首页 > 最新文献

Classical and Quantum Gravity最新文献

英文 中文
Self-force framework for merger-ringdown waveforms 合并衰荡波形的自力框架
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-31 DOI: 10.1088/1361-6382/ae2b44
Lorenzo Küchler, Geoffrey Compère, Adam Pound
The prospect of observing asymmetric compact binaries with next-generation gravitational-wave detectors has motivated the development of fast and accurate waveform models in gravitational self-force theory. These models are based on a two-stage process: in a (slow) offline stage, waveform ingredients are pre-computed as functions on the orbital phase space; in a (fast) online stage, the waveform is generated by evolving through the phase space. While this framework has traditionally been restricted to the inspiral stage of a binary, we recently extended it across the transition to plunge, where the small companion crosses the innermost stable circular orbit around the primary black hole. In this paper, for the special case of quasicircular, nonspinning binaries, we show how the ‘offline/online’ phase-space paradigm also extends through the final plunge, which generates the binary’s merger-ringdown signal. We implement the method at leading, geodesic order in the plunge. The resulting plunge waveform agrees well with a stationary-phase approximation at early times and with a (self-consistently calculated) quasinormal mode sum at late times, but we highlight that neither of the two approximations reaches the peak of the full plunge waveform. Finally, we compare the plunge waveform to numerical relativity simulations. Our framework offers the prospect of fast, accurate inspiral-merger-ringdown waveform models for asymmetric binaries.
利用下一代引力波探测器观测非对称紧致双星的前景推动了引力自力理论中快速准确波形模型的发展。这些模型基于一个两阶段的过程:在一个(缓慢的)离线阶段,波形成分作为轨道相位空间的函数被预先计算;在(快速)在线阶段,波形是通过相空间的演化产生的。虽然这个框架传统上仅限于双星的灵感阶段,但我们最近将其扩展到跃进阶段,即小伴星穿过主黑洞周围最内层稳定的圆形轨道。在本文中,对于准圆形非自旋二进制的特殊情况,我们展示了“离线/在线”相空间范式如何延伸到最终的暴跌,从而产生二进制的合并环灭信号。我们将该方法实现在超前,测地线顺序中。所得的暴跌波形与早期的平稳相位近似和后期的(自洽计算的)准正态模态和非常吻合,但我们强调,这两种近似都没有达到完整暴跌波形的峰值。最后,我们将暴跌波形与数值相对论模拟进行了比较。我们的框架为非对称双星提供了快速、准确的吸气-合并-环灭波形模型。
{"title":"Self-force framework for merger-ringdown waveforms","authors":"Lorenzo Küchler, Geoffrey Compère, Adam Pound","doi":"10.1088/1361-6382/ae2b44","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2b44","url":null,"abstract":"The prospect of observing asymmetric compact binaries with next-generation gravitational-wave detectors has motivated the development of fast and accurate waveform models in gravitational self-force theory. These models are based on a two-stage process: in a (slow) offline stage, waveform ingredients are pre-computed as functions on the orbital phase space; in a (fast) online stage, the waveform is generated by evolving through the phase space. While this framework has traditionally been restricted to the inspiral stage of a binary, we recently extended it across the transition to plunge, where the small companion crosses the innermost stable circular orbit around the primary black hole. In this paper, for the special case of quasicircular, nonspinning binaries, we show how the ‘offline/online’ phase-space paradigm also extends through the final plunge, which generates the binary’s merger-ringdown signal. We implement the method at leading, geodesic order in the plunge. The resulting plunge waveform agrees well with a stationary-phase approximation at early times and with a (self-consistently calculated) quasinormal mode sum at late times, but we highlight that neither of the two approximations reaches the peak of the full plunge waveform. Finally, we compare the plunge waveform to numerical relativity simulations. Our framework offers the prospect of fast, accurate inspiral-merger-ringdown waveform models for asymmetric binaries.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"35 1","pages":"015018"},"PeriodicalIF":3.5,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of gravitational redshift on space-based gravitational wave detection with clock comparison 重力红移对天基引力波探测的时钟比对影响
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-30 DOI: 10.1088/1361-6382/ae2734
Qin Li, Cheng-Gang Qin, Jun Ke, Yu-Jie Tan, Jie Luo, Cheng-Gang Shao
With the rapid development of atomic clocks, the potential for gravitational-wave detection through clock comparisons emerges as a viable prospect for the future. Given the profound significance of gravitational redshift and time dilation in such comparisons, assessing its impact on gravitational wave detection with clock comparisons becomes imperative. We contemplate a two-satellite system tailored for gravitational wave detection via clock comparisons, and simulate the gravitational redshift and time dilation induced by major celestial bodies within the Solar System. Leveraging this satellite system, we conduct numerical simulations to dissect the influence of gravitational redshift and time dilation on detection sensitivity. Our analysis shows that the Sun dominates the gravitational redshift budget. In the band above 104 Hz, the resulting fractional frequency shift (and time dilation) spectral density is two to three orders of magnitude below 1020/Hz, which is the target sensitivity of clock-comparison searches for gravitational waves in the millihertz band. Therefore, gravitational redshift and time dilation does not pose a notable obstacle to clock-comparison-based gravitational wave detection in frequencies above 104 Hz. This conclusion is also directly applicable to the frequency shifts of laser links in laser interferometric gravitational wave detection like TianQin, Taiji, and LISA.
