Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad9700
Alexander F Jercher, José D Simão and Sebastian Steinhaus
We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.
{"title":"Partial absence of cosine problem in 3D Lorentzian spin foams","authors":"Alexander F Jercher, José D Simão and Sebastian Steinhaus","doi":"10.1088/1361-6382/ad9700","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9700","url":null,"abstract":"We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"29 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad953d
Sourya Ray
We revisit the static spherically symmetric solutions of Einstein’s general relativity with a conformally coupled scalar field in arbitrary dimensions. Using a four rank tensor introduced earlier we recast the field equations in a manifestly symmetric form to elucidate a somewhat less-known feature of dual mapping between solutions. We also show that there is a two-parameter subfamily of solutions which enjoy a duality symmetry and in four dimensions both the BBMB black hole and the Barcelo–Visser wormhole belong to this subfamily. Along the way, we rederive the full three-parameter family of solutions by direct integration of the field equations and a natural choice of ansatz which arguably has several advantages over other previously known methods.
{"title":"Revisiting the static spherically symmetric solutions of gravity with a conformally coupled scalar field","authors":"Sourya Ray","doi":"10.1088/1361-6382/ad953d","DOIUrl":"https://doi.org/10.1088/1361-6382/ad953d","url":null,"abstract":"We revisit the static spherically symmetric solutions of Einstein’s general relativity with a conformally coupled scalar field in arbitrary dimensions. Using a four rank tensor introduced earlier we recast the field equations in a manifestly symmetric form to elucidate a somewhat less-known feature of dual mapping between solutions. We also show that there is a two-parameter subfamily of solutions which enjoy a duality symmetry and in four dimensions both the BBMB black hole and the Barcelo–Visser wormhole belong to this subfamily. Along the way, we rederive the full three-parameter family of solutions by direct integration of the field equations and a natural choice of ansatz which arguably has several advantages over other previously known methods.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"47 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad92d7
Merced Montesinos and Diego Gonzalez
A theory of gravity alternative to general relativity is trace-free Einstein gravity, which has the remarkable property that the cosmological constant emerges as an integration constant. In this paper, we report two fully diffeomorphism-invariant actions for trace-free Einstein gravity. They describe the theory as two BF theories supplemented with some constraints. The first action comprises two copies of the constrained BF theory for the Husain–Kuchař model plus an interaction term involving the fields that impose the constraints on the B fields. The second action employs two copies of the chiral Plebanski action for general relativity plus an additional constraint. Both actions use complex variables, and naturally include one of the reality conditions imposed in the Plebanski formulation of general relativity. The new actions have the advantage of not involving any nondynamical fields or unimodular condition, and their only gravitational sector is trace-free Einstein gravity.
{"title":"Trace-free Einstein gravity as two interacting constrained BF theories","authors":"Merced Montesinos and Diego Gonzalez","doi":"10.1088/1361-6382/ad92d7","DOIUrl":"https://doi.org/10.1088/1361-6382/ad92d7","url":null,"abstract":"A theory of gravity alternative to general relativity is trace-free Einstein gravity, which has the remarkable property that the cosmological constant emerges as an integration constant. In this paper, we report two fully diffeomorphism-invariant actions for trace-free Einstein gravity. They describe the theory as two BF theories supplemented with some constraints. The first action comprises two copies of the constrained BF theory for the Husain–Kuchař model plus an interaction term involving the fields that impose the constraints on the B fields. The second action employs two copies of the chiral Plebanski action for general relativity plus an additional constraint. Both actions use complex variables, and naturally include one of the reality conditions imposed in the Plebanski formulation of general relativity. The new actions have the advantage of not involving any nondynamical fields or unimodular condition, and their only gravitational sector is trace-free Einstein gravity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"229 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad92d8
Hidetomo Hoshino, Takuya Tsuchiya and Gen Yoneda
In this study, we investigate the numerical stability of the covariant Baumgarte–Shapiro–Shibata–Nakamura (cBSSN) formulation against the Friedmann–Lemaitre–Robertson–Walker spacetime. To evaluate the numerical stability, we calculate the constraint amplification factor by the eigenvalue analysis of the evolution of the constraint. We propose a modification to the time evolution equations of the cBSSN formulation for higher numerical stability. Furthermore, we perform numerical simulations using the modified formulation to confirm its improved stability.
