Pub Date : 2024-01-01DOI: 10.2174/1871527322666230508123558
Khalid Saad Alharbi, Waleed Hassan Almalki, Sami I Alzarea, Imran Kazmi, Fahad A Al-Abbasi, Obaid Afzal, Abdulmalik Saleh Alfawaz Altamimi, Mohammed Albratty, Asim Najmi, Gaurav Gupta
General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.
全身麻醉剂(GA)已在临床上持续使用了 170 多年,数以百万计的年轻人和老年人接触过全身麻醉剂,以缓解围手术期的不适和进行侵入性检查。临床前研究表明,急性和慢性暴露于 GA 的新生啮齿动物会出现记忆和学习障碍,这可能是由于兴奋性和抑制性神经递质之间的不平衡造成的,而这种不平衡与神经发育障碍有关。然而,麻醉诱导出生后晚期小鼠发生改变背后的机制尚未确定。在这篇叙述性综述中,我们介绍了关于生命早期麻醉暴露介导的基因表达改变的知识现状,重点是对异丙酚、氯胺酮和异氟醚的深入了解,以及网络效应和随后导致长期神经认知异常的生化变化之间的关系。我们的综述为麻醉剂的病理事件和相关转录变化提供了有力的证据和清晰的图景,这将为研究人员阐明核心观点、深入了解分子和遗传机制提供新的见解。这些发现也有助于为了解急性和慢性接触麻醉剂导致的神经病理加剧、认知受损和 LTP 提供更多证据,这将有利于预防和治疗阿尔茨海默病等多种疾病。鉴于医疗实践中有许多程序需要连续或多次接触麻醉剂,我们的综述将为了解这些物质对人脑和认知可能产生的不利影响提供重要启示。
{"title":"Anaesthesia-induced Changes in Genomic Expression Leading to Neurodegeneration.","authors":"Khalid Saad Alharbi, Waleed Hassan Almalki, Sami I Alzarea, Imran Kazmi, Fahad A Al-Abbasi, Obaid Afzal, Abdulmalik Saleh Alfawaz Altamimi, Mohammed Albratty, Asim Najmi, Gaurav Gupta","doi":"10.2174/1871527322666230508123558","DOIUrl":"10.2174/1871527322666230508123558","url":null,"abstract":"<p><p>General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"411-419"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1871527322666230417083053
F Sezer Senol Deniz, Ramin Ekhteiari Salmas, Esra Emerce, Bilge Sener, Ilkay Erdogan Orhan
<p><strong>Background: </strong>Cholinesterase (ChE) inhibitors used currently in clinics for the treatment of Alzheimer's disease (AD) are the most prescribed drug class with nitrogen-containing chemical formula. Galanthamine, the latest generation anti-ChE drug, contains an isoquinoline structure.</p><p><strong>Objective: </strong>The aim of the current study was to investigate the inhibitory potential of thirty-four isoquinoline alkaloids, e.g. (-)-adlumidine, β-allocryptopine, berberine, (+)-bicuculline, (-)-bicuculline, (+)-bulbocapnine, (-)-canadine, (±)-chelidimerine, corydaldine, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, dehydrocavidine, (+)-fumariline, (-)-fumarophycine, (+)-α-hydrastine, (+)-isoboldine, 13-methylcolumbamine, (-)-norjuziphine, norsanguinarine, (-)-ophiocarpine, (-)-ophiocarpine-Noxide, oxocularine, oxosarcocapnine, palmatine, (+)-parfumine, protopine, (+)-reticuline, sanguinarine, (+)-scoulerine, (±)-sibiricine, (±)-sibiricine acetate, (-)-sinactine, and (-)-stylopine isolated from several Fumaria (fumitory) and Corydalis species towards acetyl- (AChE) and butyrylcholinesterase (BChE) by microtiter plate assays. The alkaloids with strong ChE inhibition were proceeded to molecular docking simulations as well as in silico toxicity screening for their mutagenic capacity through VEGA QSAR (AMES test) consensus model and VEGA platform as statistical approaches. The inputs were evaluated in a simplified molecular input-line entry system (SMILES).</p><p><strong>Methods: </strong>ChE inhibition assays indicated that the highest AChE inhibition was caused by berberine (IC<sub>50</sub>: 0.72 ± 0.04 μg/mL), palmatine (IC<sub>50</sub>: 6.29 ± 0.61 μg/mL), <i>β</i>-allocryptopine (IC<sub>50</sub>: 10.62 ± 0.45 μg/mL), (-)-sinactine (IC<sub>50</sub>: 11.94 ± 0.44 μg/mL), and dehydrocavidine (IC<sub>50</sub>: 15.01 ± 1.87 μg/mL) as compared to that of galanthamine (IC<sub>50</sub>: 0.74 ± 0.01 μg/mL), the reference drug with isoquinoline skeleton. Less number of the tested alkaloids exhibited notable BChE inhibition. Among them, berberine (IC<sub>50</sub>: 7.67 ± 0.36 μg/mL) and (-)-corydalmine (IC<sub>50</sub>: 7.78 ± 0.38 μg/mL) displayed a stronger inhibition than that of galanthamine (IC<sub>50</sub>: 12.02 ± 0.25 μg/mL). The mutagenic activity was shown for <i>β</i>-allocryptopine, (+)- and (-)-bicuculline, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, (-)- fumarophycine, (-)-norjuziphine, (-)-ophiocarpine-N-oxide, (+)-scoulerine, (-)-sinactine, and (-)- stylopine by means of <i>in silico</i> experiments.</p><p><strong>Results: </strong>The results obtained by molecular docking simulations of berberine, palmatine, and (-)- corydalmine suggested that the estimated free ligand-binding energies of these compounds inside the binding domains of their targets are reasonable to make them capable of establishing strong polar and nonpolar bonds with the atoms of the active site amino acids.</p><p><strong>Conclusion: </stron
