首页 > 最新文献

Journal of Bioprocess, Chemical and Environmental Engineering Science最新文献

英文 中文
Produksi Bioetanol Generasi Kedua dari Pelepah Kelapa Sawit dengan Variasi Pretreatment H2SO4 dan Waktu Fermentasi 从油棕中提取的第二代生物乙醇,其成分有H2SO4和发酵时间的变化
Pub Date : 2020-02-06 DOI: 10.31258/jbchees.1.2.1-16
Idral Amri, Adrianto Ahmad, Rahmah Nabilah
Indonesia merupakan negara produsen dan eksportir kelapa sawit terbesar di dunia. Seiring semakin luasnya lahan perkebunan sawit, maka semakin banyak industri pengolahan sawit yang mengakibatkan jumlah limbah yang dihasilkan juga besar. Indonesia menghasilkan limbah kelapa sawit sebesar 66.750 juta pelepah atau sekitar 300 juta ton/tahun. Dengan melimpahnya pelepah kelapa sawit dapat dimanfaatkan sebagai sumber energi alternatif terbaru yaitu bioetanol. Tujuan penelitian ini yaitu mensintesis bioetanol dari pelepah sawit, menentukan pengaruh konsentrasi H2SO4 pada proses hidrolisis dan menentukan waktu optimum produksi bioetanol dari bahan baku pelepah kelapa dengan metode separate hydrolysis and fermentation (SHF). Tahapan penelitian ini yaitu pretreatment basa menggunakan larutan KOH yang diperoleh dari ekstrak abu Tandan Kosong Sawit, selanjutnya proses pretreatment oksidatif menggunakan larutan H2O2 3%. Kemudian proses hidrolisis dengan variasi H2SO4 yaitu 1,5 M, 2 M, dan 2,5 M selama 3 jam pada suhu 100oC dan dilanjutkan dengan proses fermentasi untuk menghasilkan bioetanol dengan waktu fermentasi yaitu 24 jam, 48 jam, 72 jam, 96 jam, dan 120 jam . Hasil penelitian menunjukkan bahwa pada proses hidrolisis dihasilkan konsentrasi gula maksimum sebesar 161,98 gr/L. Konsentrasi terbaik H2SO4 pada penelitan ini yaitu 2 M dan waktu fermentasi terbaik 96 jam dengan kadar bioetanol yang diperoleh sebesar 7% atau 55,25 g/L. Kata kunci : bioetanol, fermentasi, hidrolisis, pelepah kelapa sawit, saccharomyces cerevisiae
印度尼西亚是世界上最大的棕榈油生产国和出口国。随着油棕面积的扩大,导致废物排放的油棕工业也在增加。印度尼西亚每年生产66.75亿油棕废物,约为3亿吨/吨。通过丰富的棕榈油抽出,可以用作一种新的生物乙醇替代能源。这项研究的目的是从棕榈油溶液中合成生物乙醇,确定H2SO4浓度对水解过程的影响,并确定从椰子蛋白酶和水化法(SHF)中提取的生物乙醇的最佳时间。这一阶段的研究是利用从棕榈油空煤渣提取物中提取的高浓缩溶液,然后用H2O2 3%溶液进行氧化预验过程。然后,以H2SO4的变化为1.5米(1.5米)、2米(2米)和2.5米(8英尺)的温度进行3小时的发酵过程,然后以发酵时间为24小时、48小时、72小时、96小时和120小时的发酵过程产生生物乙醇。研究表明,在水解过程中,糖浓度达到161.98克/L。研究中H2SO4的最佳浓度为2米(6.5英尺),用7%或55.25克/L的生物乙醇达到96小时。关键词:生物乙醇、发酵、水解、油棕、盐酸小脑
{"title":"Produksi Bioetanol Generasi Kedua dari Pelepah Kelapa Sawit dengan Variasi Pretreatment H2SO4 dan Waktu Fermentasi","authors":"Idral Amri, Adrianto Ahmad, Rahmah Nabilah","doi":"10.31258/jbchees.1.2.1-16","DOIUrl":"https://doi.org/10.31258/jbchees.1.2.1-16","url":null,"abstract":"Indonesia merupakan negara produsen dan eksportir kelapa sawit terbesar di dunia. Seiring semakin luasnya lahan perkebunan sawit, maka semakin banyak industri pengolahan sawit yang mengakibatkan jumlah limbah yang dihasilkan juga besar. Indonesia menghasilkan limbah kelapa sawit sebesar 66.750 juta pelepah atau sekitar 300 juta ton/tahun. Dengan melimpahnya pelepah kelapa sawit dapat dimanfaatkan sebagai sumber energi alternatif terbaru yaitu bioetanol. Tujuan penelitian ini yaitu mensintesis bioetanol dari pelepah sawit, menentukan pengaruh konsentrasi H2SO4 pada proses hidrolisis dan menentukan waktu optimum produksi bioetanol dari bahan baku pelepah kelapa dengan metode separate hydrolysis and fermentation (SHF). Tahapan penelitian ini yaitu pretreatment basa menggunakan larutan KOH yang diperoleh dari ekstrak abu Tandan Kosong Sawit, selanjutnya proses pretreatment oksidatif menggunakan larutan H2O2 3%. Kemudian proses hidrolisis dengan variasi H2SO4 yaitu 1,5 M, 2 M, dan 2,5 M selama 3 jam pada suhu 100oC dan dilanjutkan dengan proses fermentasi untuk menghasilkan bioetanol dengan waktu fermentasi yaitu 24 jam, 48 jam, 72 jam, 96 jam, dan 120 jam . Hasil penelitian menunjukkan bahwa pada proses hidrolisis dihasilkan konsentrasi gula maksimum sebesar 161,98 gr/L. Konsentrasi terbaik H2SO4 pada penelitan ini yaitu 2 M dan waktu fermentasi terbaik 96 jam dengan kadar bioetanol yang diperoleh sebesar 7% atau 55,25 g/L. \u0000Kata kunci : bioetanol, fermentasi, hidrolisis, pelepah kelapa sawit, saccharomyces cerevisiae","PeriodicalId":104683,"journal":{"name":"Journal of Bioprocess, Chemical and Environmental Engineering Science","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132217613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of Sago Starch-Based Bioplastic Using Citric Acid with Variation Plasticizers Glycerol and Sorbitol: Properties and Biodegradability Studies 柠檬酸与变型增塑剂甘油和山梨醇改性西米淀粉基生物塑料:性能和生物降解性研究
Pub Date : 2020-02-06 DOI: 10.31258/jbchees.1.1.39-46
Ojsadmin, Trisuciati Syahwardini, Cindy Oktaviani, Vivi Novriyani, Said Zul Amraini, Bahruddin
Bioplastic or biodegradable plastic is one of alternative replacement to conventional plastic that has the potential to harmful to the environment. One of the raw material that has the potential to be made into bioplastic is sago starch because it has ability to degraded. The general purpose of this research is to determine the characteristics of sago-based bioplastic by modified the citric acid, microcrystalline cellulose filler, plasticizer sorbitol and glycerol. The synthesis method is casting of starch, water, filler Micro Cristalline Cellulose (MCC) with varying plasticizer sorbitol and glycerol with composition of filler is (15-25 % w/w), composition of plasticizer (25– 35 % w/w), and composition citric acid (3-9 % w/w). The results showed that the treatment with the addition of MCC fillers, plasticizers, and citric acid are contributed to the mechanical properties produced. In the best process conditions (20% w/w MCC filler, plasticizer sorbitol 30% w/w with citric acid 0.95% w/w) give result Tensile strength 15.84 MPa, Elongation 9.32%, Young's Modulus 171.2 MPa, Biodegradation 51.65%, and wavelength absorption 1722.51 cm-1
生物塑料或生物可降解塑料是传统塑料的替代品之一,但对环境有潜在的危害。西米淀粉是一种有潜力制成生物塑料的原料,因为它具有降解能力。本研究的总体目的是通过改性柠檬酸、微晶纤维素填料、增塑剂山梨醇和甘油来确定sago基生物塑料的特性。该合成方法是将淀粉、水、填料微晶纤维素(MCC)与不同增塑剂山梨醇和甘油浇铸而成,填料组成为(15- 25% w/w),增塑剂组成为(25 - 35% w/w),柠檬酸组成为(3- 9% w/w)。结果表明,添加MCC填料、增塑剂和柠檬酸等处理对制备的力学性能有一定的影响。在最佳工艺条件下(填料为20% w/w的MCC,增塑剂山梨醇30% w/w,柠檬酸0.95% w/w),得到抗拉强度15.84 MPa,伸长率9.32%,杨氏模量171.2 MPa,生物降解51.65%,波长吸收1722.51 cm-1
{"title":"Modification of Sago Starch-Based Bioplastic Using Citric Acid with Variation Plasticizers Glycerol and Sorbitol: Properties and Biodegradability Studies","authors":"Ojsadmin, Trisuciati Syahwardini, Cindy Oktaviani, Vivi Novriyani, Said Zul Amraini, Bahruddin","doi":"10.31258/jbchees.1.1.39-46","DOIUrl":"https://doi.org/10.31258/jbchees.1.1.39-46","url":null,"abstract":"Bioplastic or biodegradable plastic is one of alternative replacement to conventional plastic that has the potential to harmful to the environment. One of the raw material that has the potential to be made into bioplastic is sago starch because it has ability to degraded. The general purpose of this research is to determine the characteristics of sago-based bioplastic by modified the citric acid, microcrystalline cellulose filler, plasticizer sorbitol and glycerol. The synthesis method is casting of starch, water, filler Micro Cristalline Cellulose (MCC) with varying plasticizer sorbitol and glycerol with composition of filler is (15-25 % w/w), composition of plasticizer (25– \u000035 % w/w), and composition citric acid (3-9 % w/w). The results showed that the treatment with the addition of \u0000MCC fillers, plasticizers, and citric acid are contributed to the mechanical properties produced. In the best process conditions (20% w/w MCC filler, plasticizer sorbitol 30% w/w with citric acid 0.95% w/w) give result Tensile strength 15.84 MPa, Elongation 9.32%, Young's Modulus 171.2 MPa, Biodegradation 51.65%, and wavelength absorption 1722.51 cm-1","PeriodicalId":104683,"journal":{"name":"Journal of Bioprocess, Chemical and Environmental Engineering Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131419239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pengaruh Pretreatment pada Fermentasi Bioetanol Generasi Kedua dari Serat Buah Kelapa Sawit 制毒对第二代棕榈油纤维生物乙醇发酵的影响