{"title":"Stability analysis and improvement of the covariant BSSN formulation against the FLRW spacetime background","authors":"Hidetomo Hoshino, Takuya Tsuchiya and Gen Yoneda","doi":"10.1088/1361-6382/ad92d8","DOIUrl":"https://doi.org/10.1088/1361-6382/ad92d8","url":null,"abstract":"In this study, we investigate the numerical stability of the covariant Baumgarte–Shapiro–Shibata–Nakamura (cBSSN) formulation against the Friedmann–Lemaitre–Robertson–Walker spacetime. To evaluate the numerical stability, we calculate the constraint amplification factor by the eigenvalue analysis of the evolution of the constraint. We propose a modification to the time evolution equations of the cBSSN formulation for higher numerical stability. Furthermore, we perform numerical simulations using the modified formulation to confirm its improved stability.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"45 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad942f
Sergiu I Vacaru
Nonassociative modifications of general relativity, GR, and quantum gravity, QG, models naturally arise as star product and R-flux deformations considered in string/M-theory. Such nonassociative and noncommutative geometric and quantum information theories were formulated on phase spaces defined as cotangent Lorentz bundles enabled with nonassociative symmetric and nonsymmetric metrics and nonlinear and linear connection structures. We outline the analytic methods and proofs that corresponding geometric flow evolution and dynamical field equations can be decoupled and integrated in certain general off-diagonal forms. New classes of solutions describing nonassociative black holes, wormholes, and locally anisotropic cosmological configurations are constructed using such methods. We develop the Batalin–Vilkovisky, BV, formalism for quantizing modified gravity theories, MGTs, involving twisted star products and semi-classical models of nonassociative gauge gravity with de Sitter/affine/ Poincaré double structure groups. Such theories can be projected on Lorentz spacetime manifolds in certain forms equivalent to GR or MGTs with torsion generalizations etc. We study the properties of the classical and quantum BV operators for nonassociative phase spaces and nonassociative gauge gravity. Recent results and methods from algebraic QFT are generalized to involve nonassociative star product deformations of the anomalous master Ward identity. Such constructions are elaborated in a nonassociative BV perspective and for developing non-perturbative methods in QG.
{"title":"Nonassociative gauge gravity theories with R-flux star products and Batalin–Vilkovisky quantization in algebraic quantum field theory","authors":"Sergiu I Vacaru","doi":"10.1088/1361-6382/ad942f","DOIUrl":"https://doi.org/10.1088/1361-6382/ad942f","url":null,"abstract":"Nonassociative modifications of general relativity, GR, and quantum gravity, QG, models naturally arise as star product and R-flux deformations considered in string/M-theory. Such nonassociative and noncommutative geometric and quantum information theories were formulated on phase spaces defined as cotangent Lorentz bundles enabled with nonassociative symmetric and nonsymmetric metrics and nonlinear and linear connection structures. We outline the analytic methods and proofs that corresponding geometric flow evolution and dynamical field equations can be decoupled and integrated in certain general off-diagonal forms. New classes of solutions describing nonassociative black holes, wormholes, and locally anisotropic cosmological configurations are constructed using such methods. We develop the Batalin–Vilkovisky, BV, formalism for quantizing modified gravity theories, MGTs, involving twisted star products and semi-classical models of nonassociative gauge gravity with de Sitter/affine/ Poincaré double structure groups. Such theories can be projected on Lorentz spacetime manifolds in certain forms equivalent to GR or MGTs with torsion generalizations etc. We study the properties of the classical and quantum BV operators for nonassociative phase spaces and nonassociative gauge gravity. Recent results and methods from algebraic QFT are generalized to involve nonassociative star product deformations of the anomalous master Ward identity. Such constructions are elaborated in a nonassociative BV perspective and for developing non-perturbative methods in QG.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"39 9 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1088/1361-6382/ad98e0
Carlos F S Pereira, Denis C Rodrigues, Ébano L Martins, Júlio C Fabris and Manuel E Rodrigues
In the present study, we generalize the possible ghost field configurations within the framework of k-essence theory to the Simpson–Visser metric area function . Our analysis encompasses field configurations for the region-defined metric function as well as the general solution that asymptotically behaves as Schwarzschild-de Sitter for . Specifically, we investigate two scalar field configurations and define the associated potential for each one. Through rigorous calculations, we verify that all equations of motion are satisfied. Notably, our findings indicate that even when proposing new configurations of ghost scalar fields, the energy conditions remain unchanged. This result serves to validate the wormhole solutions obtained in previous studies.
