji-Yan, None Ma Jian-Yi, None Lin Cheng-Liang, None Yang Guo-Hong, None Wei Min-Xi, None Xiong Gang, None Lv Min, None Huang Cheng-Wu, None Zhu Tuo, None Song Tian-Ming, None Zhao Yan, None Zhang Yu-Xue, None Zhang Lu, None Li Li-Ling, None Du Hua-Bing, None Che Xing-Sen, None Li Yu-Kun, None Zan Xia-Yu, None Yang Jia-Min","doi":"10.7498/aps.72.20231215","DOIUrl":"https://doi.org/10.7498/aps.72.20231215","url":null,"abstract":"Warm dense matter (WDM), a state of matter which lies at the frontiers between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Compared to the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Since WDM is always strongly coupled and partially degenerated, the precise theoretical description is very complex and accurate experimental studies are also very challenging. In this paper, a study of the density effect on the warm dense matter electron structure based on the x-ray fluorescence spectroscopy is presented. In the experiment, warm dense titanium with density larger than solid density is created based on a special designed hohlraum. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as pump source, the titanium will emit fluorescence. The x-ray fluorescence spectroscopy of titanium with different states is diagnosed by changing the delay time between the pump laser and drive laser. The experimental fluorescence spectrum indicates that the energy difference between Kβ and Kα (Kβ-Kα) of the compressed titanium (7.2~9.2 g/cm<sup>3</sup>, 1.6~2.4 eV) is about 2 eV smaller than that of cold titanium. Two theoretical methods, finite-temperature relativistic density functional theory (FTRDFT) and two-step Hartree-Fock-Slater (TSHFS), are used to calculate the fluorescence spectrum of warm dense titanium. The calculated results indicate that the energy difference (Kβ-Kα) will decrease with density but change slowly with temperature during the calculated state (4.5~13.5 g/cm<sup>3</sup>、 0.03~5 eV). FTRDFT overestimates the density effect on the line shift, while TSHFS underestimates the density effect. The future work will focus on optimizing the experimental method of x-ray fluorescence spectroscopy, obtaining x-ray fluorescence spectrum of titanium with more state, and then testing the theoretical method for warm dense matter.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal diffusion coupling mechanism and its application of discrete waveguide 离散波导的热扩散耦合机理及其应用
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230204
None Meng Ling-Zhi, None Yuan Li-Bo
For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper investigates how the refractive index of discrete waveguides can be tuned by thermal diffusion to enhance the coupling between discrete waveguides. In this paper, the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers are constructed. The multicore fiber is heated with a hydrogen-oxygen flame for different times, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. Combined with multicore fiber and core-by-core inscribed fiber Bragg gratings technology, single-channel sensing measurement can be realized by thermal diffusion technology. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, artificial intelligence.
对于集成在光纤中的离散光学系统,各个波导的光场是相互耦合和相关的。本文研究了如何利用热扩散调节离散波导的折射率以增强离散波导之间的耦合。本文建立了离散波导的热扩散模型以及双芯和三芯光纤的热扩散耦合模型。用氢氧火焰对多芯光纤进行不同时间的加热,同时对光纤端面出射光场进行监测。然后,对热扩散多芯光纤的三维折射率测量结果验证了热扩散技术改变离散波导折射率进行耦合的可行性。热扩散技术可用于制造多芯光纤耦合器。结合多芯光纤和逐芯内嵌光纤Bragg光栅技术,利用热扩散技术实现单通道传感测量。利用热扩散改变离散波导折射率的方法具有高集成度、高稳定性和大批量制造的优点。对离散波导热扩散的研究可以提高多芯光纤传感系统的应用潜力,促进离散波导结构光纤在光通信、光传感、生物医学、人工智能等领域的广泛应用。
{"title":"Thermal diffusion coupling mechanism and its application of discrete waveguide","authors":"None Meng Ling-Zhi, None Yuan Li-Bo","doi":"10.7498/aps.72.20230204","DOIUrl":"https://doi.org/10.7498/aps.72.20230204","url":null,"abstract":"For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper investigates how the refractive index of discrete waveguides can be tuned by thermal diffusion to enhance the coupling between discrete waveguides. In this paper, the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers are constructed. The multicore fiber is heated with a hydrogen-oxygen flame for different times, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. Combined with multicore fiber and core-by-core inscribed fiber Bragg gratings technology, single-channel sensing measurement can be realized by thermal diffusion technology. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, artificial intelligence.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135495613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-infrared self-assembled laser based on Ag<sub>2</sub>Se quantum dots 基于Ag&lt;sub&gt;2&lt;/sub&gt;Se量子点的近红外自组装激光器
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231457
Chen Liao, Ning Yao, Lu-Ping Tang, Wei-Hua Shi, Shao-Ling Sun, Hao-Ran Yang
The development of colloidal near-infrared quantum dot (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal QDs to the resonant cavity. In this study, we show that the above challenges can be addressed by the self-assembly laser based on Ag2Se QDs. The Ag2Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to in depth analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship of cavity length with free spectrum range and laser emission wavelength. Using this relationship and the gain spectrum characteristics of Ag2Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. The simulation results are used to fabricate a single-mode near-infrared Ag2Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ cm–2. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. The increasing of the laser cavity length leads the emission wavelength to increase from 1300 nm to 1323 nm. In addition, the toxicity of Ag2Se QD is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers toward practical lasers.