{"title":"Cholinesterase Inhibitory and <i>In Silic</i>o Toxicity Assessment of Thirty-Four Isoquinoline Alkaloids - Berberine as the Lead Compound.","authors":"F Sezer Senol Deniz, Ramin Ekhteiari Salmas, Esra Emerce, Bilge Sener, Ilkay Erdogan Orhan","doi":"10.2174/1871527322666230417083053","DOIUrl":"10.2174/1871527322666230417083053","url":null,"abstract":"<p><strong>Background: </strong>Cholinesterase (ChE) inhibitors used currently in clinics for the treatment of Alzheimer's disease (AD) are the most prescribed drug class with nitrogen-containing chemical formula. Galanthamine, the latest generation anti-ChE drug, contains an isoquinoline structure.</p><p><strong>Objective: </strong>The aim of the current study was to investigate the inhibitory potential of thirty-four isoquinoline alkaloids, e.g. (-)-adlumidine, β-allocryptopine, berberine, (+)-bicuculline, (-)-bicuculline, (+)-bulbocapnine, (-)-canadine, (±)-chelidimerine, corydaldine, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, dehydrocavidine, (+)-fumariline, (-)-fumarophycine, (+)-α-hydrastine, (+)-isoboldine, 13-methylcolumbamine, (-)-norjuziphine, norsanguinarine, (-)-ophiocarpine, (-)-ophiocarpine-Noxide, oxocularine, oxosarcocapnine, palmatine, (+)-parfumine, protopine, (+)-reticuline, sanguinarine, (+)-scoulerine, (±)-sibiricine, (±)-sibiricine acetate, (-)-sinactine, and (-)-stylopine isolated from several Fumaria (fumitory) and Corydalis species towards acetyl- (AChE) and butyrylcholinesterase (BChE) by microtiter plate assays. The alkaloids with strong ChE inhibition were proceeded to molecular docking simulations as well as in silico toxicity screening for their mutagenic capacity through VEGA QSAR (AMES test) consensus model and VEGA platform as statistical approaches. The inputs were evaluated in a simplified molecular input-line entry system (SMILES).</p><p><strong>Methods: </strong>ChE inhibition assays indicated that the highest AChE inhibition was caused by berberine (IC<sub>50</sub>: 0.72 ± 0.04 μg/mL), palmatine (IC<sub>50</sub>: 6.29 ± 0.61 μg/mL), <i>β</i>-allocryptopine (IC<sub>50</sub>: 10.62 ± 0.45 μg/mL), (-)-sinactine (IC<sub>50</sub>: 11.94 ± 0.44 μg/mL), and dehydrocavidine (IC<sub>50</sub>: 15.01 ± 1.87 μg/mL) as compared to that of galanthamine (IC<sub>50</sub>: 0.74 ± 0.01 μg/mL), the reference drug with isoquinoline skeleton. Less number of the tested alkaloids exhibited notable BChE inhibition. Among them, berberine (IC<sub>50</sub>: 7.67 ± 0.36 μg/mL) and (-)-corydalmine (IC<sub>50</sub>: 7.78 ± 0.38 μg/mL) displayed a stronger inhibition than that of galanthamine (IC<sub>50</sub>: 12.02 ± 0.25 μg/mL). The mutagenic activity was shown for <i>β</i>-allocryptopine, (+)- and (-)-bicuculline, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, (-)- fumarophycine, (-)-norjuziphine, (-)-ophiocarpine-N-oxide, (+)-scoulerine, (-)-sinactine, and (-)- stylopine by means of <i>in silico</i> experiments.</p><p><strong>Results: </strong>The results obtained by molecular docking simulations of berberine, palmatine, and (-)- corydalmine suggested that the estimated free ligand-binding energies of these compounds inside the binding domains of their targets are reasonable to make them capable of establishing strong polar and nonpolar bonds with the atoms of the active site amino acids.</p><p><strong>Conclusion: </stron","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"773-783"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9751816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myricetin (MC), 3,5,7,3',4',5'-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.