随着原子钟的快速发展,通过时钟比较来探测引力波的潜力成为未来可行的前景。考虑到引力红移和时间膨胀在这种比较中的深远意义,用时钟比较来评估其对引力波探测的影响变得势在必行。我们设想了一个专门用于通过时钟比较引力波探测的双卫星系统,并模拟了太阳系内主要天体引起的引力红移和时间膨胀。利用该卫星系统,我们进行了数值模拟,以剖析引力红移和时间膨胀对探测灵敏度的影响。我们的分析表明,太阳主导着引力红移预算。在10−4 Hz以上的波段,得到的分数阶频移(和时间膨胀)谱密度比10−20/Hz低2到3个数量级,这是毫赫波段引力波时钟比较搜索的目标灵敏度。因此,引力红移和时间膨胀不会对频率高于10−4 Hz的基于时钟比较的引力波探测造成显著障碍。这一结论也直接适用于天琴、太极、LISA等激光干涉引力波探测中激光链路的频移。
{"title":"Effect of gravitational redshift on space-based gravitational wave detection with clock comparison","authors":"Qin Li, Cheng-Gang Qin, Jun Ke, Yu-Jie Tan, Jie Luo, Cheng-Gang Shao","doi":"10.1088/1361-6382/ae2734","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2734","url":null,"abstract":"With the rapid development of atomic clocks, the potential for gravitational-wave detection through clock comparisons emerges as a viable prospect for the future. Given the profound significance of gravitational redshift and time dilation in such comparisons, assessing its impact on gravitational wave detection with clock comparisons becomes imperative. We contemplate a two-satellite system tailored for gravitational wave detection via clock comparisons, and simulate the gravitational redshift and time dilation induced by major celestial bodies within the Solar System. Leveraging this satellite system, we conduct numerical simulations to dissect the influence of gravitational redshift and time dilation on detection sensitivity. Our analysis shows that the Sun dominates the gravitational redshift budget. In the band above <inline-formula>\u0000<tex-math><?CDATA ${10^{- 4}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2734ieqn1.gif\"></inline-graphic></inline-formula> Hz, the resulting fractional frequency shift (and time dilation) spectral density is two to three orders of magnitude below <inline-formula>\u0000<tex-math><?CDATA ${10^{- 20}}/sqrt {mathrm{Hz}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>20</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msqrt><mml:mrow><mml:mi>Hz</mml:mi></mml:mrow></mml:msqrt></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2734ieqn2.gif\"></inline-graphic></inline-formula>, which is the target sensitivity of clock-comparison searches for gravitational waves in the millihertz band. Therefore, gravitational redshift and time dilation does not pose a notable obstacle to clock-comparison-based gravitational wave detection in frequencies above <inline-formula>\u0000<tex-math><?CDATA ${10^{- 4}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2734ieqn3.gif\"></inline-graphic></inline-formula> Hz. This conclusion is also directly applicable to the frequency shifts of laser links in laser interferometric gravitational wave detection like TianQin, Taiji, and LISA.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"28 1","pages":"015014"},"PeriodicalIF":3.5,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Black hole-neutron star binaries near neutron star disruption limit in the mass regime of event GW230529 黑洞-中子星双子星在GW230529事件质量范围内接近中子星破坏极限
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-30 DOI: 10.1088/1361-6382/ae2c37
Tia Martineau, Francois Foucart, Mark A Scheel, Matthew D Duez, Lawrence E Kidder, Harald P Pfeiffer
In May 2023, the LIGO-Virgo-KAGRA (LVK) Collaboration reported the likely black hole-neutron star (BHNS) merger GW230529_181500. The signal was observed with high significance in only one detector, limiting constraints on the black hole spin and motivating our study of disruption in this mass regime. That event is expected to be the merger of a 2.5–4.5 <inline-formula><tex-math><?CDATA $M_{odot}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mo>⊙</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2c37ieqn1.gif"></inline-graphic></inline-formula> primary with a secondary compact object of mass between 1.2–2.0 <inline-formula><tex-math><?CDATA $M_{odot}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mo>⊙</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2c37ieqn2.gif"></inline-graphic></inline-formula>. This makes it the first BHNS merger with a significant potential for the production of electromagnetic (EM) counterparts, and provides further evidence for compact objects existing within the suspected lower mass gap. To produce post-merger EM transients, the component of the black hole spin aligned with the orbital angular momentum must be sufficiently high, allowing the neutron star to be tidally disrupted. The disrupting BHNS binary may then eject a few percent of a solar mass of matter, leading to an observable kilonova driven by radioactive decays in ejecta, and/or a compact-binary gamma-ray burst (cbGRB) resulting from the formation of an accretion disk and relativistic jet. Determining which mergers lead to disruption of the neutron star is necessary to predict the prevalence of EM signals from BHNS mergers, yet most BHNS simulations so far have been performed far from the minimum spin required for tidal disruption. Here, we use the Spectral Einstein Code to explore the behavior of BHNS mergers in a mass range consistent with GW230529_181500 close to that critical spin, and compare our results against the mass remnant model currently used by the LVK Collaboration to predict the probability of tidal disruption. Our numerical results reveal the emergence of non-zero accretion disks even below the predicted NS disruption limit, of low mass but capable of powering cbGRBs. Our results also demonstrate that the remnant mass model underpredicts the disk mass for the DD2 equation of state, while they are within expected modeling errors for SFHo. The disruption limit itself, however, is not found to significantly differ from the predictions of the analytical model, unless remnant masses <inline-formula><tex-math><?CDATA $M_{mathrm {rem}}lesssim 0.001M_odot$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mrow><mml:mi>rem</mml:mi></mml:mrow></mml:mrow></mml:msub><mml:mo>≲</mml:mo><mml:mn>0.001</mml:mn><mml:msub><mml:mi>M</mml:mi><mml:mo>⊙</mml:m