胶体近红外量子点(QD)激光器的发展一直受到铅盐量子点高态简并和胶体量子点与谐振腔耦合困难的制约。在这项研究中,我们证明了基于Ag<sub>2</sub>Se量子点的自组装激光器可以解决上述挑战。利用量子化态最低2倍简并的Ag<sub>2</sub>Se量子点取代铅盐量子点,实现低阈值近红外光学增益。采用有限元方法对咖啡环微腔的模场分布和振荡机理进行了深入分析。我们的研究结果表明,光场沿横截面积呈锯齿形振荡,表明量子点与腔模式之间存在强耦合。进一步研究了腔长与自由光谱范围和激光发射波长的关系。利用这种关系和Ag<sub>2</sub>Se量子点的增益谱特性,我们设计了一个单模近红外激光器,并进行了全面的分析。利用仿真结果制备了单模近红外Ag<sub>2</sub>Se QD咖啡环微激光器,其线宽为0.3 nm,阈值为158 μ jcm <sup> -2</sup>目前,它保持着近红外胶体量子点激光器中最低激光阈值的记录。随着激光腔长的增加,发射波长从1300 nm增加到1323 nm。此外,Ag<sub>2</sub>Se QD的毒性可以忽略不计。我们的工作促进了环境友好型近红外激光器向实用化方向发展。
{"title":"Near-infrared self-assembled laser based on Ag&lt;sub&gt;2&lt;/sub&gt;Se quantum dots","authors":"Chen Liao, Ning Yao, Lu-Ping Tang, Wei-Hua Shi, Shao-Ling Sun, Hao-Ran Yang","doi":"10.7498/aps.72.20231457","DOIUrl":"https://doi.org/10.7498/aps.72.20231457","url":null,"abstract":"The development of colloidal near-infrared quantum dot (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal QDs to the resonant cavity. In this study, we show that the above challenges can be addressed by the self-assembly laser based on Ag<sub>2</sub>Se QDs. The Ag<sub>2</sub>Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to in depth analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship of cavity length with free spectrum range and laser emission wavelength. Using this relationship and the gain spectrum characteristics of Ag<sub>2</sub>Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. The simulation results are used to fabricate a single-mode near-infrared Ag<sub>2</sub>Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ cm<sup>–2</sup>. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. The increasing of the laser cavity length leads the emission wavelength to increase from 1300 nm to 1323 nm. In addition, the toxicity of Ag<sub>2</sub>Se QD is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers toward practical lasers.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135560204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lunar Glasses 月球的眼镜
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231238
None Zhao Rui, None Shen Lai-Quan, None Chang Chao, None Bai Hai-Yang, None Wang Wei-Hua
Lunar glass, a significant component of lunar soil, is produced by non-equilibrium processes on the moon, such as volcanic eruptions, meteorite impacts, solar wind, and cosmic radiation. Lunar glass of different origins has ability to record historical information of the formation and evolution of the moon. This article presents a comprehensive review of the research progress of lunar glass found within the CE-5 lunar soil. Delving into its fundamental physical properties and microstructure, we explore the specific mechanismsbehind the formation of lunar glass. Furthermore, the investigation focuses on the diverse roles lunar glass plays in lunar evolution studies, such as acting as a “natural camera” that captures the moon's internal and surface changes over different epochs, encompassing lunar origin, magma activity, impact events, space weathering, and the origin of water. The ultra-stable lunar glass with disordered atomic structure can sustainably preserve lunar resources. It is worth noting that it is estimated that it has a substantial reserve of 3He, approximately 260,000 tons, and an astounding 27 billion tons of water. Moreover, lunar glass serves as an invaluable lunar chronometer, providing a reliable temporal framework for dating volcanic activity and impact events. This temporal framework, in turn, serves as a vital tool for investigating the evolution of lunar water, magnetic fields and reconstructing an extensive billion-year history of lunar impacts.