杨梅素(MC),3,5,7,3',4',5'-六羟黄酮,化学上属于类黄酮,已知具有抗氧化、抗菌、抗糖尿病和神经保护作用。众所周知,MC 能抑制活性氧(ROS)、脂质过氧化(MDA)和炎症指标的生成。据报道,它能改善人脑和外周的胰岛素功能。此外,它还能调节多种神经化学物质,包括谷氨酸、GABA、5-羟色胺等。研究表明,MC 能减少负责单胺代谢的单胺氧化酶(MAO)的表达。MC 治疗可降低血浆皮质酮水平,恢复受压动物海马 BDNF(全形)蛋白。此外,MC 还对淀粉样蛋白-β、MPTP、鱼藤酮、6-OHDA 等具有保护作用,这表明它对神经退行性疾病具有潜在作用。本综述旨在强调 MC 在治疗多种神经、神经精神和神经退行性疾病方面的治疗潜力。
{"title":"Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders.","authors":"Neeraj Kumar Sethiya, Neha Ghiloria, Akanksha Srivastav, Dheeraj Bisht, Sushil Kumar Chaudhary, Vaibhav Walia, Md Sabir Alam","doi":"10.2174/1871527322666230718105358","DOIUrl":"10.2174/1871527322666230718105358","url":null,"abstract":"<p><p>Myricetin (MC), 3,5,7,3',4',5'-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"865-882"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10204037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1871527322666230607152758
Robert Lalonde, Catherine Strazielle
One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.
{"title":"One-Trial Appetitive Learning Tasks for Drug Targeting.","authors":"Robert Lalonde, Catherine Strazielle","doi":"10.2174/1871527322666230607152758","DOIUrl":"10.2174/1871527322666230607152758","url":null,"abstract":"<p><p>One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"680-686"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurodegenerative diseases are progressive brain disorders characterized by inexorable synaptic dysfunction and neuronal loss. Since the most consistent risk factor for developing neurodegenerative diseases is aging, the prevalence of these disorders is intended to increase with increasing life expectancy. Alzheimer's disease is the most common cause of neurodegenerative dementia, representing a significant medical, social, and economic burden worldwide. Despite growing research to reach an early diagnosis and optimal patient management, no disease-modifying therapies are currently available. Chronic neuroinflammation has been recognized as a crucial player in sustaining neurodegenerative processes, along with pathological deposition of misfolded proteins, including amyloid-β and tau protein. Modulating neuroinflammatory responses may be a promising therapeutic strategy in future clinical trials. Among factors that are able to regulate neuroinflammatory mechanisms, diet, and nutrients represent easily accessible and modifiable lifestyle components. Mediterranean diet and several nutrients, including polyphenols, vitamins, and omega-3 polyunsaturated fatty acids, can exert antioxidant and anti-inflammatory properties, impacting clinical manifestations, cognitive decline, and dementia. This review aims to provide an updated overview of the relationship between neuroinflammation, nutrition, gut microbiota, and neurodegeneration. We summarize the major studies exploring the effects of diet regimes on cognitive decline, primarily focusing on Alzheimer's disease dementia and the impact of these results on the design of ongoing clinical trials.