Pub Date : 2020-02-06 DOI: 10.31258/jbchees.1.1.28-38
Ojsadmin, Adrianto Ahmad, Idral Amri, Wida Sri Wani
Indonesia is a country with a growing human population, causing the need of energy also increases. Bioethanol has been widely used in transportation as a fuel that is increasingly reduced. Palm fruit fiber has a high enough potential to be developed into an alternative energy source, namely bioethanol because of its high lignocellulosic content. The purpose of this study was to determine the composition of sulfuric acid in the hydrolysis process, determine the initial sugar composition of the bioethanol produced, and determine the optimal processing time for the formation of bioethanol in the Hydrolysis and Separate Fermentation (SHF) method. The stages in this study were the hydrolysis of palm fruit fiber using H2SO4 with variations of 1M, 2M, and 3M for 3 hours at 100 oC. The fermentation process is carried out with variations in time for 24 hours, 48 hours, 72 hours, 96 hours and 120 hours. The results showed that in the hydrolysis process the optimum H2SO4  concentration of 3M produced a sugar concentration of 87.83 gr/L. The fermentation process obtained an optimal fermentation time of 96 hours with a bioethanol concentration of 31.57 g / L. The greater the initial concentration and the longer time fermentation, the more bioethanol is obtained at optimal times.
印度尼西亚是一个人口不断增长的国家,导致对能源的需求也在增加。生物乙醇作为一种日益减少的燃料被广泛应用于交通运输。棕榈果纤维由于其高的木质纤维素含量,有足够的潜力发展成为一种替代能源,即生物乙醇。本研究的目的是确定水解过程中硫酸的组成,确定所产生的生物乙醇的初始糖组成,并确定水解和分离发酵(SHF)法形成生物乙醇的最佳加工时间。本研究的阶段是在100℃下,用1M、2M和3M的H2SO4水解棕榈果纤维3小时。发酵过程按时间进行,分别为24小时、48小时、72小时、96小时和120小时。结果表明,在3M水解过程中,H2SO4的最佳浓度为87.83 gr/L。发酵过程中获得的最佳发酵时间为96 h,生物乙醇浓度为31.57 g / l,初始浓度越大,发酵时间越长,最佳发酵时间下获得的生物乙醇越多。
{"title":"Pengaruh Pretreatment pada Fermentasi Bioetanol Generasi Kedua dari Serat Buah Kelapa Sawit","authors":"Ojsadmin, Adrianto Ahmad, Idral Amri, Wida Sri Wani","doi":"10.31258/jbchees.1.1.28-38","DOIUrl":"https://doi.org/10.31258/jbchees.1.1.28-38","url":null,"abstract":"Indonesia is a country with a growing human population, causing the need of energy also increases. Bioethanol has been widely used in transportation as a fuel that is increasingly reduced. Palm fruit fiber has a high enough potential to be developed into an alternative energy source, namely bioethanol because of its high lignocellulosic content. The purpose of this study was to determine the composition of sulfuric acid in the hydrolysis process, determine the initial sugar composition of the bioethanol produced, and determine the optimal processing time for the formation of bioethanol in the Hydrolysis and Separate Fermentation (SHF) method. The stages in this study were the hydrolysis of palm fruit fiber using H2SO4 with variations of 1M, 2M, and 3M for 3 hours at 100 oC. The fermentation process is carried out with variations in time for 24 hours, 48 hours, 72 hours, 96 hours and 120 hours. The results showed that in the hydrolysis process the optimum H2SO4  concentration of 3M produced a sugar concentration of 87.83 gr/L. The fermentation process obtained an optimal fermentation time of 96 hours with a bioethanol concentration of 31.57 g / L. The greater the initial concentration and the longer time fermentation, the more bioethanol is obtained at optimal times.","PeriodicalId":104683,"journal":{"name":"Journal of Bioprocess, Chemical and Environmental Engineering Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124908657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Netralisasi Limbah Cair Industri Tahu Menggunakan Metoda Elektrokoagulasi dengan Elektroda Al-Al dengan Variabel Waktu Proses dan Ketebalan Plat 中和废水工业知道使用电凝方法与电极电凝与处理时间变量和厚度