月球玻璃是月球土壤的重要组成部分,它是由月球上的非平衡过程产生的,如火山爆发、陨石撞击、太阳风和宇宙辐射。不同来源的月球玻璃能够记录月球形成和演化的历史信息。本文综述了CE-5月球土壤中发现的月球玻璃的研究进展。通过深入研究其基本的物理性质和微观结构,我们探索了月球玻璃形成背后的具体机制。此外,此次调查还将重点关注月球玻璃在月球演化研究中的不同作用,比如作为“天然照相机”,捕捉月球内部和表面在不同时期的变化,包括月球起源、岩浆活动、撞击事件、空间风化和水的起源。具有无序原子结构的超稳定月球玻璃可以可持续地保护月球资源。值得注意的是,据估计,它有相当大的储量,约26万吨,和惊人的270亿吨的水。此外,月球玻璃作为一种宝贵的月球计时器,为火山活动和撞击事件的定年提供了可靠的时间框架。反过来,这个时间框架是研究月球水、磁场演变和重建数十亿年月球撞击历史的重要工具。
{"title":"Lunar Glasses","authors":"None Zhao Rui, None Shen Lai-Quan, None Chang Chao, None Bai Hai-Yang, None Wang Wei-Hua","doi":"10.7498/aps.72.20231238","DOIUrl":"https://doi.org/10.7498/aps.72.20231238","url":null,"abstract":"Lunar glass, a significant component of lunar soil, is produced by non-equilibrium processes on the moon, such as volcanic eruptions, meteorite impacts, solar wind, and cosmic radiation. Lunar glass of different origins has ability to record historical information of the formation and evolution of the moon. This article presents a comprehensive review of the research progress of lunar glass found within the CE-5 lunar soil. Delving into its fundamental physical properties and microstructure, we explore the specific mechanismsbehind the formation of lunar glass. Furthermore, the investigation focuses on the diverse roles lunar glass plays in lunar evolution studies, such as acting as a “natural camera” that captures the moon's internal and surface changes over different epochs, encompassing lunar origin, magma activity, impact events, space weathering, and the origin of water. The ultra-stable lunar glass with disordered atomic structure can sustainably preserve lunar resources. It is worth noting that it is estimated that it has a substantial reserve of <sup>3</sup>He, approximately 260,000 tons, and an astounding 27 billion tons of water. Moreover, lunar glass serves as an invaluable lunar chronometer, providing a reliable temporal framework for dating volcanic activity and impact events. This temporal framework, in turn, serves as a vital tool for investigating the evolution of lunar water, magnetic fields and reconstructing an extensive billion-year history of lunar impacts.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol 实用的状态准备容错参考帧无关量子密钥分配协议研究
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231144
None Zhou Yang, None Ma Xiao, None Zhou Xing-Yu, None Zhang Chun-Hui, None Wang Qin
Quantum key distribution (QKD) enables the establishment of shared keys between two distant users, Alice and Bob, based on the fundamental principles of quantum mechanics, and it has been proven to possess information-theoretic security. In most QKD systems, Alice and Bob require a shared reference frame, and real-time calibration of the reference frame increases system costs and reduces its performance. Fortunately, the reference-frame-independent QKD protocol has been proposed, overcoming reference-frame drift issues and receiving widespread attention. However, in practical QKD systems, the non-ideal characteristics of realistic devices introduce certain inconsistency between the theory and the practice. In real-world quantum key distribution systems, device imperfections can lead to security vulnerabilities, thereby reducing system security. For example, imperfections in the encoding apparatus at the source end may result in errors in the quantum states. The inherent defects in the detection part may cause after-pulse effects and dead-time effects, and decreasing the key rate. Therefore, in this paper, we propose a practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol by taking imperfections in both the source and the detectors into account. Moreover, a three-intensity decoy-state scheme for modeling analysis and numerical simulations is employed. In this protocol, we reduce the impact of state-preparation errors on the key rate by utilizing virtual state methods to precisely estimate the phase-error rate. Furthermore, by characterizing the effects of after-pulses and dead-time on the key rate, our protocol exhibits higher robustness and can effectively address issues related to detector imperfections. This approach can also be extended to other quantum key distribution protocols with higher security levels, such as measurement-device-independent quantum key distribution protocol and twin-field quantum key distribution, further mitigating the influence of device imperfections on practical implementation of QKD systems. Therefore, our present work provide important reference value for the practical application of quantum key distributions.