在2023年5月,LIGO-Virgo-KAGRA (LVK)合作报告了可能的黑洞-中子星(BHNS)合并GW230529_181500。该信号仅在一个探测器上被观察到,具有很高的意义,限制了对黑洞自旋的约束,并激励了我们对这种质量体系的破坏的研究。这一事件预计将是一个2.5-4.5 M⊙的主天体与一个质量在1.2-2.0 M⊙之间的次级致密天体的合并。这使得它成为第一个具有产生电磁(EM)对应物的巨大潜力的BHNS合并,并提供了在疑似较低质量间隙内存在致密物体的进一步证据。为了产生合并后的电磁瞬变,与轨道角动量对齐的黑洞自旋分量必须足够高,从而允许中子星被潮汐破坏。破坏的BHNS双星可能会喷射出太阳质量的百分之几的物质,导致可观测到的由抛射物中的放射性衰变驱动的千新星,和/或由吸积盘和相对论性喷流形成的致密双星伽马射线暴(cbGRB)。确定哪些合并导致了中子星的破坏,对于预测BHNS合并产生的EM信号的流行是必要的,然而到目前为止,大多数BHNS模拟都远远没有达到潮汐破坏所需的最小自旋。在这里,我们使用光谱爱因斯坦代码来探索与GW230529_181500质量范围一致的BHNS合并的行为,接近临界自旋,并将我们的结果与LVK协作目前用于预测潮汐破坏概率的质量残余模型进行比较。我们的数值结果揭示了非零吸积盘的出现,甚至低于预测的NS破坏极限,低质量但能够为cbgrb提供动力。我们的结果还表明,残余质量模型低估了DD2状态方程的磁盘质量,而它们在SFHo的预期建模误差范围内。然而,破坏极限本身并没有发现与解析模型的预测有显著的不同,除非在观测上证明残余质量Mrem > 0.001M⊙是有趣的。在我们所有的模拟中,任何千新星的信号都是暗淡的,很可能是由合并后的盘流出物主导的。
{"title":"Black hole-neutron star binaries near neutron star disruption limit in the mass regime of event GW230529","authors":"Tia Martineau, Francois Foucart, Mark A Scheel, Matthew D Duez, Lawrence E Kidder, Harald P Pfeiffer","doi":"10.1088/1361-6382/ae2c37","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2c37","url":null,"abstract":"In May 2023, the LIGO-Virgo-KAGRA (LVK) Collaboration reported the likely black hole-neutron star (BHNS) merger GW230529_181500. The signal was observed with high significance in only one detector, limiting constraints on the black hole spin and motivating our study of disruption in this mass regime. That event is expected to be the merger of a 2.5–4.5 &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $M_{odot}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;M&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;⊙&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2c37ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; primary with a secondary compact object of mass between 1.2–2.0 &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $M_{odot}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;M&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;⊙&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2c37ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;. This makes it the first BHNS merger with a significant potential for the production of electromagnetic (EM) counterparts, and provides further evidence for compact objects existing within the suspected lower mass gap. To produce post-merger EM transients, the component of the black hole spin aligned with the orbital angular momentum must be sufficiently high, allowing the neutron star to be tidally disrupted. The disrupting BHNS binary may then eject a few percent of a solar mass of matter, leading to an observable kilonova driven by radioactive decays in ejecta, and/or a compact-binary gamma-ray burst (cbGRB) resulting from the formation of an accretion disk and relativistic jet. Determining which mergers lead to disruption of the neutron star is necessary to predict the prevalence of EM signals from BHNS mergers, yet most BHNS simulations so far have been performed far from the minimum spin required for tidal disruption. Here, we use the Spectral Einstein Code to explore the behavior of BHNS mergers in a mass range consistent with GW230529_181500 close to that critical spin, and compare our results against the mass remnant model currently used by the LVK Collaboration to predict the probability of tidal disruption. Our numerical results reveal the emergence of non-zero accretion disks even below the predicted NS disruption limit, of low mass but capable of powering cbGRBs. Our results also demonstrate that the remnant mass model underpredicts the disk mass for the DD2 equation of state, while they are within expected modeling errors for SFHo. The disruption limit itself, however, is not found to significantly differ from the predictions of the analytical model, unless remnant masses &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $M_{mathrm {rem}}lesssim 0.001M_odot$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;M&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;rem&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;≲&lt;/mml:mo&gt;&lt;mml:mn&gt;0.001&lt;/mml:mn&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;M&lt;/mml:mi&gt;&lt;mml:mo&gt;⊙&lt;/mml:m","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"89 1","pages":"015015"},"PeriodicalIF":3.5,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency-analysis approach for ACES space-clock comparisons to extract gravitational redshift 用于ace空间时钟比较提取引力红移的频率分析方法
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-30 DOI: 10.1088/1361-6382/ae2c36
Daphna Enzer, Nan Yu
We report on how to use a frequency approach to analyze Atomic Clock Ensemble in Space (ACES) space-clock to ground comparison data to constrain the gravitational-redshift violation parameter α to less than 2.9×106 from 12 d of simulated data. Previous work on this extrapolation achieved similar precision only with a phase approach; our method uses a frequency observable derived directly from the phase observable, avoiding the need to fit random walk data or perform Monte Carlo simulations to determine the fit uncertainty. Our approach not only results in similar α uncertainty for 12 d of simulated data but also offers new analytic expressions for how the uncertainty scales with data-length and a different framework for understanding the limits of the measurement. The new framework illustrates more readily how a 1×1016 frequency offset between the space and ground clock leads to a bias (i.e. systematic uncertainty) in α comparable to its statistical uncertainty of 2.9×106. Overall, our approach provides an independent analysis method for the determining α, particularly important for the overall rigor and validity of the ACES science return.