神经退行性疾病是一种渐进性脑部疾病,其特征是不可阻挡的突触功能障碍和神经元丧失。由于罹患神经退行性疾病的最常见风险因素是衰老,因此这些疾病的发病率会随着预期寿命的延长而增加。阿尔茨海默病是神经退行性痴呆症最常见的病因,给全世界带来了巨大的医疗、社会和经济负担。尽管为实现早期诊断和最佳患者管理而进行的研究日益增多,但目前尚无改变病情的疗法。人们已经认识到,慢性神经炎症是神经退行性过程持续存在的关键因素,同时也是包括淀粉样蛋白-β 和 tau 蛋白在内的错误折叠蛋白病理沉积的关键因素。在未来的临床试验中,调节神经炎症反应可能是一种很有前景的治疗策略。在能够调节神经炎症机制的因素中,饮食和营养素是容易获得和可改变的生活方式组成部分。地中海饮食和几种营养素,包括多酚、维生素和欧米加-3 多不饱和脂肪酸,可以发挥抗氧化和抗炎作用,对临床表现、认知能力下降和痴呆症产生影响。本综述旨在提供神经炎症、营养、肠道微生物群和神经退行性变之间关系的最新概述。我们总结了探讨饮食方案对认知能力下降影响的主要研究,主要侧重于阿尔茨海默病痴呆症,以及这些结果对正在进行的临床试验设计的影响。
{"title":"New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer's Disease: Preventive and Therapeutic Perspectives.","authors":"Fabiola De Marchi, Francesca Vignaroli, Letizia Mazzini, Cristoforo Comi, Giacomo Tondo","doi":"10.2174/1871527322666230608110201","DOIUrl":"10.2174/1871527322666230608110201","url":null,"abstract":"<p><p>Neurodegenerative diseases are progressive brain disorders characterized by inexorable synaptic dysfunction and neuronal loss. Since the most consistent risk factor for developing neurodegenerative diseases is aging, the prevalence of these disorders is intended to increase with increasing life expectancy. Alzheimer's disease is the most common cause of neurodegenerative dementia, representing a significant medical, social, and economic burden worldwide. Despite growing research to reach an early diagnosis and optimal patient management, no disease-modifying therapies are currently available. Chronic neuroinflammation has been recognized as a crucial player in sustaining neurodegenerative processes, along with pathological deposition of misfolded proteins, including amyloid-β and tau protein. Modulating neuroinflammatory responses may be a promising therapeutic strategy in future clinical trials. Among factors that are able to regulate neuroinflammatory mechanisms, diet, and nutrients represent easily accessible and modifiable lifestyle components. Mediterranean diet and several nutrients, including polyphenols, vitamins, and omega-3 polyunsaturated fatty acids, can exert antioxidant and anti-inflammatory properties, impacting clinical manifestations, cognitive decline, and dementia. This review aims to provide an updated overview of the relationship between neuroinflammation, nutrition, gut microbiota, and neurodegeneration. We summarize the major studies exploring the effects of diet regimes on cognitive decline, primarily focusing on Alzheimer's disease dementia and the impact of these results on the design of ongoing clinical trials.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"614-627"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
{"title":"SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia?","authors":"Narmadhaa Sivagurunathan, Latchoumycandane Calivarathan","doi":"10.2174/1871527322666230418114446","DOIUrl":"10.2174/1871527322666230418114446","url":null,"abstract":"<p><p>The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"431-448"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9737378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1871527322666230303115236
Princika Srivastava, Sachithra Thazhathuveedu Sudevan, Arumugam Thennavan, Bijo Mathew, S K Kanthlal
The flavoenzyme monoamine oxidases (MAOs) are present in the mitochondrial outer membrane and are responsible for the metabolism of biogenic amines. MAO deamination of biological amines produces toxic byproducts such as amines, aldehydes, and hydrogen peroxide, which are significant in the pathophysiology of multiple neurodegenerative illnesses. In the cardiovascular system (CVS), these by-products target the mitochondria of cardiac cells leading to their dysfunction and producing redox imbalance in the endothelium of the blood vessels. This brings up the biological relationship between the susceptibility of getting cardiovascular disorders in neural patients. In the current scenario, MAO inhibitors are highly recommended by physicians worldwide for the therapy and management of various neurodegenerative disorders. Many interventional studies reveal the benefit of MAO inhibitors in CVS. Drug candidates who can target both the central and peripheral MAO could be a better to compensate for the cardiovascular comorbidities observed in neurodegenerative patients.