量子密钥分发(QKD)基于量子力学的基本原理,能够在两个远程用户Alice和Bob之间建立共享密钥,并已被证明具有信息论的安全性。在大多数QKD系统中,Alice和Bob需要共享参考帧,而参考帧的实时校准会增加系统成本并降低其性能。幸运的是,独立于参考帧的QKD协议已经被提出,克服了参考帧漂移问题并受到广泛关注。然而,在实际的量子密钥分配系统中,现实器件的非理想特性导致理论与实践存在一定的不一致性。在现实世界的量子密钥分发系统中,设备缺陷可能导致安全漏洞,从而降低系统安全性。例如,源端编码装置的缺陷可能导致量子态的错误。检测部分的固有缺陷会造成脉冲后效应和死区效应,降低密钥率。因此,在本文中,我们提出了一种实用的状态准备容错参考帧无关的量子密钥分发协议,同时考虑了源和检测器的缺陷。此外,还采用了三强度诱饵状态格式进行建模分析和数值模拟。在该协议中,我们利用虚拟状态方法来精确估计相位误差率,从而减少状态准备误差对密钥率的影响。此外,通过表征后脉冲和死区时间对密钥率的影响,我们的协议具有更高的鲁棒性,可以有效地解决与检测器缺陷相关的问题。该方法还可以扩展到其他具有更高安全级别的量子密钥分发协议,如与测量设备无关的量子密钥分发协议和双场量子密钥分发协议,从而进一步减轻设备缺陷对QKD系统实际实现的影响。因此,我们的工作对量子密钥分配的实际应用具有重要的参考价值。
{"title":"A Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol","authors":"None Zhou Yang, None Ma Xiao, None Zhou Xing-Yu, None Zhang Chun-Hui, None Wang Qin","doi":"10.7498/aps.72.20231144","DOIUrl":"https://doi.org/10.7498/aps.72.20231144","url":null,"abstract":"Quantum key distribution (QKD) enables the establishment of shared keys between two distant users, Alice and Bob, based on the fundamental principles of quantum mechanics, and it has been proven to possess information-theoretic security. In most QKD systems, Alice and Bob require a shared reference frame, and real-time calibration of the reference frame increases system costs and reduces its performance. Fortunately, the reference-frame-independent QKD protocol has been proposed, overcoming reference-frame drift issues and receiving widespread attention. However, in practical QKD systems, the non-ideal characteristics of realistic devices introduce certain inconsistency between the theory and the practice. In real-world quantum key distribution systems, device imperfections can lead to security vulnerabilities, thereby reducing system security. For example, imperfections in the encoding apparatus at the source end may result in errors in the quantum states. The inherent defects in the detection part may cause after-pulse effects and dead-time effects, and decreasing the key rate. Therefore, in this paper, we propose a practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol by taking imperfections in both the source and the detectors into account. Moreover, a three-intensity decoy-state scheme for modeling analysis and numerical simulations is employed. In this protocol, we reduce the impact of state-preparation errors on the key rate by utilizing virtual state methods to precisely estimate the phase-error rate. Furthermore, by characterizing the effects of after-pulses and dead-time on the key rate, our protocol exhibits higher robustness and can effectively address issues related to detector imperfections. This approach can also be extended to other quantum key distribution protocols with higher security levels, such as measurement-device-independent quantum key distribution protocol and twin-field quantum key distribution, further mitigating the influence of device imperfections on practical implementation of QKD systems. Therefore, our present work provide important reference value for the practical application of quantum key distributions.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135596078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1