我们报告了如何使用频率方法来分析空间原子钟集成(ACES)空间时钟与地面比较数据,以从12 d的模拟数据中约束引力红移违反参数α小于2.9×10−6。以前关于这种外推的工作只有通过相位方法才能达到类似的精度;我们的方法使用直接从相位可观察到的频率可观察到的,避免了需要拟合随机漫步数据或执行蒙特卡罗模拟来确定拟合不确定性。我们的方法不仅得到了12 d模拟数据的相似的α不确定性,而且还提供了不确定性如何随数据长度缩放的新解析表达式,并为理解测量极限提供了不同的框架。新的框架更容易地说明了空间和地面时钟之间的1×10−16频率偏移如何导致α的偏差(即系统不确定性)与其2.9×10−6的统计不确定性相当。总的来说,我们的方法为确定α提供了一种独立的分析方法,这对ACES科学回报的整体严谨性和有效性尤为重要。
{"title":"Frequency-analysis approach for ACES space-clock comparisons to extract gravitational redshift","authors":"Daphna Enzer, Nan Yu","doi":"10.1088/1361-6382/ae2c36","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2c36","url":null,"abstract":"We report on how to use a frequency approach to analyze Atomic Clock Ensemble in Space (ACES) space-clock to ground comparison data to constrain the gravitational-redshift violation parameter <italic toggle=\"yes\">α</italic> to less than <inline-formula>\u0000<tex-math><?CDATA $2.9{ } times { }{10^{ - 6}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>2.9</mml:mn><mml:mrow></mml:mrow><mml:mo>×</mml:mo><mml:mrow></mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2c36ieqn1.gif\"></inline-graphic></inline-formula> from 12 d of simulated data. Previous work on this extrapolation achieved similar precision only with a phase approach; our method uses a frequency observable derived directly from the phase observable, avoiding the need to fit random walk data or perform Monte Carlo simulations to determine the fit uncertainty. Our approach not only results in similar <italic toggle=\"yes\">α</italic> uncertainty for 12 d of simulated data but also offers new analytic expressions for how the uncertainty scales with data-length and a different framework for understanding the limits of the measurement. The new framework illustrates more readily how a <inline-formula>\u0000<tex-math><?CDATA $1{ } times { }{10^{ - 16}}{ }$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow></mml:mrow><mml:mo>×</mml:mo><mml:mrow></mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>16</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2c36ieqn2.gif\"></inline-graphic></inline-formula> frequency offset between the space and ground clock leads to a bias (i.e. systematic uncertainty) in <italic toggle=\"yes\">α</italic> comparable to its statistical uncertainty of <inline-formula>\u0000<tex-math><?CDATA $2.9{ } times { }{10^{ - 6}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>2.9</mml:mn><mml:mrow></mml:mrow><mml:mo>×</mml:mo><mml:mrow></mml:mrow><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2c36ieqn3.gif\"></inline-graphic></inline-formula>. Overall, our approach provides an independent analysis method for the determining <italic toggle=\"yes\">α</italic>, particularly important for the overall rigor and validity of the ACES science return.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"53 1","pages":"015013"},"PeriodicalIF":3.5,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic helicity flux density for radiative systems 辐射系统的电磁螺旋通量密度
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-30 DOI: 10.1088/1361-6382/ae28ad
Zhen-Yu Heng, Jiang Long, Run-Ze Yu, Xin-Hao Zhou
We show that the helicity flux density is distinguished from magnetic helicity by analyzing Hopf solitons. The electromagnetic (EM) helicity flux and the magnetic helicity are Chern–Simons terms at different hypersurfaces. We find the helicity flux density for a point charge moving with an acceleration, extending the Liénard–Wiechert angular distribution of radiant power. We also derive the multipole expansion of the helicity flux density, generalizing the Larmor’s formula for the radiant power. These formulae have been applied to discuss the helicity flux density in several toy models such as circular and helical motion as well as soft bremsstrahlung. We also comment on the potential applications of the EM helicity flux density to pulsar systems.