Pub Date : 2020-02-06 DOI: 10.31258/jbchees.1.1.6-11
Idral Amri, Ihda Nurjanah, Irdoni
The tofu factory located in Pangkalan Kerinci, Pelalawan District, produces 1 m3 of liquid waste every day and are immediately disposed of without going throught the processing before release to environment. The analysis shows that the liquid waste is not in accordance with Permen LH No. 5 2014. This will deerease the oxygen level in the water. The purpose of this study was to determine reduce levels of TSS, BOD and pH with plate thicknes and prosesing time. Neutralization of liquid waste of tofu industry. The electrocoagulation method was used to reduce BOD, TSS and neutralize pH by varying the time, plate thickness. The conclusions obtained are: (1) Time variation (20, 40 and 60 minutes), and effective time is 60 minutes, current strength of 0.6 A decreases 72% BOD concentration, TSS 69.9% and pH becomes 6.01. (2) Variation in plate thickness (0.5; 1.0 and 1.5 mm), and effective plate thickness of 1 mm at 60 minutes can reduce BOD concentration 73.14%, TSS 68.78%, pH becomes 6.83. The results of the research obtained are in accordance with Permen LH No.5 of 2014.
这家豆腐工厂位于Pelalawan区Pangkalan Kerinci,每天产生1立方米的废液,在排放到环境之前,这些废液没有经过处理就被立即处理掉了。经分析,废液不符合Permen LH No. 5 2014。这将降低水中的含氧量。本研究的目的是确定TSS, BOD和pH随板厚和处理时间的降低水平。豆腐工业废液的中和。采用电混凝法通过改变时间、板厚来降低BOD、TSS和中和pH。结果表明:(1)时间变化(20、40和60分钟),有效时间为60分钟,0.6 A电流强度使BOD浓度降低72%,TSS降低69.9%,pH变为6.01。(2)板厚变化(0.5;1.0 mm和1.5 mm),当有效板厚为1 mm时,处理60分钟可使BOD浓度降低73.14%,TSS降低68.78%,pH变为6.83。所得研究结果符合2014年Permen LH No.5。
{"title":"Netralisasi Limbah Cair Industri Tahu Menggunakan Metoda Elektrokoagulasi dengan Elektroda Al-Al dengan Variabel Waktu Proses dan Ketebalan Plat","authors":"Idral Amri, Ihda Nurjanah, Irdoni","doi":"10.31258/jbchees.1.1.6-11","DOIUrl":"https://doi.org/10.31258/jbchees.1.1.6-11","url":null,"abstract":"The tofu factory located in Pangkalan Kerinci, Pelalawan District, produces 1 m3 of liquid waste every day and are immediately disposed of without going throught the processing before release to environment. The analysis shows that the liquid waste is not in accordance with Permen LH No. 5 2014. This will deerease the oxygen level in the water. The purpose of this study was to determine reduce levels of TSS, BOD and pH with plate thicknes and prosesing time. Neutralization of liquid waste of tofu industry. The electrocoagulation method was used to reduce BOD, TSS and neutralize pH by varying the time, plate thickness. The conclusions obtained are: (1) Time variation (20, 40 and 60 minutes), and effective time is 60 minutes, current strength of 0.6 A decreases 72% BOD concentration, TSS 69.9% and pH becomes 6.01. (2) Variation in plate thickness (0.5; 1.0 and 1.5 mm), and effective plate thickness of 1 mm at 60 minutes can reduce BOD concentration 73.14%, TSS 68.78%, pH becomes 6.83. The results of the research obtained are in accordance with Permen LH No.5 of 2014.","PeriodicalId":104683,"journal":{"name":"Journal of Bioprocess, Chemical and Environmental Engineering Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134442579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Bioprocess, Chemical and Environmental Engineering Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1