{"title":"New sources of ghost fields in k-essence theories for black-bounce solutions","authors":"Carlos F S Pereira, Denis C Rodrigues, Ébano L Martins, Júlio C Fabris and Manuel E Rodrigues","doi":"10.1088/1361-6382/ad98e0","DOIUrl":"https://doi.org/10.1088/1361-6382/ad98e0","url":null,"abstract":"In the present study, we generalize the possible ghost field configurations within the framework of k-essence theory to the Simpson–Visser metric area function . Our analysis encompasses field configurations for the region-defined metric function as well as the general solution that asymptotically behaves as Schwarzschild-de Sitter for . Specifically, we investigate two scalar field configurations and define the associated potential for each one. Through rigorous calculations, we verify that all equations of motion are satisfied. Notably, our findings indicate that even when proposing new configurations of ghost scalar fields, the energy conditions remain unchanged. This result serves to validate the wormhole solutions obtained in previous studies.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"27 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1088/1361-6382/ad922e
Roberto A Sussman and Sebastián Nájera
We propose a new phenomenological second order gravity theory to be denoted as ‘Schouten–Codazzi’ Gravity’ (SCG), as it is based on Schouten and Codazzi tensors. The theory is related, but is clearly distinct from Cotton gravity. By assuming as source the energy momentum of General Relativity, we form a second order system with its geometric sector given by the sum of the Schouten tensor and a generic second order symmetric tensor complying with the following properties: (i) it must satisfy the Codazzi differential condition and (ii) it must be concomitant with the invariant characterization based on the algebraic structure of curvature tensors for specific spacetimes or classes of spacetimes. We derive and briefly discuss the properties of SCG solutions for static spherical symmetry (vacuum and perfect fluid), FLRW models and spherical dust fluids. While we do recognize that SCG is ‘work in progress’ in an incipient stage that still requires significant theoretical development, we believe that the theory provides valuable guidelines in the search for alternatives to General Relativity.
{"title":"Schouten–Codazzi gravity","authors":"Roberto A Sussman and Sebastián Nájera","doi":"10.1088/1361-6382/ad922e","DOIUrl":"https://doi.org/10.1088/1361-6382/ad922e","url":null,"abstract":"We propose a new phenomenological second order gravity theory to be denoted as ‘Schouten–Codazzi’ Gravity’ (SCG), as it is based on Schouten and Codazzi tensors. The theory is related, but is clearly distinct from Cotton gravity. By assuming as source the energy momentum of General Relativity, we form a second order system with its geometric sector given by the sum of the Schouten tensor and a generic second order symmetric tensor complying with the following properties: (i) it must satisfy the Codazzi differential condition and (ii) it must be concomitant with the invariant characterization based on the algebraic structure of curvature tensors for specific spacetimes or classes of spacetimes. We derive and briefly discuss the properties of SCG solutions for static spherical symmetry (vacuum and perfect fluid), FLRW models and spherical dust fluids. While we do recognize that SCG is ‘work in progress’ in an incipient stage that still requires significant theoretical development, we believe that the theory provides valuable guidelines in the search for alternatives to General Relativity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"16 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1088/1361-6382/ad9132
Xinyu Gong and Changhua Wei
The validity of the cosmic no-hair theorem for polytropic perfect fluids has been established by (Brauer et al 1994 Class. Quantum Grav. 11 2283) within the context of Newtonian cosmology, specifically under conditions of exponential expansion. This paper extends the investigation to assess the nonlinear stability of homogeneous Newtonian cosmological models under general accelerated expansion for perfect fluids. With appropriate assumptions regarding the expansion rate and decay properties of the homogeneous solution, our results demonstrate that the Euler–Poisson system admits a globally classical solution for initial data that are small perturbations to the homogeneous solution. Additionally, we establish that the solution asymptotically approaches the homogeneous solution as time tends to infinity. The theoretical framework is then applied to various types of perfect fluids, including isothermal gases, Chaplygin gases, and polytropic gases.
在牛顿宇宙学的背景下,特别是在指数膨胀的条件下,布劳尔等人 (Brauer et al 1994 Class. Quantum Grav. 11 2283) 确立了多向性完美流体的宇宙无毛定理的有效性。本文扩展了这一研究,以评估完全流体在一般加速膨胀条件下均质牛顿宇宙学模型的非线性稳定性。在对同质解的膨胀率和衰变特性做出适当假设的情况下,我们的结果表明,对于同质解的小扰动初始数据,欧拉-泊松系统具有全局经典解。此外,我们还确定,随着时间趋于无穷大,该解会渐近地接近同质解。理论框架随后被应用于各种类型的完全流体,包括等温气体、查普利金气体和多向气体。
{"title":"Stabilizing effect of the spacetime expansion on the Euler–Poisson equations in Newtonian cosmology","authors":"Xinyu Gong and Changhua Wei","doi":"10.1088/1361-6382/ad9132","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9132","url":null,"abstract":"The validity of the cosmic no-hair theorem for polytropic perfect fluids has been established by (Brauer et al 1994 Class. Quantum Grav. 11 2283) within the context of Newtonian cosmology, specifically under conditions of exponential expansion. This paper extends the investigation to assess the nonlinear stability of homogeneous Newtonian cosmological models under general accelerated expansion for perfect fluids. With appropriate assumptions regarding the expansion rate and decay properties of the homogeneous solution, our results demonstrate that the Euler–Poisson system admits a globally classical solution for initial data that are small perturbations to the homogeneous solution. Additionally, we establish that the solution asymptotically approaches the homogeneous solution as time tends to infinity. The theoretical framework is then applied to various types of perfect fluids, including isothermal gases, Chaplygin gases, and polytropic gases.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"66 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1088/1361-6382/ad8f27
William Delplanque and Evgeny Skvortsov
Massive higher spin fields are notoriously difficult to introduce interactions when they are described by symmetric (spin)-tensors. An alternative approach is to use chiral description that does not have unphysical longitudinal modes. For low spin fields we show that chiral and symmetric approaches can be related via a family of invertible change of variables (equivalent to parent actions), which should facilitate introduction of consistent interactions in the symmetric approach and help to control parity in the chiral one. We consider some examples of electromagnetic and gravitational interactions and their transmutations when going to the chiral formulation. An interesting feature of the relation is how second class constraints get eliminated while preserving Lorentz invariance.