通过对Hopf孤子的分析,证明了螺旋通量密度与磁螺旋度的区别。电磁螺旋通量和磁螺旋度在不同的超曲面上是chen - simons项。我们得到了随加速度运动的点电荷的螺旋通量密度,扩展了辐射功率的limedard - wiechert角分布。我们还推导了螺旋通量密度的多极展开,推广了辐射功率的拉莫尔公式。这些公式已经应用于讨论了螺旋运动和螺旋运动以及软韧致等几个玩具模型中的螺旋通量密度。我们还讨论了电磁螺旋通量密度在脉冲星系统中的潜在应用。
{"title":"Electromagnetic helicity flux density for radiative systems","authors":"Zhen-Yu Heng, Jiang Long, Run-Ze Yu, Xin-Hao Zhou","doi":"10.1088/1361-6382/ae28ad","DOIUrl":"https://doi.org/10.1088/1361-6382/ae28ad","url":null,"abstract":"We show that the helicity flux density is distinguished from magnetic helicity by analyzing Hopf solitons. The electromagnetic (EM) helicity flux and the magnetic helicity are Chern–Simons terms at different hypersurfaces. We find the helicity flux density for a point charge moving with an acceleration, extending the Liénard–Wiechert angular distribution of radiant power. We also derive the multipole expansion of the helicity flux density, generalizing the Larmor’s formula for the radiant power. These formulae have been applied to discuss the helicity flux density in several toy models such as circular and helical motion as well as soft bremsstrahlung. We also comment on the potential applications of the EM helicity flux density to pulsar systems.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"2018 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflation does not create entanglement in local observables 暴胀不会在局部可观测物中产生纠缠
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-29 DOI: 10.1088/1361-6382/ae2a9d
Ivan Agullo, Béatrice Bonga, Patricia Ribes-Metidieri
We investigate the entanglement content of a free, light scalar field theory in the Bunch–Davies vacuum within the cosmological patch of de Sitter spacetime, focusing on how entanglement varies with the Hubble rate H. We find that the entanglement between any spacelike-separated pair of field modes localized in finite regions decreases as H increases. This occurs despite the fact that correlations between such local modes increase with H. Consequently, these correlations do not contribute to entanglement. Our analysis elucidates how entanglement is distributed in de Sitter space and demonstrates that localized field modes at the end of inflation are less entangled than they would be in the Minkowski vacuum of flat spacetime.
我们研究了在德西特时空的宇宙学斑块内的束奇-戴维斯真空中的自由光标量场理论的纠缠量,重点研究了纠缠量随哈勃速率H的变化。我们发现,任何定域于有限区域的类空间分离的场模对之间的纠缠随着H的增加而减小。尽管这些局部模式之间的相关性随着h的增加而增加,但这种情况仍然发生。因此,这些相关性不会导致纠缠。我们的分析阐明了纠缠在德西特空间中的分布,并证明了暴胀末端的局域场模式比在平坦时空的闵可夫斯基真空中的纠缠要少。
{"title":"Inflation does not create entanglement in local observables","authors":"Ivan Agullo, Béatrice Bonga, Patricia Ribes-Metidieri","doi":"10.1088/1361-6382/ae2a9d","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2a9d","url":null,"abstract":"We investigate the entanglement content of a free, light scalar field theory in the Bunch–Davies vacuum within the cosmological patch of de Sitter spacetime, focusing on how entanglement varies with the Hubble rate <italic toggle=\"yes\">H</italic>. We find that the entanglement between any spacelike-separated pair of field modes localized in finite regions <italic toggle=\"yes\">decreases</italic> as <italic toggle=\"yes\">H</italic> increases. This occurs despite the fact that correlations between such local modes <italic toggle=\"yes\">increase</italic> with <italic toggle=\"yes\">H</italic>. Consequently, these correlations do not contribute to entanglement. Our analysis elucidates how entanglement is distributed in de Sitter space and demonstrates that localized field modes at the end of inflation are less entangled than they would be in the Minkowski vacuum of flat spacetime.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"94 1","pages":"01LT01"},"PeriodicalIF":3.5,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periapsis shift in the Zipoy–Voorhees spacetime Zipoy-Voorhees时空的顶点位移
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-29 DOI: 10.1088/1361-6382/ae272e
Akihito Katsumata, Tomohiro Harada
We study the periapsis shift of timelike bound orbits in the equatorial plane in the Zipoy–Voorhees spacetime, which is an exact, static, axisymmetric, and vacuum solution characterized by the deformation parameter γ, including the Schwarzschild spacetime as γ = 1. We newly derive the formula for the periapsis shift by the post-Newtonian (PN) expansion and show that the quadrupole moment contributes to the periapsis shift apparently as in the 2PN order. Applying this formula to observational data on S2, a star orbiting closely to Sagittarius A* (Sgr A*), we show that the parameter γ is constrained to γ1.9×102 for the gravitational field of Sgr A*. This is equivalent to M~29.7×102 in terms of the dimensionless quadrupole moment M~2, that is, the supermassive compact object at Sgr A* cannot be very prolate, whereas M~21/3 is required from the solution. Finally, we derive a new series representation in this spacetime using a recently proposed prescription, which shows fast convergence not only in the weak-field regime with not necessarily small eccentricity but also in the strong-field regime with small eccentricity.