单胺氧化酶(MAO)存在于线粒体外膜中,负责生物胺的代谢。MAO 对生物胺的脱氨作用会产生胺、醛和过氧化氢等有毒副产品,对多种神经退行性疾病的病理生理学具有重要影响。在心血管系统(CVS)中,这些副产品以心脏细胞的线粒体为目标,导致其功能障碍,并在血管内皮中产生氧化还原失衡。这就提出了神经病患者易患心血管疾病的生物学关系。目前,全世界的医生都强烈推荐使用 MAO 抑制剂来治疗和控制各种神经退行性疾病。许多干预性研究显示,MAO 抑制剂对 CVS 有益。同时针对中枢和外周 MAO 的候选药物可以更好地弥补神经退行性疾病患者的心血管并发症。
{"title":"Inhibiting Monoamine Oxidase in CNS and CVS would be a Promising Approach to Mitigating Cardiovascular Complications in Neurodegenerative Disorders.","authors":"Princika Srivastava, Sachithra Thazhathuveedu Sudevan, Arumugam Thennavan, Bijo Mathew, S K Kanthlal","doi":"10.2174/1871527322666230303115236","DOIUrl":"10.2174/1871527322666230303115236","url":null,"abstract":"<p><p>The flavoenzyme monoamine oxidases (MAOs) are present in the mitochondrial outer membrane and are responsible for the metabolism of biogenic amines. MAO deamination of biological amines produces toxic byproducts such as amines, aldehydes, and hydrogen peroxide, which are significant in the pathophysiology of multiple neurodegenerative illnesses. In the cardiovascular system (CVS), these by-products target the mitochondria of cardiac cells leading to their dysfunction and producing redox imbalance in the endothelium of the blood vessels. This brings up the biological relationship between the susceptibility of getting cardiovascular disorders in neural patients. In the current scenario, MAO inhibitors are highly recommended by physicians worldwide for the therapy and management of various neurodegenerative disorders. Many interventional studies reveal the benefit of MAO inhibitors in CVS. Drug candidates who can target both the central and peripheral MAO could be a better to compensate for the cardiovascular comorbidities observed in neurodegenerative patients.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"331-341"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1871527322666230403130540
Maha S Al-Keilani, Basima A Almomani, Saied A Jaradat, Nour A Al-Sawalha, Majdi Al Qawasmeh
Background: Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS).
Objective: The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity.
Methods: Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA.
Results: We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (p < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (p = 0.007) and healthy controls (p = 0.001), and it positively correlated with EDSS (r = 0.270, p = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (p < 0.001 and p = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (p < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, p = 0.022) and duration of current DMT (r = -0.315, p = 0.042).
Conclusion: Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.
{"title":"Alpha Calcitonin Gene-related Peptide, Neuropeptide Y, and Substance P as Biomarkers for Diagnosis and Disease Activity and Severity in Multiple Sclerosis.","authors":"Maha S Al-Keilani, Basima A Almomani, Saied A Jaradat, Nour A Al-Sawalha, Majdi Al Qawasmeh","doi":"10.2174/1871527322666230403130540","DOIUrl":"10.2174/1871527322666230403130540","url":null,"abstract":"<p><strong>Background: </strong>Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS).</p><p><strong>Objective: </strong>The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity.</p><p><strong>Methods: </strong>Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA.</p><p><strong>Results: </strong>We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (<i>p</i> < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (<i>p</i> = 0.007) and healthy controls (<i>p</i> = 0.001), and it positively correlated with EDSS (r = 0.270, <i>p</i> = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (<i>p</i> < 0.001 and <i>p</i> = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (<i>p</i> < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, <i>p</i> = 0.022) and duration of current DMT (r = -0.315, <i>p</i> = 0.042).</p><p><strong>Conclusion: </strong>Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"512-524"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9236498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1871527322666230522105931
Hammad Qaiser, Mohammad Uzair, Muhammad Arshad, Anessa Zafar, Shahid Bashir
The capacity of animals to react to unpleasant stimuli that might endanger their integrity is known as nociception. Pharmacological treatments do not show satisfactory results in response to nociception. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including seasonal affective disorders, migraine, pain, and others. Evaluating the potential of green light exposure on nociception involves studying its effects on different types of pain and pain-related conditions and determining the optimal exposure methods. This review provides the beneficial effects of green light on the reduction in the frequency of pain. The green light exposure on nociception changes the activity of pain-related genes and proteins in cells. This review could provide insights into the underlying mechanisms by which green light modulates pain. Overall, evaluating the potential of green light exposure on nociception requires a multidisciplinary approach and should consider the safety, efficacy, optimal dose, and duration of green light exposure and the type of pain. However, few studies have been reported so far; therefore, light therapy for treating migraines require more studies on animal models to provide precise results of light effects on nociception.