{"title":"Symmetric vs. chiral approaches to massive fields with spin","authors":"William Delplanque and Evgeny Skvortsov","doi":"10.1088/1361-6382/ad8f27","DOIUrl":"https://doi.org/10.1088/1361-6382/ad8f27","url":null,"abstract":"Massive higher spin fields are notoriously difficult to introduce interactions when they are described by symmetric (spin)-tensors. An alternative approach is to use chiral description that does not have unphysical longitudinal modes. For low spin fields we show that chiral and symmetric approaches can be related via a family of invertible change of variables (equivalent to parent actions), which should facilitate introduction of consistent interactions in the symmetric approach and help to control parity in the chiral one. We consider some examples of electromagnetic and gravitational interactions and their transmutations when going to the chiral formulation. An interesting feature of the relation is how second class constraints get eliminated while preserving Lorentz invariance.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"71 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1088/1361-6382/ad8f8c
Samarth Chawla, Kwinten Fransen and Cynthia Keeler
We embed the Penrose limit into the Weyl classical double copy. Thereby, we provide a lift of the double copy properties of plane wave spacetimes into black hole geometries and we open a novel avenue towards taking the classical double copy beyond statements about algebraically special backgrounds. In particular, the Penrose limit, viewed as the leading order Fermi coordinate expansion around a null geodesic, complements approaches leveraging asymptotic flatness such as the asymptotic Weyl double copy. Along the way, we show how our embedding of the Penrose limit within the Weyl double copy naturally fixes the functional ambiguity in the double copy for Petrov type N spacetimes. We also highlight the utility of a spinorial approach to the Penrose limit. In particular, we use this spinorial approach to derive a simple analytical expression for arbitrary Penrose limits of four-dimensional, vacuum type D spacetimes.
我们将彭罗斯极限嵌入韦尔经典双副本中。因此,我们将平面波时空的双副本特性提升到了黑洞几何中,并为经典双副本超越代数特殊背景的声明开辟了一条新途径。特别是,彭罗斯极限被视为围绕空大地线的前阶费米坐标展开,补充了利用渐近平坦性(如渐近韦尔双副本)的方法。同时,我们还展示了我们如何将彭罗斯极限嵌入韦尔双副本中,自然地解决了彼得罗夫 N 型空间双副本中的函数模糊性问题。我们还强调了彭罗斯极限自旋方法的实用性。特别是,我们利用这种自旋方法推导出了四维真空 D 型空间的任意彭罗斯极限的简单分析表达式。
{"title":"The Penrose limit of the Weyl double copy","authors":"Samarth Chawla, Kwinten Fransen and Cynthia Keeler","doi":"10.1088/1361-6382/ad8f8c","DOIUrl":"https://doi.org/10.1088/1361-6382/ad8f8c","url":null,"abstract":"We embed the Penrose limit into the Weyl classical double copy. Thereby, we provide a lift of the double copy properties of plane wave spacetimes into black hole geometries and we open a novel avenue towards taking the classical double copy beyond statements about algebraically special backgrounds. In particular, the Penrose limit, viewed as the leading order Fermi coordinate expansion around a null geodesic, complements approaches leveraging asymptotic flatness such as the asymptotic Weyl double copy. Along the way, we show how our embedding of the Penrose limit within the Weyl double copy naturally fixes the functional ambiguity in the double copy for Petrov type N spacetimes. We also highlight the utility of a spinorial approach to the Penrose limit. In particular, we use this spinorial approach to derive a simple analytical expression for arbitrary Penrose limits of four-dimensional, vacuum type D spacetimes.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"71 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}