我们研究了Zipoy-Voorhees时空中赤道平面上类时束缚轨道的近点位移,这是一种精确的、静态的、轴对称的真空解,以变形参数γ为特征,其中史瓦西时空为γ = 1。通过后牛顿(PN)展开,我们推导出了近点位移的计算公式,并证明了四极矩对近点位移的贡献与2PN阶相似。将该公式应用于Sgr a *附近的恒星S2的观测数据,我们发现Sgr a *的引力场参数γ被限制为γ±1.9×10−2。就无量纲四极矩M~2而言,这相当于M~2 > 9.7×102,也就是说,Sgr A*上的超大质量致密物体不能非常长,而M~2小于−1/3是解决方案所需要的。最后,我们利用最近提出的一个公式,在这个时空中得到了一个新的级数表示,它不仅在不一定具有小偏心率的弱场区域,而且在具有小偏心率的强场区域也显示出快速收敛。
{"title":"Periapsis shift in the Zipoy–Voorhees spacetime","authors":"Akihito Katsumata, Tomohiro Harada","doi":"10.1088/1361-6382/ae272e","DOIUrl":"https://doi.org/10.1088/1361-6382/ae272e","url":null,"abstract":"We study the periapsis shift of timelike bound orbits in the equatorial plane in the Zipoy–Voorhees spacetime, which is an exact, static, axisymmetric, and vacuum solution characterized by the deformation parameter <italic toggle=\"yes\">γ</italic>, including the Schwarzschild spacetime as <italic toggle=\"yes\">γ</italic> = 1. We newly derive the formula for the periapsis shift by the post-Newtonian (PN) expansion and show that the quadrupole moment contributes to the periapsis shift apparently as in the 2PN order. Applying this formula to observational data on S2, a star orbiting closely to Sagittarius A* (Sgr A*), we show that the parameter <italic toggle=\"yes\">γ</italic> is constrained to <inline-formula>\u0000<tex-math><?CDATA $gamma gtrsim 1.9 times 10^{-2}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>γ</mml:mi><mml:mo>≳</mml:mo><mml:mn>1.9</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae272eieqn1.gif\"></inline-graphic></inline-formula> for the gravitational field of Sgr A*. This is equivalent to <inline-formula>\u0000<tex-math><?CDATA $tilde{M}_2 lesssim 9.7 times 10^2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mover><mml:mi>M</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>≲</mml:mo><mml:mn>9.7</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae272eieqn2.gif\"></inline-graphic></inline-formula> in terms of the dimensionless quadrupole moment <inline-formula>\u0000<tex-math><?CDATA $tilde{M}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mover><mml:mi>M</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae272eieqn3.gif\"></inline-graphic></inline-formula>, that is, the supermassive compact object at Sgr A* cannot be very prolate, whereas <inline-formula>\u0000<tex-math><?CDATA $tilde{M}_2 unicode{x2A7E} -1/3$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mover><mml:mi>M</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mtext>⩾</mml:mtext><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae272eieqn4.gif\"></inline-graphic></inline-formula> is required from the solution. Finally, we derive a new series representation in this spacetime using a recently proposed prescription, which shows fast convergence not only in the weak-field regime with not necessarily small eccentricity but also in the strong-field regime with small eccentricity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"24 1","pages":"015012"},"PeriodicalIF":3.5,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Third order Lovelock constant density model 三阶Lovelock常密度模型
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-29 DOI: 10.1088/1361-6382/ae29dd
Sunil D Maharaj, Shavani Naicker, Byron P Brassel
We construct a relativistic star model with constant energy density within the framework of third order Lovelock (3OL) gravity. The 3OL field equations for a neutral fluid configuration are generated for dimensions N7 in a static spherically symmetric spacetime. We investigate solutions to the field equations for isotropic fluid pressure and constant energy density. The condition of pressure isotropy generalises the general relativity and Einstein-Gauss–Bonnet equations. The unique gravitational potentials characterising the interior of constant energy density models are found explicitly in all spacetime dimensions, and contain the general relativity energy density as a limiting value. In addition, the vacuum exterior solution in 3OL gravity is generated for all spacetime dimensions. As an example we demonstrate that a complete stellar model with constant energy density can be found in 3OL gravity for the spacetime dimension N = 7 by matching at the boundary and relating the coupling constants of EGB and 3OL gravity.
我们在三阶洛夫洛克(3OL)引力框架内构造了一个恒定能量密度的相对论恒星模型。中性流体配置的3OL场方程是在静态球对称时空中为尺寸N或7生成的。我们研究了各向同性流体压力和恒定能量密度的场方程的解。压力各向同性的条件推广了广义相对论和爱因斯坦-高斯-邦纳方程。表征恒定能量密度模型内部的独特引力势在所有时空维度中都被明确地发现,并且包含广义相对论能量密度作为一个极限值。此外,还生成了3OL重力下所有时空维度的真空外溶液。作为一个例子,我们通过在边界处进行匹配,并将EGB和3OL引力的耦合常数联系起来,证明了在时空维度N = 7的3OL引力中可以找到一个能量密度恒定的完整恒星模型。
{"title":"Third order Lovelock constant density model","authors":"Sunil D Maharaj, Shavani Naicker, Byron P Brassel","doi":"10.1088/1361-6382/ae29dd","DOIUrl":"https://doi.org/10.1088/1361-6382/ae29dd","url":null,"abstract":"We construct a relativistic star model with constant energy density within the framework of third order Lovelock (3OL) gravity. The 3OL field equations for a neutral fluid configuration are generated for dimensions <inline-formula>\u0000<tex-math><?CDATA $Nunicode{x2A7E}7$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>N</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>7</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae29ddieqn1.gif\"></inline-graphic></inline-formula> in a static spherically symmetric spacetime. We investigate solutions to the field equations for isotropic fluid pressure and constant energy density. The condition of pressure isotropy generalises the general relativity and Einstein-Gauss–Bonnet equations. The unique gravitational potentials characterising the interior of constant energy density models are found explicitly in all spacetime dimensions, and contain the general relativity energy density as a limiting value. In addition, the vacuum exterior solution in 3OL gravity is generated for all spacetime dimensions. As an example we demonstrate that a complete stellar model with constant energy density can be found in 3OL gravity for the spacetime dimension <italic toggle=\"yes\">N</italic> = 7 by matching at the boundary and relating the coupling constants of EGB and 3OL gravity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"42 1","pages":"015010"},"PeriodicalIF":3.5,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence modeling of higher-order wave modes of quasi-circular, spinning, non-precessing binary black hole mergers 准圆、自旋、非进动双黑洞并合的高阶波模式序列建模