{"title":"Evaluating the Potential of Green Light Exposure on Nociception-A Mini Review.","authors":"Hammad Qaiser, Mohammad Uzair, Muhammad Arshad, Anessa Zafar, Shahid Bashir","doi":"10.2174/1871527322666230522105931","DOIUrl":"10.2174/1871527322666230522105931","url":null,"abstract":"<p><p>The capacity of animals to react to unpleasant stimuli that might endanger their integrity is known as nociception. Pharmacological treatments do not show satisfactory results in response to nociception. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including seasonal affective disorders, migraine, pain, and others. Evaluating the potential of green light exposure on nociception involves studying its effects on different types of pain and pain-related conditions and determining the optimal exposure methods. This review provides the beneficial effects of green light on the reduction in the frequency of pain. The green light exposure on nociception changes the activity of pain-related genes and proteins in cells. This review could provide insights into the underlying mechanisms by which green light modulates pain. Overall, evaluating the potential of green light exposure on nociception requires a multidisciplinary approach and should consider the safety, efficacy, optimal dose, and duration of green light exposure and the type of pain. However, few studies have been reported so far; therefore, light therapy for treating migraines require more studies on animal models to provide precise results of light effects on nociception.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"675-679"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9512305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson's disease (PD) is a neurodegenerative disease characterized by both motor and non-motor symptoms. A progressive neuronal loss and the consequent clinical impairment lead to deleterious effects on daily living and quality of life. Despite effective symptomatic therapeutic approaches, no disease-modifying therapies are currently available. Emerging evidence suggests that adopting a healthy lifestyle can improve the quality of life of PD patients. In addition, modulating lifestyle factors can positively affect the microstructural and macrostructural brain levels, corresponding to clinical improvement. Neuroimaging studies may help to identify the mechanisms through which physical exercise, dietary changes, cognitive enrichment, and exposure to substances modulate neuroprotection. All these factors have been associated with a modified risk of developing PD, with attenuation or exacerbation of motor and non-motor symptomatology, and possibly with structural and molecular changes. In the present work, we review the current knowledge on how lifestyle factors influence PD development and progression and the neuroimaging evidence for the brain structural, functional, and molecular changes induced by the adoption of positive or negative lifestyle behaviours.
{"title":"Lifestyle Modulators of Neuroplasticity in Parkinson's Disease: Evidence in Human Neuroimaging Studies.","authors":"Silvia Paola Caminiti, Silvia Gallo, Federico Menegon, Andrea Naldi, Cristoforo Comi, Giacomo Tondo","doi":"10.2174/1871527322666230616121213","DOIUrl":"10.2174/1871527322666230616121213","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease characterized by both motor and non-motor symptoms. A progressive neuronal loss and the consequent clinical impairment lead to deleterious effects on daily living and quality of life. Despite effective symptomatic therapeutic approaches, no disease-modifying therapies are currently available. Emerging evidence suggests that adopting a healthy lifestyle can improve the quality of life of PD patients. In addition, modulating lifestyle factors can positively affect the microstructural and macrostructural brain levels, corresponding to clinical improvement. Neuroimaging studies may help to identify the mechanisms through which physical exercise, dietary changes, cognitive enrichment, and exposure to substances modulate neuroprotection. All these factors have been associated with a modified risk of developing PD, with attenuation or exacerbation of motor and non-motor symptomatology, and possibly with structural and molecular changes. In the present work, we review the current knowledge on how lifestyle factors influence PD development and progression and the neuroimaging evidence for the brain structural, functional, and molecular changes induced by the adoption of positive or negative lifestyle behaviours.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"602-613"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}