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-29 DOI: 10.1088/1361-6382/ae2bd6
Victoria Tiki, Kiet Pham, E A Huerta
Higher-order gravitational wave modes from quasi-circular, spinning, non-precessing binary-black-hole (BBH) mergers encode rich information about the nonlinear dynamics of strong-field gravity. We present a transformer-based sequence-completion surrogate that, given an early-inspiral segment, forecasts the subsequent late inspiral, merger, and ringdown. The intended applications are (i) patching or completing expensive or interrupted numerical-relativity (NR) simulations and (ii) providing late-time cross-checks and rapid hybridization studies. The training set is built from the <monospace>NRHybSur3dq8</monospace> surrogate, which provides spherical-harmonic modes up to <inline-formula><tex-math><?CDATA $ellunicode{x2A7D}4$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>ℓ</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2bd6ieqn1.gif"></inline-graphic></inline-formula> (excluding (4, 0) and <inline-formula><tex-math><?CDATA $(4,pm1)$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo>,</mml:mo><mml:mo>±</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2bd6ieqn2.gif"></inline-graphic></inline-formula>, and including (5, 5)) for mass ratios <inline-formula><tex-math><?CDATA $qunicode{x2A7D}8$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>q</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2bd6ieqn3.gif"></inline-graphic></inline-formula>, dimensionless spin components <inline-formula><tex-math><?CDATA $s^{z}_{1,2}in[-0.8,0.8]$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msubsup><mml:mi>s</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>z</mml:mi></mml:mrow></mml:msubsup><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mo>−</mml:mo><mml:mn>0.8</mml:mn><mml:mo>,</mml:mo><mml:mn>0.8</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2bd6ieqn4.gif"></inline-graphic></inline-formula>, and inclination angles <inline-formula><tex-math><?CDATA $thetain[0,pi]$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>θ</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>π</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="cqgae2bd6ieqn5.gif"></inline-graphic></inline-formula>. Waveforms are supplied on the interval <inline-formula><tex-math><?CDATA $tin[-5000,mathrm{M},,-100,mathrm{M})$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>t</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mo>−</mml:mo><mml:mn>5000</mml:mn><mml:mstyle scriptlevel="0"></mml:mstyle><mml:mrow><mml:mi mathvariant="normal">M</mml:mi></mml:mrow><mml:mo>,</mml:mo><mml:mstyle scriptlevel="
来自准圆形、自旋、非进动双黑洞(BBH)并合的高阶引力波模式编码了有关强场引力非线性动力学的丰富信息。我们提出了一个基于变压器的序列完成替代,给定一个早期吸气段,预测随后的晚期吸气、合并和铃灭。预期的应用是(i)修补或完成昂贵的或中断的数字相对论(NR)模拟和(ii)提供后期交叉检查和快速杂交研究。训练集是由NRHybSur3dq8代替物构建的,它为质量比q≤8、无量纲自旋分量s1,2z∈[−0.8,0.8]和倾角θ∈[0,π]提供了最高为r≤4(不包括(4,0)和(4,±1),包括(5,5))的球谐模。在区间t∈[- 5000M, - 100M]上提供波形,模型自回归生成t∈[- 100M,130M]上的正极化和交叉极化(h+, hx)。在配备16个NVIDIA A100 gpu的Delta超级计算机上进行训练需要约15小时,处理超过1400万个混合波形。在包含840,000个样本的hold out测试集上进行评估,相对于代理基础真值,得出的均值和中位数重叠分别为0.996和0.997。该模型可以很好地推广到SXS目录中的分布外NR模拟:在521个NR波形中,质量比高达q = 15,自旋量级|s|≥0.998,我们获得了0.969的中位数重叠,在面开/面开方向上上升到0.998。在代理的训练域内,变压器提供精确的、毫秒级的BBH波形序列完成,包括从早期激励到响铃的高阶模式。NR测试表明,在高保真度、分布外的数据上,特别是在对探测器有利的方向上,有很好的表现。
{"title":"Sequence modeling of higher-order wave modes of quasi-circular, spinning, non-precessing binary black hole mergers","authors":"Victoria Tiki, Kiet Pham, E A Huerta","doi":"10.1088/1361-6382/ae2bd6","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2bd6","url":null,"abstract":"Higher-order gravitational wave modes from quasi-circular, spinning, non-precessing binary-black-hole (BBH) mergers encode rich information about the nonlinear dynamics of strong-field gravity. We present a transformer-based sequence-completion surrogate that, given an early-inspiral segment, forecasts the subsequent late inspiral, merger, and ringdown. The intended applications are (i) patching or completing expensive or interrupted numerical-relativity (NR) simulations and (ii) providing late-time cross-checks and rapid hybridization studies. The training set is built from the &lt;monospace&gt;NRHybSur3dq8&lt;/monospace&gt; surrogate, which provides spherical-harmonic modes up to &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $ellunicode{x2A7D}4$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;ℓ&lt;/mml:mi&gt;&lt;mml:mtext&gt;⩽&lt;/mml:mtext&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2bd6ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; (excluding (4, 0) and &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $(4,pm1)$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mo&gt;±&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2bd6ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, and including (5, 5)) for mass ratios &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $qunicode{x2A7D}8$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;q&lt;/mml:mi&gt;&lt;mml:mtext&gt;⩽&lt;/mml:mtext&gt;&lt;mml:mn&gt;8&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2bd6ieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, dimensionless spin components &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $s^{z}_{1,2}in[-0.8,0.8]$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;s&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;z&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msubsup&gt;&lt;mml:mo&gt;∈&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;0.8&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mn&gt;0.8&lt;/mml:mn&gt;&lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2bd6ieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, and inclination angles &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $thetain[0,pi]$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;θ&lt;/mml:mi&gt;&lt;mml:mo&gt;∈&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;π&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"cqgae2bd6ieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;. Waveforms are supplied on the interval &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $tin[-5000,mathrm{M},,-100,mathrm{M})$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mo&gt;∈&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;5000&lt;/mml:mn&gt;&lt;mml:mstyle scriptlevel=\"0\"&gt;&lt;/mml:mstyle&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;M&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mstyle scriptlevel=\"","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"29 1","pages":"015009"},"PeriodicalIF":3.5,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wormholes in 4D Einstein–Gauss–Bonnet gravity with BEC dark matter density profile 具有BEC暗物质密度分布的四维爱因斯坦-高斯-邦纳引力虫洞
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-29 DOI: 10.1088/1361-6382/ae2732
Bibhash Das, Bikash Chandra Paul
We obtain traversable wormholes (TWs) in the 4D Einstein–Gauss–Bonnet (4D-EGB) gravity with phenomenological Bose–Einstein condensates (BECs) dark matter. The 4D-EGB gravity considered here results from a regularization of the higher-dimensional EGB gravity in the limit D → 4. The rescaled GB coupling parameter (α) plays an important role to admit spherically symmetric TWs. Considering the energy density profile of non-relativistic BEC matter, the shape function of the TW geometry is determined. Thereafter, all the energy conditions (ECs) namely, null EC, strong EC, weak EC, and dominant EC are analyzed for a constant redshift function. The flaring-out and asymptotic flatness conditions are probed for a realistic scenario. The embedding diagram of the TW is also analyzed along with proper radial distance, volume integral quantifier, and pressure anisotropy. TW obtained here are found stable at the throat when α=0.0512471 with a set of model parameters, which are determined from the acceptable sound speed measurement. In the 4D EGB gravity, all the ECs are satisfied for α[4.222,4] with a set of model parameters. There is a range of α for which exotic properties of the BEC DM is not needed to sustain the TW throat, which is a new observation in modified 4D EGB gravity with BEC dark matter profile.
利用现象学玻色-爱因斯坦凝聚体(BECs)暗物质在四维爱因斯坦-高斯-博内(4D- egb)引力中获得了可穿越虫洞(TWs)。这里考虑的4D-EGB引力是在极限D→4下对高维EGB引力进行正则化的结果。重标的GB耦合参数(α)对球对称TWs的形成起着重要的作用。考虑非相对论性BEC物质的能量密度分布,确定了TW几何的形状函数。然后,对恒定红移函数的所有能量条件(EC),即零EC、强EC、弱EC和优势EC进行了分析。在实际情况下,探讨了渐近平面性条件的发散性和渐近平面性条件。在适当的径向距离、体积积分量词和压力各向异性条件下,分析了TW的嵌入图。当α= - 0.0512471时,用一组由可接受声速测量确定的模型参数,得到的TW在喉部是稳定的。在4D EGB重力中,对于α∈[−4.222,−4],具有一组模型参数,所有ec都满足。在一个α范围内,不需要BEC DM的奇异性质来维持TW喉道,这是在具有BEC暗物质剖面的修正四维EGB引力中发现的新现象。
{"title":"Wormholes in 4D Einstein–Gauss–Bonnet gravity with BEC dark matter density profile","authors":"Bibhash Das, Bikash Chandra Paul","doi":"10.1088/1361-6382/ae2732","DOIUrl":"https://doi.org/10.1088/1361-6382/ae2732","url":null,"abstract":"We obtain traversable wormholes (TWs) in the 4D Einstein–Gauss–Bonnet (4D-EGB) gravity with phenomenological Bose–Einstein condensates (BECs) dark matter. The 4D-EGB gravity considered here results from a regularization of the higher-dimensional EGB gravity in the limit <italic toggle=\"yes\">D</italic> → 4. The rescaled GB coupling parameter (<italic toggle=\"yes\">α</italic>) plays an important role to admit spherically symmetric TWs. Considering the energy density profile of non-relativistic BEC matter, the shape function of the TW geometry is determined. Thereafter, all the energy conditions (ECs) namely, null EC, strong EC, weak EC, and dominant EC are analyzed for a constant redshift function. The flaring-out and asymptotic flatness conditions are probed for a realistic scenario. The embedding diagram of the TW is also analyzed along with proper radial distance, volume integral quantifier, and pressure anisotropy. TW obtained here are found stable at the throat when <inline-formula>\u0000<tex-math><?CDATA $alpha = - 0.051,2471$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>0.051</mml:mn><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mn>2471</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2732ieqn1.gif\"></inline-graphic></inline-formula> with a set of model parameters, which are determined from the acceptable sound speed measurement. In the 4D EGB gravity, all the ECs are satisfied for <inline-formula>\u0000<tex-math><?CDATA $alpha in [-4.222,-4]$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy=\"false\">[</mml:mo><mml:mo>−</mml:mo><mml:mn>4.222</mml:mn><mml:mo>,</mml:mo><mml:mo>−</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy=\"false\">]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"cqgae2732ieqn2.gif\"></inline-graphic></inline-formula> with a set of model parameters. There is a range of <italic toggle=\"yes\">α</italic> for which exotic properties of the BEC DM is not needed to sustain the TW throat, which is a new observation in modified 4D EGB gravity with BEC dark matter profile.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"17 1","pages":"015011"},"PeriodicalIF":3.5,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Classical and Quantum Gravity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1